

Submitted to:

Department of Environment and Local Government

Marysville Place, P.O. Box 6000

Fredericton, NB

E3A 5T8

Environmental Impact Assessment
Registration Document
Fundy Region Service Commission
Crane Mountain Landfill Capacity
Augmentation and Life Extension Project
Saint John, New Brunswick

June 21, 2023

GEMTEC Project: 100018.012

June 21, 2023 File: 100018.012

Department of Environment and Local Government Marysville Place, P.O. Box 6000 Fredericton, NB E3A 5T8

Attention: Patricia Holland - Project Manager

Re: Environmental Impact Assessment Registration Document
Crane Mountain Landfill Capacity Augmentation and Life Extension

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) is pleased to submit this electronic copy of the Environmental Impact Assessment (EIA) registration document for the proposed Crane Mountain Landfill Capacity Augmentation and Life Extension Project on behalf of Fundy Regional Service Commission (FRSC). The proposed project is located at the FRSC sanitary landfill (Crane Mountain Landfill) at 10 Crane Mountain Road in Saint John, New Brunswick, identified by Service New Brunswick (SNB) as Property Identifier (PID) numbers 55087001, 55087027, 55087019, 55043301, 55086987, 55160352 and 55043293. The location of the proposed Project is situated on portions of PIDs 55087001, 55087027, 55086987, 55043301 and 55087019.

Please do not hesitate to contact the undersigned if you have any questions or concerns about the registration document or the information presented herein.

Sincerely,

Jennifer Hachey, B.Sc.

Technical Lead

Ecological & Permitting Services, Atlantic

GEMTEC

Marco Sivitilli, P.Eng. Civil Engineer Associate VP Operations, Atlantic GEMTEC

JH/MS

TABLE OF CONTENTS

1.0 INTR	ODUCTION	6
1.1 Na	ame of the Undertaking and Project Proponent	10
1.1.1	Name of the Undertaking	10
1.1.2	Project Proponent	
2.0 PRO	IECT DESCRIPTION	11
2.1 Pr	oject Overview	11
2.2 Pt	rpose / Rationale / Need for the Undertaking	13
	oject Location and Ownership	
2.4 Si	ting Considerations	14
2.5 Pł	nysical Components and Dimensions of the Project	15
2.5.1	Landfill Cell Design	
2.5.2	Leachate Collection and Treatment	
2.5.3	Landfill Gas Management and Utilization System	19
2.6 Pr	oject Related Documents	21
	, RONMENTAL IMPACT ASSESSMENT METHODOLOGY	
3.1 Co	omponents Not Considered in this EIA	23
	CRIPTION OF THE EXISTING ENVIRONMENT	
223		
4.1 At	mospheric Environment	24
4.1.1	Climate Conditions	24
4.1.2	Air Quality	
4.1.3	Sound Quality	
4.1.4	Odorous Emissions	26
4.2 G	roundwater Resources	27
4.2.1	Drainage and Topography	27
4.2.2	Geology and Hydrogeology	
4.2.3	Groundwater Quality and Quantity	29
4.3 Ed	cological Environment	30
4.3.1	Terrestrial Habitat	31
4.3.2	Ecological Significant Areas (ESAs)	32
4.3.3	Wetlands and Watercourses	
4.3.4	Flora	38
4.3.5	Wildlife and Wildlife Habitat	
4.4 Cı	ultural Features	43
4.5 Sc	ocio-Economic Environment	44
4.5.1	Existing Land Use	44
4.5.2	Visual Landscape	
4.5.3	Local Economy and Local Socio-economic Structure	
5.0 SUMI	MARY OF POTENTIAL EFFECTS	50

5.1 Atmospheric Environment Potential Effects	50
5.1.1 Climate Conditions Potential Effects	50
5.1.2 Air Quality Potential Effects	
5.1.3 Sound Quality Potential Effects	51
5.1.4 Odorous Emissions Potential Effects	53
5.2 Groundwater Resources Potential Effects	55
5.2.1 Drainage and Topography Potential Effects	55
5.2.2 Geology and Hydrogeology Potential Effects	55
5.2.2.1 Groundwater Quality and Quantity Potential Effects	55
5.3 Ecological Environment Potential Effects	56
5.3.1 Terrestrial Habitat Potential Effects	56
5.3.2 Wetlands and Watercourses Potential Effects	56
5.3.3 Flora Potential Effects	56
5.3.4 Wildlife and Bird Habitat Potential Effects	56
5.4 Cultural Features Potential Effects	58
5.5 Socio-Economic Environment Potential Effects	58
5.5.1 Existing Infrastructure Potential Effects	58
5.5.2 Existing Land Use Potential Effects	59
5.5.3 Visual Landscape Potential Effects	
5.5.4 Local Economy and Local Socio-economic Structure Potential Effects	
6.0 SUMMARY OF PROPOSED MITIGATION	63
7.0 PUBLIC AND FIRST NATIONS INVOLVEMENT	68
7.1 First Nations Involvement	68
7.2 Public and Stakeholder Involvement	68
8.0 APPROVAL OF THE PROJECT	70
9.0 FUNDING	
10.0 REFERENCES	71
11.0 STATEMENT OF LIMITATIONS	7/

LIST OF TABLES

Table 1	Proponent Information	10
Table 2	Concentration of PM2.5 and SO2 at the Saint John – West Side (2022)	25
Table 3	New Brunswick Air Quality Objectives	26
Table 4	Wetland Delineation and Observed Wetland Summary	36
Table 5	Summary of Flora SAR Within 5 km of the Site	38
Table 6	Summary of Wildlife SAR Within 5 km of the Site	39
Table 7	Local Sensitive Wildlife Species within the PDA.	42
Table 8	Adjoining Property Land Use	45
Table 9	Summary of Proposed Mitigation Measures	64
LIST OF I	FIGURES	
Figure 1 -	Site Location Plan	8
Figure 2 –	Project Site Plan	9
Figure 3 -	Example of Geometry of Proposed Landfill Cross Section (East to West)	12
Figure 4 -	Leachate Collection System	18
Figure 5 -	Overall LFG System (GCCS) Plan	20
Figure 6 -	· Wetland Delineation	35
Figure 7 –	Viewshed Analysis +90 metre Elevation	48
Figure 8 -	3D Rendering of Landfill Elevation at 90 and 117.5 m	52
Figure 9 -	Viewshed Analysis +90 metre and +117.7 metre Elevation	61
Figure 10	Proposed Limits of Public Consultation Mail-Out	69
LIST OF	APPENDICES	
APPEND	DIX A Approval to Operate	
APPEND	DIX B Typical Landfill Cell Design	
APPEND	DIX C Environmental Management Plan (EMP)	
APPEND	OIX D Supporting Documents	
APPEND	DIX E 2022 Annual Environmental Monitoring Report	
APPEND	Projected Viewscapes and Viewplane Modelling	

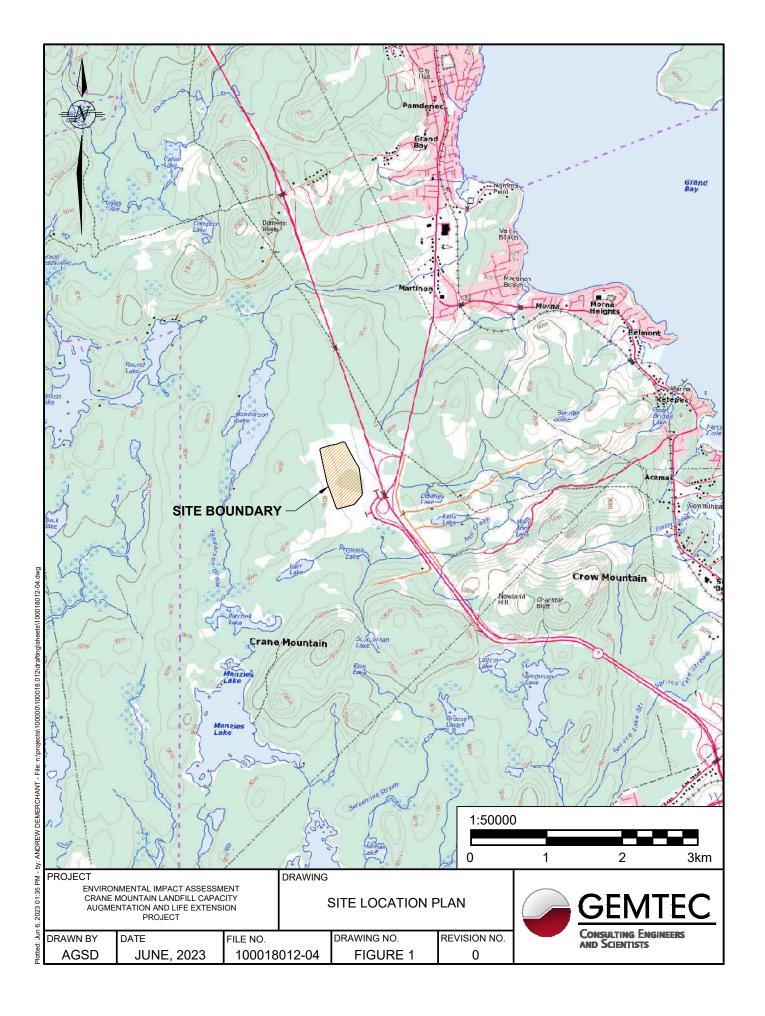
1.0 INTRODUCTION

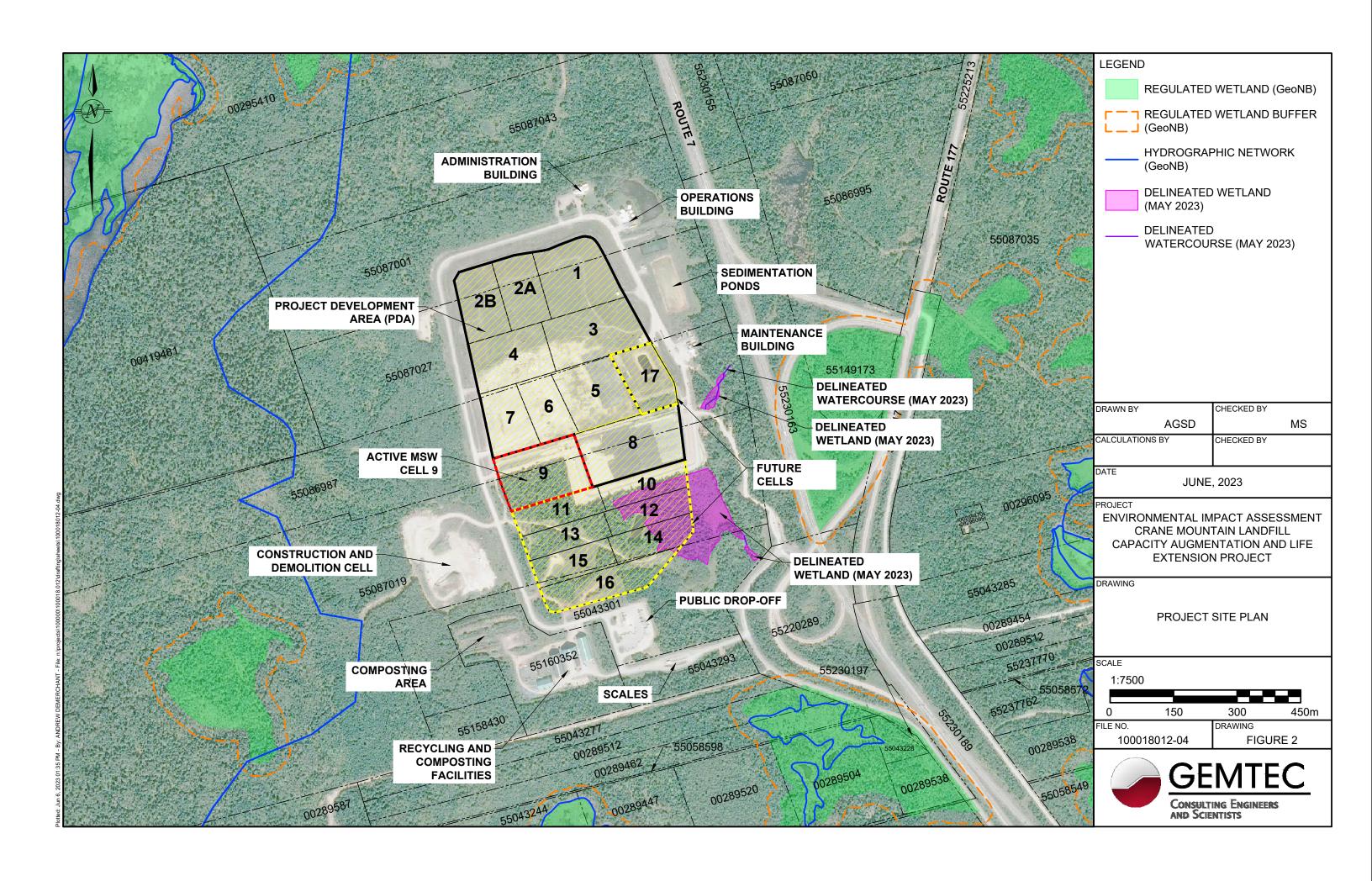
GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) has been retained by the Fundy Regional Service Commission (FRSC) to prepare an Environmental Impact Assessment (EIA) registration document for the proposed Crane Mountain Landfill Capacity Augmentation and Life Extension Project (herein referred to as the "Project") at the existing sanitary landfill facility (Crane Mountain Landfill) located at 10 Crane Mountain Road, Saint John, New Brunswick (herein referred to as the "Landfill"; Figure 1). The Landfill is situated on the property identified by Service New Brunswick (SNB) as Property Identifier (PID) 55087001, 55087027, 55086987, 55087019, 55043301, 55043293, 55160352 (herein referred to as the "Site"). The location of the proposed Project is situated on PID 55087027, 55087001, 55087027, 55086987, 55043301 and 55087019 (herein referred to as the "Project Development Area" or "PDA"; Figure 2).

The Landfill operates in accordance with an Approval to Operate (I-11079; valid to November 30, 2025) issued to the FRSC by the New Brunswick Department of Environment and Local Government (NBDELG; Appendix A). The Approval to Operate mandates conditions, including protocols and procedures the Landfill must implement to minimize impacts to the environment. Mandatory reporting to the NBDELG is required under the Approval to Operate to demonstrate the safe and compliant operation of the Site.

In an effort to optimize the efficient use of the Landfill, and maximize the available airspace, FRSC is proposing to increase the height of municipal solid waste (MSW) placed in the currently operational waste containment cells, as well as all future waste containment cells. The Project supports sustainable waste disposal practices by considering the reduction of environmental impacts required to expand the Landfill footprint, the cost savings realized by the delay of new containment cell construction or new landfill site entirely, and the social significances of siting a new landfill for the region. The FRSC considers the Project to be the most pragmatic solution, balancing the need for waste management, with the environmental, social, and economic aspects of such industry. It is expected to extend the life of the landfill site by 22 years, essentially doubling the remaining landfill capacity.

GEMTEC submitted a description of the Project to the New Brunswick Department of Environment and Local Government (NBDELG) on April 20, 2023 to confirm regulatory requirements for the proposal. The NBDELG issued a response on April 26, 2023 stating the proposed Project is considered a significant modification to an existing facility, and requires EIA Registration and review as per item (m), "all waste disposal facilities or systems" of Schedule A of the *Environmental Impact Assessment Regulation – Clean Environment Act*, before it can proceed. This document is the EIA Registration for the proposed Project. The document details the necessary information as outlined in the NBDELG document "A Guide to Environmental Impact Assessment in New Brunswick" dated January 2018 as well as the Sector Guideline for Waste Disposal Facilities.




The Landfill has been operational since 1997 and receives all MSW from communities in the Fundy Region, including Saint John, Rothesay, Quispamsis, Hampton, Fundy-St. Martins, Grand Bay-Westfield, and the Fundy Rural District. During the planning phase of the facility in the mid-nineties, the yearly tonnage of material to be disposed of at the Landfill was estimated to range from 114,000 to 145,000 tonnes of MSW (Fundy Solid Waste Action Team, 1994). In actuality, approximately 65,000 tonnes of MSW are deposited in Crane Mountain Landfill annually.

The remaining lifespan of the Landfill in its current configuration is estimated to be approximately 25 years with an expected closure to occur by 2048. The current remaining capacity of the Landfill is estimated to be 2.4 million cubic metres; the Project would add capacity for an additional 2.4 million cubic metres tonnes, essentially doubling the existing capacity of the Landfill.

The proposed Project involves increasing the maximum elevation of the waste containment cells from +90 metres to +117.5 metres geodetic elevation. The height increase is proposed for the entire landfill footprint, including previously filled and capped containment cells, currently active waste containment cells, as well as all future waste containment cells. The proposed additional waste storage will utilize the existing leachate collection system and leachate treatment system. The Project does not involve an increase in the overall footprint of the Landfill. There are no new health or safety concerns for staff or the public at the Site as a result of the Project.

1.1 Name of the Undertaking and Project Proponent

1.1.1 Name of the Undertaking

Crane Mountain Landfill Capacity Augmentation and Life Extension Project, Fundy Regional Service Commission, Saint John, New Brunswick

1.1.2 Project Proponent

Table 1 Proponent Information

Name of Proponent	Fundy Regional Service Commission		
Address of Proponent	10 Crane Mountain Road Saint John, New Brunswick, E2M 7T8		
Mailing Address of Proponent	P.O. Box 3032 Grand Bay-Westfield, New Brunswick, E5K 4V3		
Principal Proponent Contact	Marc MacLeod, General Manager Fundy Regional Services Commission Telephone: (506) 738-1212 Email: mmacleod@fundyrecycles.com		
Principal Contact Person for EIA	Marco Sivitilli, P.Eng. GEMTEC Consulting Engineers and Scientists Limited 124 Greenview Drive, Hanwell, New Brunswick, E3C 2A5 Telephone: (506) 453-1025 Email: marco.sivitilli@gemtec.ca		
Property Ownership	The property is owned by Fundy Regional Service Commission		

2.0 PROJECT DESCRIPTION

2.1 Project Overview

The FRSC operates a regional solid waste management and disposal facility that is commonly referred to as the Crane Mountain Landfill (the Landfill) located in Saint John near Grand Bay-Westfield. The Site is located approximately three (3) kilometres (km) south-southwest of the Martinon Bypass and just west of Route 7 at its junction with Route 177 as shown in Figure 1.

The Landfill serves the communities in the Fundy Region, including Saint John, Rothesay, Quispamsis, Hampton, Fundy-St. Martins, Grand Bay-Westfield, and the Fundy Rural District. The Landfill operates in accordance with an Approval to Operate (I-11079; valid to November 30, 2025) issued to the FRSC by NBDELG (Appendix A). The Landfill accepts a variety of waste streams, including MSW, construction and demolition debris, electronics, household hazardous wastes, and industrial, commercial and institutional (ICI) waste. Only MSW and ICI waste is placed in the containment cell.

The Landfill is equipped with landfill gas collection and control system (GCCS) that captures and utilizes landfill gas (LFG) produced by the natural decomposition of waste. The gas is extracted from the Landfill through a network of wells and pipes and is then combusted to destroy the methane, and producing carbon dioxide, thus lowering overall greenhouse gas (GHG) emissions. The combustion occurs in either an enclosed flare or the landfill gas utilization system (LFGUS) that produces electricity using a 1 MW Jenbaucher Genset. Both combustion units serve as an odour reducing agent, destroying menthane at a destructive rate greater than 99 percent (%). The electricity generated from the LFGUS is utilized onsite, with excess electricity fed directly into the Saint John Energy grid and to buildings on site (Energy Production, 2023). The FRSC is a leader in the utilization of LFG, as it was the first landfill site in New Brunswick to establish a GCCS in 2007, and also the first Landfill in Atlantic Canada to utilize LFG for energy generation in 2010.

In addition to waste disposal, the Landfill and FRSC are committed to multiple waste diversion initiatives, including household hazardous waste collection, recycling, and composting services to the community. The recycling program includes the collection and processing of materials such as paper, cardboard, plastic, and metal. The current FRSC recycling program meets the requirements of Recycle NB's new stewardship plan for packaging and paper products (PPP). The composting program includes the processing of yard and food waste into nutrient-rich compost that can be used for gardening and landscaping and conforms with New Brunswick's newly announced Strategic Action Plan for Waste Management 2023-2030. These items are not disposed of within the Landfill; rather, these services divert waste from active MSW containment cells, actively reducing the amount of landfilled material and LFG produced in the region.

Currently, nine (9) MSW containment cells have been constructed, with approximately eight (8) more cells planned until the closure (a total of 17 cells). In an effort to optimize the efficient use

of the Landfill, and maximize the available airspace, FRSC is proposing additional MSW capacity within the existing containment cells, and to increase the approved height for all future waste containment cells. MSW would be placed up to elevation +117.5 metres, while maintaining containment cell side slopes of 4 horizontal to 1 vertical (4H:1V).

The increase in height is designed to maintain the current Landfill footprint and exterior slopes. Based on the design geometry, only a small area of the Landfill will reach the new higher elevation as the MSW is placed in a pyramid configuration (Figure 3). This geometry will reduce the relatively flat surface area on the top of the Landfill, improving drainage on the final cover, and thus mitigating against water infiltration and leachate generation.

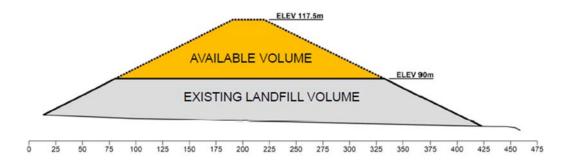


Figure 3 - Example of Geometry of Proposed Landfill Cross Section (East to West)

The Project will utilize the existing Landfill infrastructure and no new or unique materials/activities are required outside of typical landfill operational requirements or current construction practices. The Project does not involve any additional construction activity beyond the currently approved containment area and does not require any modification to the existing, and future planned leachate collection system, or containment cell design. As such, the EIA does not consider a "construction or site development phase" and focuses only on the "operational phase" of the Landfill.

Since the Project does not involve an increase in the approved footprint of the Landfill, it will not result in any additional alteration of natural habitat features beyond what was considered in the original EIA document (Fundy Solid Waste Action Team, 1994). Additionally, the Project will not impact any regulated watercourse or wetland outside the footprint of the Landfill as it was approved in 1997. Operational activities/conditions are not expected to differ significantly from those currently undertaken at the Landfill (e.g., noise levels, emissions, traffic patterns, etc.).

The Project will be accessed via the existing roadway network to and within the Site (Figure 2). No new roadways or access points are required. The Project will not increase traffic type, density or volume into the Landfill. The Project activities will be completed during typical Landfill operational hours (Monday to Friday, daytime hours, and Saturday mornings).

Overall, the decision to increase the Landfill height is an innovative, positive cost-benefit, and pragmatic solution that balances the need for waste management with the concerns of environmental and public safety, and is a common practice at landfills in North America. It minimizes the need for additional land use, environmental destruction, and transportation of waste to new disposal sites, as well as delays the lengthy and costly permitting/approval process required for the development of a new landfill site. It is expected to extend the life of the landfill site by 22 years, essentially doubling the remaining landfill capacity while optimizing the current infrastructure/assets, and service area.

The increased lifespan of the Landfill will not impact the overall site closure and reclamation plan, other than pushing the closure of the Landfill into the future. The closure and reclamation plan should address requirements for environmental monitoring, engineering inspection, maintenance of final cover, leachate management, gas management, and administration. In addition, the plan should specify all containment cells to be capped in accordance with any NBDELG requirements.

2.2 Purpose / Rationale / Need for the Undertaking

The Landfill was established in 1997 with a projected lifespan of 40 years. A key objective of the FRSC is managing the Landfill in a way to optimize its supporting infrastructure from both a fiscal and environmental perspective, while continually exploring improvement opportunities to provide efficient waste management service to the community. The key rationale for the Project is to extend the lifespan of the Landfill by an additional 22 years and create additional useable volume of approximately

2.4 million cubic meters, resulting in an expected closure date beyond 2070. This is anticipated to result in direct benefits to the municipalities and local government entities in FRSC's jurisdiction.

By increasing the Landfill height, the existing leachate collection system and pumps, leachate surge pond, surface water treatment ponds, landfill gas utilization system, existing roads, buildings, and monitoring wells can be effectively utilized, leading to reduced construction, operation, and maintenance costs. Furthermore, increasing the Landfill height would significantly lower capital costs associated with new cells, which typically cost about \$4 million and are designed to last between three to four years.

According to initial estimates, the Project is projected to generate significant cost savings for FRSC and ratepayers. It is anticipated that each additional year of extended operation will result in an estimated savings of \$1 million, accumulating to a total savings of over \$22 million throughout the extended lifespan of the Landfill. These savings, calculated conservatively in 2023 dollars, will directly benefit ratepayers

Moreover, the construction of Cell 10, can be postponed by at least 11 years. This can be achieved by raising the Landfill within the existing footprint of MSW Cells 1 through Cell 9. By

utilizing the available space more efficiently, the need for immediate construction of Cell 10 is deferred, thereby optimizing resources, and minimizing costs.

Extending the life of the existing Landfill will also avoid the need for further habitat destruction/environmental impacts for the purpose of waste management in the region. Maximizing the usable airspace in the existing Landfill is the most environmentally and economically sustainable option for waste management in the FRSC area. It is important to note that since opening in 1997, the Landfill has met or exceeded all requirements of the provincial Certificate of Authorization (COA) and Approval to Operate under which it is regulated.

2.3 Project Location and Ownership

The Project will be carried out on the existing Landfill Site currently owned and operated by FRSC. Central coordinates of the Site are 45.27001°, -66.21203°. The Project is located west of the Grand Bay highway interchange at Route 7 and Route 177 (Figure 1).

It is expected the PDA will include existing and active MSW containment cells, all future containment cells, any required access/hauling routes, and temporary structures (i.e., trailer, portable toilets, equipment storage, etc.). Within the Site, the estimated footprint of the PDA is 24 hectares (ha; Figure 1).

2.4 Siting Considerations

The proposed Project will be implemented atop existing capped, currently active, and future waste containment cells, allowing the storage capacity of the approved Landfill footprint to be maximized. It is expected this will result in a reduction of environmental impacts by extending the life of the existing Landfill within its current configuration. A cost savings to the public is also considered by increasing the capacity of the cells, thus utilizing the existing, future cells for a longer period of time (i.e., less construction, etc.), and the postponement of a new landfill site.

The Project will not involve an increase in the overall footprint of the Landfill; thus, no additional habitat disturbance/destruction or natural vegetation removal is required. Additionally, the Project is not expected to impact any regulated watercourses or wetlands outside the footprint of the approved Landfill area. The PDA is not located within a wellfield or watershed protected area (GeoNB, GeoNB Map Viewer, 2023).

The Project will utilize the existing, and future development of leachate collection systems at the Landfill. Storm water drainage patterns and on-site stormwater management will remain unchanged from the conditions currently observed and planned at the Landfill.

No alternate locations were considered given the Project, if approved, will be implemented within the existing Landfill footprint.

2.5 Physical Components and Dimensions of the Project

Figure 2 shows the existing site plan of the Landfill within which the Project will be implemented. The Project will not change the current or future approved development footprint or operational area of the Landfill.

2.5.1 Landfill Cell Design

The general construction sequence for the containment cells at the Landfill is presented in Appendix B and is described below:

- The in-situ till soils are excavated down to design elevations or competent bearing soils, to maximize the cell capacity while promoting positive drainage and allowing the leachate collection system to flow to the leachate storage and treatment ponds by gravity;
- Subdrain piping systems are installed to keep groundwater elevations below the underside of the cell liner, and backfilled to subgrade;
- The natural subgrade till is graded and compacted and covered with a layer Subbase material, consisting of 300 mm clean, free draining, pit run gravel material. The Subbase layer served the purpose of providing a competent foundation for the liner, as well as a drainage layer;
- Granular material and/or selected borrow material is used to construct containment berms;
- A composite liner system is then constructed. The liner for Cells 1 to 9 includes a 600 mm thick, low permeability re-compacted clay liner overlain by one (1) High Density Polyethylene (HDPE) 80 mil geomembrane liner;
- Leachate collection layers are constructed, consisting of a layer of geonet, overlain by geotextile, overlain with leachate collection pipes and leachate collection aggregates (300 mm of rounded clear stone, overlain by geotextile, overlain by 150 mm of crushed rock);
- Cells located on the eastern side of the landfill also require a leachate lift station to be constructed, to pump leachate to the existing leachate surge pond; and
- After leachate collection systems are constructed and tied-in to existing leachate management systems, the cell is ready for service and can receive and store MSW.

Once the cell has been constructed, the disposal of waste will occur on a daily basis once capacity has been exceeded in the previously active cells. The MSW material is compacted as it is placed and covered regularly with aggregate material to mitigate against animal pests and to reduce windblown debris.

The expected lifetime of each cell varies with the quantity of deposited waste and the size of the cell. Currently, the Landfill cells are sized and constructed to last three (3) to four (4) years. Once filled to capacity, the cell is covered with an intermediate cover - a layer of relatively low permeability granular material (typically borrow excavated from the footprint of containment cells).

Eventually, a final cover is installed. Historically, the final cover at Crane Mountain Landfill has consisted of a gas venting layer, drainage layers, low permeability material (GCL or clay), frost protection material, and topsoil, and is vegetated with grass and plants as a means of erosion control. See Appendix B for construction drawings for the 2022 capping program.

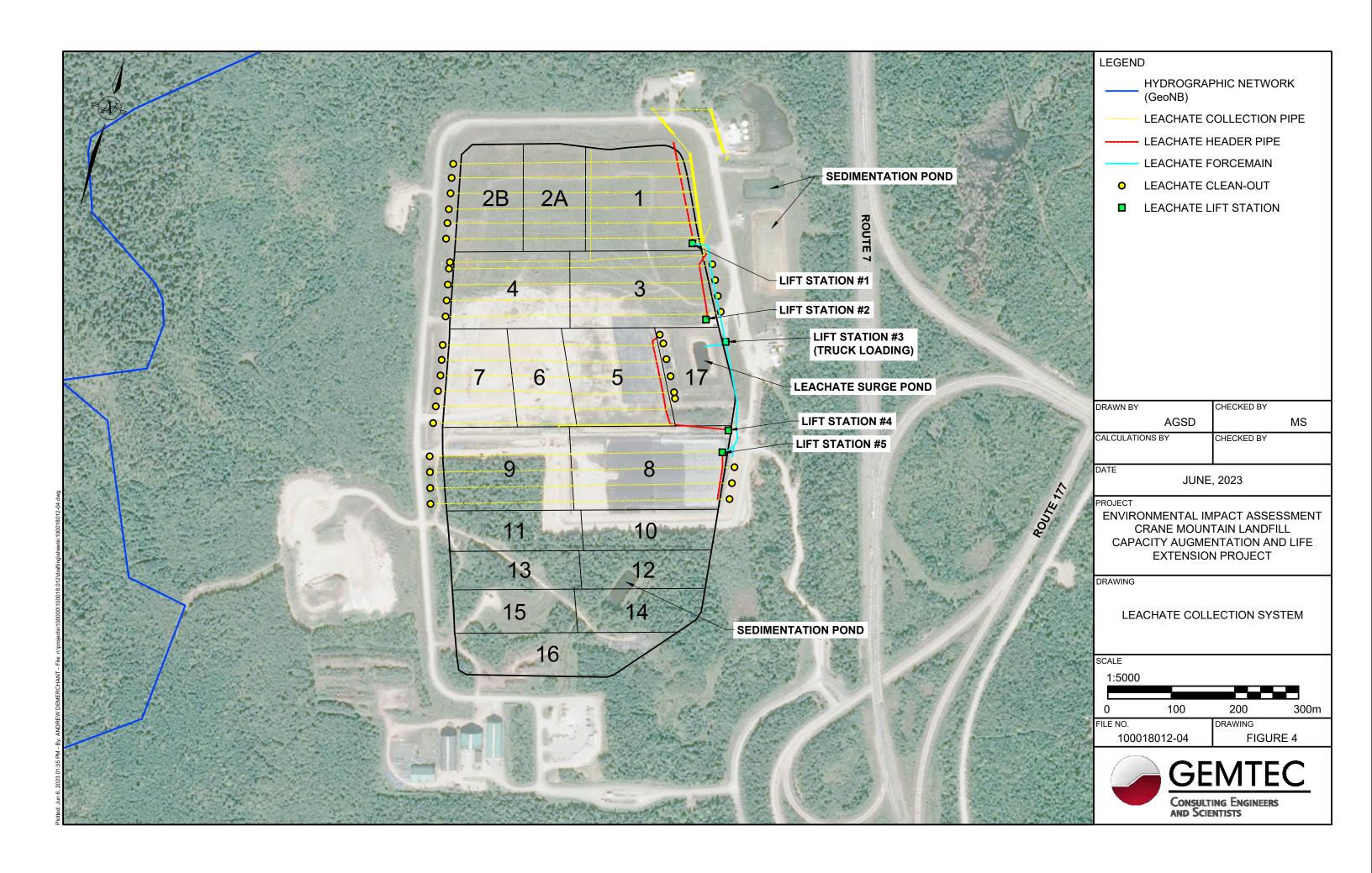
Landfill gas (LFG) collection wells are installed in Landfill cells that are at capacity to capture and utilize LFG. Collection of the LFG mitigates against the uncontrolled emission of fugitive gases that could produce odour.

Modification to any existing or future cells will not be required to raise the maximum final height of MSW at the landfill. Permanent exterior side-slopes of MSW can be built up at the existing rate of 4 horizontal to 1 vertical (4H: 1V). The Project does not require an increase in lateral footprint of the active or future containment cells to support the height increase.

Operational equipment will mobilize to the PDA, as required. During the Project, the required equipment will include, but is not limited to, bulldozer(s), front-end loader(s), dump truck(s), excavator(s), waste compactor, and personnel truck(s). All this equipment is consistent as what is currently used for the placement, compaction, and containment of MSW. If implemented, the Project will not require any changes in operational practices, other than the placement of MSW at higher elevations.

2.5.2 Leachate Collection and Treatment

Leachate collection and temporary storage is provided on Site, then transported by tanker trucks to the City of Saint John's Lancaster Wastewater Treatment Facility. Leachate is collected via a leachate collection layer, consisting of geonet, geotextile, a continuous layer of clean, rounded stone, and a series of perforated pipes, placed above the composite liner. Leachate from Cells 2, 4, 6, 7 and 9 drain by gravity via the leachate collection layer and pipes from west to east, and into adjacent containment cells. In Cells 1, 3, 5 and 8 (all cells located along the eastern containment berm of the landfill), a leachate collection header pipe is installed along the interior toe of the east containment berm to direct flow of the leachate into the sump of the respective leachate lift station. Leachate is pumped from containments cells via lift stations and HDPE force main pipes (double-walled HDPE pipe), force main to the leachate surge pond. The leachate is temporarily stored in the leachate surge pond, which was sized to accommodate anticipated peak leachate flows from the containment cells (Figure 4).



The existing leachate collection system will facilitate the requirements of the Project. No additional volume and/or storage within the Leachate Ponds is deemed necessary. The active disposal area footprint, most prone to surface water infiltration (i.e., leachate production), will remain similar to the conditions currently observed on Site.

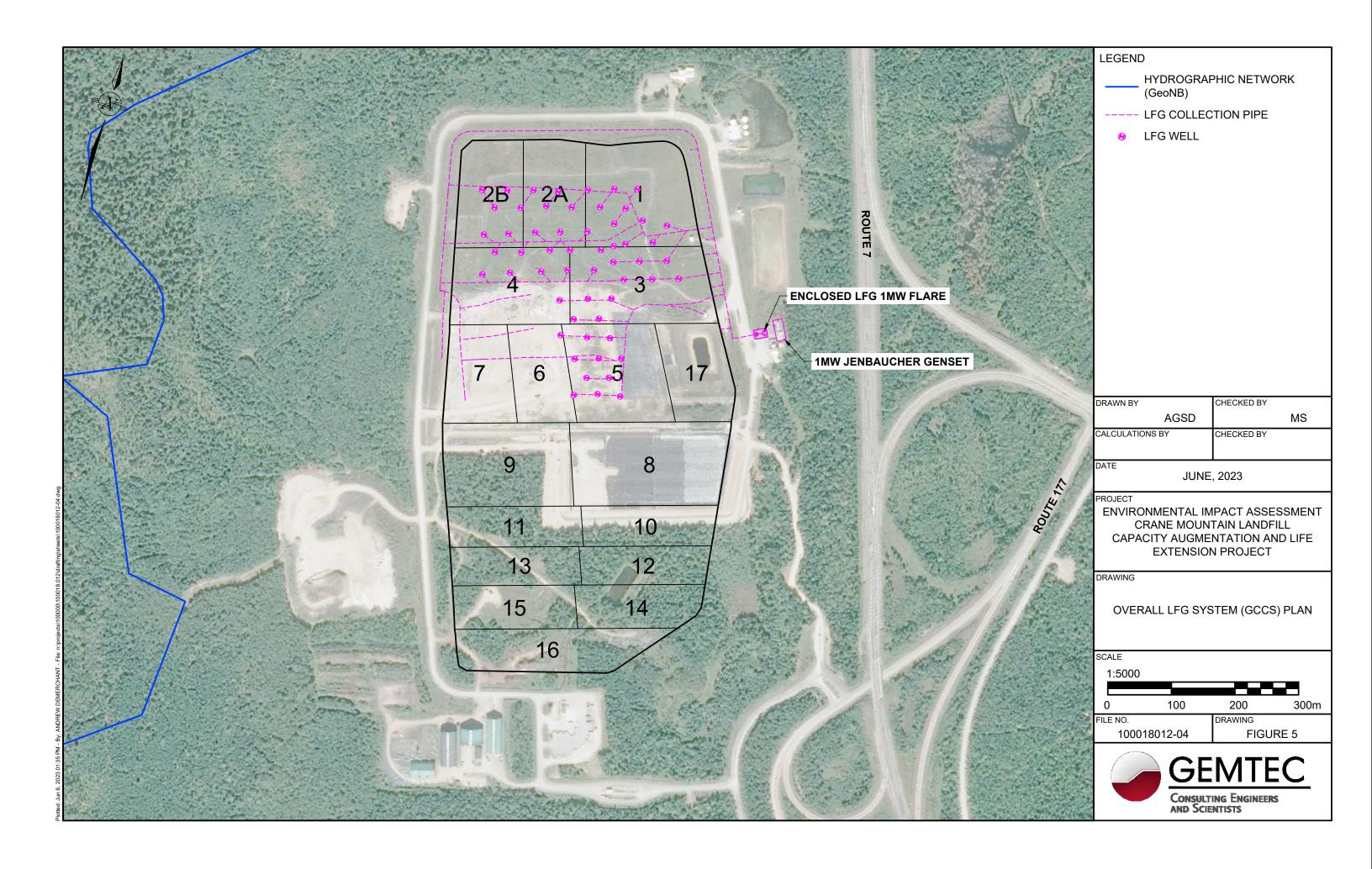
The additional weight resulting from the proposed waste containment cells height increase is not expected to compromise the existing, or future planned, leachate collection system (Section 5.5.1).

Additionally, FRSC assesses the condition of the leachate collection lines installed at the Landfill on a regular basis by means of video inspection (Approval to Operate, Appendix A).

2.5.3 Landfill Gas Management and Utilization System

Landfill Gas (LFG) is generated through the natural decomposition of organic matter in landfills. As generated, LFG is composed of approximately 60%methane (CH₄, which is also the primary component of natural gas) and approximately 40% carbon dioxide (CO₂; both concentration ranges shown on a dry basis), and a small percentage of non-methane organic compounds (NMOCs) and inorganic compounds and is saturated with water. As collected, LFG will have lower CH₄ and CO₂ concentrations, and will also have concentrations of nitrogen (N₂) and oxygen (O₂), as a result of atmospheric intrusion into LFG during extraction from the landfill.

In terms of greenhouse gas (GHG) potency, methane is estimated to be 28 to 36 times more effective than CO₂ at trapping heat in the atmosphere over a 100-year period. This is based on the latest assessment report (9A5) of the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC).


FRSC has implemented a Landfill Gas Collection and Control System (GCCS) and LFG Utilization System (LFGMS). LFG is collected via a series of vertical wells connected to the leachate collection system, LFG collection pipes, and mechanical equipment (such as blowers). The LFGUS combusts LFG in a 1 MW Jenbaucher generator (genset) to produce electricity. When operational and run at capacity, the LFGUS at Crane Mountain Landfill is capable of producing about 7,800 megawatt hours (MWh) of energy annually, based on 90% up-time of the generator. Electricity produced at the Landfill is first utilized on-site; excess energy is sold directly Saint John Energy for distribution to other customers.

The GCCS also includes a John Zinc enclosed flare to combust LFG when the genset is not in service.

Collection and controlled combustion of LFG helps to mitigate fugitive LFG emissions and can reduce odorous emissions. Combustion of LFG in a flare or genset results in the CH₄ being converted to CO₂, reducing the potency of the GHG and improving air quality in the vicinity of the Landfill.

FRSC operates the GCCS and LFGUS in accordance with the conditions of their Approval to Operate (Appendix A). The GCCS is expanded on an as needed basis with the installation of new LFG collection wells and piping. Prior to 2023, the Landfill had 35 vertical LFG collectors (wells), and an additional 21 vertical LFG wells were successfully installed in May 2023. These recent developments will significantly bolster the Landfill's LFG collection and management capabilities. LFG is also collected by applying a vacuum to several leachate collection system pipes along the western containment berm. Figure 5 shows the Landfill's LFG related infrastructure and layout prior to the 2023 expansion. Engineered drawings for the 2023 LFG System Expansion are included in Appendix B.

Tetra Tech, a North American industry leader in GCCS and LFGUS, has been retained to develop a new "LFG Master Plan" for Crane Mountain Landfill. This plan will discuss how the GCCS will be expanded as the additional waste is placed on areas of the Landfill that have already achieved the currently approved final elevation of +90 metres (i.e., the Project), as well as a strategy for LFG management in future cells (Cell 10 to Cell 17). This plan is currently under development and will be submitted to NBDELG once it is completed, as a part of the review process for this EIA.

2.6 Project Related Documents

A copy of the NBDELG issued Approval to Operate (I-11079, valid to November 30, 2025) is included in Appendix A.

There is one known EIA (Environmental Impact Assessment – Regional Landfill at Crane Mountain or Paddy's Hill Sites, 1994) registered with NBDELG in 1994 for the initial construction and operation of the Landfill (FSAWT, 1994).

The Landfill's Environmental Management Plan (EMP; Environmental Management Plan for the Fundy Region Solid Waste Commission, Fundy Region Solid Waste Commission, January 2008), is included in Appendix C.

3.0 ENVIRONMENTAL IMPACT ASSESSMENT METHODOLOGY

This EIA report has been written to meet the requirements of the *New Brunswick Environmental Impact Assessment Regulation 87-83* (as described in Section 1.0), and in particular:

- Documents the existing conditions of the Site and the Project description;
- Assesses potential environmental effects of the Project (positive or negative); and
- Outlines mitigation and impact management measures to minimize anticipated impacts or to reduce anticipated impacts to acceptable levels.

The EIA focuses on issues directly relevant to increasing the height of the Landfill containment cells beyond the currently mandated +90 elevation maximum. The approach of this assessment is to focus on project-specific environmental components in a method consistent with New Brunswick EIA regulatory requirements. However, the Project will not directly involve an increase in the footprint of the Landfill, habitat destruction or vegetation removal, nor is expected to impact any regulated watercourse or wetland outside the approved Landfill footprint. Thereby, the assessments are generally limited to desktop investigations and a wetland delineation within the approved Landfill footprint.

Specific to the EIA document, potential interactions, or effects of the Project on the environment have been identified and are discussed herein. Where potential effects are anticipated, the proposed methods for mitigating the potential effects have been presented.

The EIA has been completed for three spatial boundaries:

- The PDA is defined as the footprint of ground disturbance required for the Project activities (portions of 55087001, 55087027, 55086987, 55043301 and 55087019 (Figure 2);
- The Site is defined as the Landfill facility located at 10 Crane Mountain Road, Saint John, New Brunswick, identified by SNB PID numbers 55087001, 55087027, 55087019, 55043301, 55086987, 55160352, and 55043293 (Figure 1); and
- The Assessment Area encompasses nearby sensitive receptors (*i.e.*, neighbouring residential dwellings, environmentally sensitive areas, etc.) within a reasonable radius that may be impacted by the Project.

The temporal boundaries of the EIA have been completed for the operational phase of the Project (Landfill) only. No site preparation (i.e., construction phase) is required for the Project as the Landfill is an existing entity. A conceptual closure plan (i.e., reclamation phase) for the Landfill is outside the scope of this Project, as detailed below.

3.1 Components Not Considered in this EIA

Archaeological resources are not discussed in this document as the Project will take place only within the currently approved footprint of an existing Landfill and no new ground disturbing activities are required beyond what was identified in the original EIA (Fundy Solid Waste Action Team, 1994).

Any potential effects to the environment as a result of the existing and future Landfill footprint, and landfilling construction, operations, and reclamation (conceptual closure) were identified and discussed in the original EIA document (Fundy Solid Waste Action Team, 1994) and are considered outside the scope of this assessment. The scope of this EIA considers the increase of the final elevation height of the Landfill, which is a change to Landfill operations only and does not increase the overall footprint.

Extending the life of the Landfill by allowing this Project is not expected to impact the overall site closure and reclamation plan. It will move reclamation activities into the future by extending the Landfill life expectancy. The closure plan should include annual considerations of environmental monitoring, engineering inspection, maintenance cover, leachate management, gas management, and administration. The closure plan should specify that all containment cells be capped in accordance with any NBDELG requirements. LFG, a primary source of GHG at the Landfill should be collected and utilized after closure, if possible. Leachate collection and treatment infrastructure will be maintained, as required. The change in Landfill height should not change the overall reclamation and closure plan design. Slopes will be constructed at a final slope of 4H:1V. In accordance with the Landfill Approval to Operate (I-11079), a Closure Plan will be submitted to NBDELG six months prior to closure of the facility.

4.0 DESCRIPTION OF THE EXISTING ENVIRONMENT

4.1 Atmospheric Environment

In order to assess any potential impacts of the Project on the atmospheric environment, the following components were considered:

- Climate Conditions are the long-term weather conditions of an area that are typically
 influenced by latitude, altitude and proximity to oceans. The climate conditions are
 measured by assessing the patterns of temperature, wind, precipitation, and other
 meteorological aspects;
- Air Quality is the concentration of naturally occurring or anthropogenic air pollutants
 present in the atmosphere. The concentration of the air pollutants is influenced by
 source location, meteorological processes (i.e., wind, rain, air temperature) and
 topographical conditions;
- Sound Quality is the type, frequency, intensity, and duration of ambient noise; and
- Odorous emissions are evaluated as the offensive smells recognized in the surrounding ambient air.

4.1.1 Climate Conditions

The climate conditions for the area are based upon Environment and Climate Change Canada (ECCC) climate normal recorded at Saint John Airport, which is about 16 km southeast of the Landfill. As this is the closest monitoring station with sufficient data, the climate conditions measured are assumed to be representative to those within the Site.

The Landfill is located in a humid continental climate with warm summers and cold winters, according to data from ECCC. The average annual temperature in the area is 6.3°C. The warmest month is typically August, with an average temperature of 17.9°C, while the coldest month is January, with an average temperature of -6.1°C. During the summer months, temperatures reach beyond 30°C, while winter temperatures can drop below -25°C. During the summer months, humidity levels can rise to around 80%, while in winter, humidity levels can drop to around 60%.

Precipitation in the region is relatively evenly distributed throughout the year. The wettest month is typically November, with an average of 142 millimeters of precipitation, while the driest month is February with an average of 79 millimeters of precipitation, averaging 1098 millimeters of rainfall annually. The area also receives an average of 231 centimeters of snowfall annually, with the snowiest month being February, with an average of 60 centimeters of snowfall.

The average wind speed in the area is approximately 17 kilometres per hour (km/h), with wind speeds ranging from 10 km/h to 30 km/h. The prevailing wind direction is from the southwest during the summer months, and northwest while during the winter months.

4.1.2 Air Quality

According to the air quality data provided by NBDELG, the nearest air quality monitoring station owned by NBDELG is located approximately 10 km southeast of the Landfill (Saint John – West Side). This station provides real-time air quality data for ozone, fine particulate matter (PM_{2.5}) sulfur dioxide (SO₂), Total Reduced Sulphur, and Nitrogen Dioxide (NO₂). A summary of the measurements Saint John – West Side station in 2022 is listed in Table 2 (Environment and Local Government, Air Quality Data Portal, 2023).

Table 2 Concentration of PM2.5 and SO2 at the Saint John – West Side (2022)

Parameter	Results			
raiailletei	Minimum	Maximum	Average	
Ozone	0.5	52.4	26.8	
Fine Particulate Matter (µg/m³)	0.1	66.1	5.5	
Sulphur Dioxide (ppb)	0	71.2	0.9	
Total Reduced Sulphur (ppb)	0	24.6	0.2	
Nitrogen Dioxide (ppb)	0	34.9	3.1	

Note: Results acquired April 27, 2023

The Province of New Brunswick has Air Quality Objectives for regulated air contaminants under the *Air Quality Regulation* of the *New Brunswick - Clean Air Act*. Three of the monitored parameters at the Saint John – West Side station have listed objectives; the 1 Year average (2022) for PM_{2.5}, NO₂, and SO₂ are within the acceptable concentrations (Table 3).

The Landfill operates under an NBDELG Class 4 Approval to Operate (I-11079, valid to November 30, 2025). The Project is not expected to result in additional or increased atmospheric emissions that would exceed the capacity of the Landfill's GCCS.

Table 3 New Brunswick Air Quality Objectives

Dollutont	Averaging Period			
Pollutant	1 Hour	8 Hours	24 Hours	1 Year
Carbon Monoxide (CO)	35,000 µg/m3 (30 ppm)	15,000 µg/m3 (13 ppm)	-	-
Hydrogen Sulphide (H ₂ S)	15 μg/m3 (11 ppb)	-	5 μg/m3 (3.5 ppb)	-
Nitrogen Dioxide (NO ₂)	400 μg/m3 (210 ppb)	-	200 μg/m3 (105 ppb)	100 μg/m3 (52 ppb)
Sulphur Dioxide (SO ₂)	900 μg/m3 (339 ppb)	-	300 μg/m3 (113 ppb)	60 µg/m3 (23 ppb)
Total Suspended Particulate (PM2.5)	-	-	120 μg/m3	70 μg/m3

Notes:

μg/m3 = micrograms per cubic metre

ppm = parts per million

ppb = parts per billion

4.1.3 Sound Quality

The Landfill associated operational activities include industrial and heavy equipment traffic, public traffic, dumping, excavating, and compaction activities. Noise emissions from the Site are approved, with conditions, in an NBDELG Approval to Operate I-11079 (Appendix A). No noise complaints have been received by the Landfill.

The Landfill is located in a largely undeveloped area with scattered residential properties nearby (Figure 1). While the facility is located adjacent to a major roadway, the surrounding landscape is predominantly forested, which can help to mitigate noise pollution from the landfill operations.

4.1.4 Odorous Emissions

The Landfill associated operational activities include the collection and deposition of large quantities of MSW in an open environment, which can result in odorous emissions (LFG) due to the nature of the decomposition of this material. The GCCS captures LFG that is released into the ambient environment.

Odorous emissions from the Site are approved, with conditions, in an NBDELG Approval to Operate I-11079 (Appendix A). Two odorous emission complaints were received by the FRSC in

2022. The GCCS system was not functioning fully in 2022 due to supply chain delays for required parts, which could have led to an increase if fugitive LFG emissions observed by the downgradient community. At the time of this report issuance, the GCCS has been repaired and is generally continually operational, with replacements parts stored on-site to minimize the potential for GCCS down time in the future. The GCCS is detailed in Section 2.5.3 of this EIA document; the Project is not expected to exceed the capacity of the GCCS.

It should be noted that Environment and Climate Change Canada (ECCC) released a framework for a performance standard for LFG and methane emissions from Landfills in 2023. These regulations, or similar Provincial regulations, are expected to be applied to Crane Mountain Landfill and as such, FRSC would need to be in compliance

4.2 Groundwater Resources

Groundwater can be impacted by concentrations of naturally occurring and anthropogenic sourced contaminants such as mineral deposits surrounding the aquifer, or from an accidental release of pollutants. Project related activities (e.g., waste disposal and petroleum product use and storage, etc.) may release contaminants into the groundwater that could potentially adversely impact human and/or ecosystem health.

In order to assess any potential impacts of the Project on the groundwater resources, three components have been identified:

- Drainage and Topography are the patterns that describe the physical geography of the landscape;
- Geology and Hydrogeology describe the subsurface soil and drainage conditions; and
- Known *Groundwater Quality and Quantity* data that provide baseline conditions for the Project area.

4.2.1 Drainage and Topography

The Site is situated near the top of a natural ridge, with the land sloping downward to the south and east towards the Saint John River. The surrounding area is undulating, and the elevation can range from approximately 20 meters above sea level in low-lying areas near the Saint John River to over 100 meters above sea level in some of the nearby hills and ridges.

In general, surface runoff from the active areas of the Site is directed into the stormwater infrastructure (ditches and culverts) and ultimately, into the Sedimentation Ponds (Figure 2). Any surface water not captured in the stormwater collection system will eventually flow south into Mill Creek via roadway ditching along Route 7 (Figure 2).

On a broader scale, the Site is bounded to the west by Henderson Lake and to the north by Henderson Brook, which drains from Henderson Lake (Figure 1). The Site represents eight percent (8%) of the total drainage areas to the north (Henderson Brook) and south (Mill Creek).

The bedrock in the area generally consists of sedimentary formations, including sandstone, siltstone, and shale. Groundwater flows through fractures in the bedrock, and the direction of flow is generally towards the Saint John River (Geological Survey of Canada, 2014).

4.2.2 Geology and Hydrogeology

The Grand Bay-Westfield area is underlain by rocks that are part of the Meguma Group, which is a sequence of sedimentary and volcanic rocks that were deposited during the Paleozoic era. The Meguma Group includes sandstones, shales, and volcanic rocks that were deposited in marine and terrestrial environments. The rocks in the Grand Bay-Westfield area are primarily sandstones and shales, with some interbedded volcanic rocks. The topography of the area is influenced by the underlying geology, with the rolling hills and valleys reflecting the alternating layers of sandstone and shale (Geological Survey of Canada, 2014).

According to the Saint John, New Brunswick area 1:50,000 scale bedrock geology map, the underlying bedrock formation at the Site is the Late Neoproterozoic to Early Cambrian Belmont Tonalite Formation of the Golden Grove Plutonic Suite Group. The Belmont Tonalite formation consists of grey, medium-grained, locally porphyritic tonalite gradational to granodiorite and quartz diorite (Johnson S.C. et al., 2005).

In 2018, in a study initiated by Crane Mountain Enhancement Inc., (the landfill 'watchdog' group), EXP Services Inc. and Matrix Solutions Inc. developed a comprehensive Numerical Groundwater Flow Model for the FRSC Landfill (Appendix D). The conceptual groundwater flow model aimed to enhance the understanding of the hydrogeological system surrounding the Landfill, assist the operator in optimizing facility design and operation, and provide any information regarding potential water-related environmental risks associated with Landfill operations and closure.

The study focused on various elements of the conceptual model, including: the surface water drainage network, Grand Bay and downgradient domestic wells, the upper bedrock exfoliation zone, structural hydrostratigraphic units (fault zones), the till hydro-stratigraphic unit, and groundwater flow rates and times of travel. Notable conclusions are included below:

 The path line analysis for Grand Bay and domestic wells indicated no predicted water quality impacts from particles released beneath the Landfill liner system. Continued monitoring the water quality of wells in the Grand Bay area was recommended due to the potential presence of an undetected discrete fracture network that could act as a preferential flow path connecting the Landfill area with Grand Bay. The FRSC

- undertakes annual domestic well sampling program in Grand Bay as part of their Approval to Operate.
- The upper bedrock exfoliation zone predicted the fastest time of contaminant travels to downstream boundaries was 20 to 50 years, and the median time was 200 years.

The findings indicated that even in the event of a leak under the Landfill, groundwater seepage rates were relatively slow, allowing sufficient time for monitoring, reaction, design, and implementation of mitigation measures or remediation schemes. These conclusions were in line with the conclusion of other numerous groundwater studies by various consultants that have been conducted for the Landfill since the original siting studies in the 1990s.

4.2.3 Groundwater Quality and Quantity

The NBDELG Online Well Log System (OWLS) was accessed to identify if any groundwater extraction wells are located within a 2 km radius of the PDA; the Well Driller's Report and the Wells Location Map are presented in Appendix D. The OWLS database is maintained by NBDELG and contains information on water wells constructed since 1994. The NBDELG takes no responsibility and makes no guarantee as to the completeness, accuracy or timeliness of the data provided in this database. A total of thirteen (13) well reports were identified within a 2 km radius of the Landfill using the OWLS system.

In accordance with the current Approval to Operate (I-11079; Appendix A), regular environmental compliance monitoring is completed by qualified technicians and analyzed by a laboratory that is in good standing of the Canadian Association for Laboratory Accreditation (CALA) Proficiency Testing Program for Environmental Laboratories. Seasonal samples are submitted for laboratory analysis of general chemistry parameters, trace metals, and BTEX/TPH as detailed in the Approval to Operate (Appendix A). Additionally, conductivity, dissolved oxygen, pH, temperature, and ground water elevations are collected in the field during each sampling event. Environmental compliance reporting is completed by a Professional Engineer pursuant to the *Engineering Profession Act*, and provides commentary on any potential threat or impact to the environment. Reports are submitted to NBDELG quarterly basis. A copy of the 2022 Annual Environmental Report is included in Appendix E.

Based on the results of the most recent Annual Environmental Report (2022, Appendix E), there is no evidence of an immediate impact to the environment, ground or surface waters from the Landfill. Increasing trends of several parameters (alkalinity, boron, calcium, conductivity, magnesium, and sulphate) were observed at a deep monitoring well located downgradient of the construction and demolition debris disposal site. Concentrations do not exceed Atlantic RBCA Environmental Quality Standards; however, these parameters are potentially indicative of construction waste (e.g., drywall). Similar trends were not observed in the corresponding shallow monitoring well where concentrations of these parameters over the same period (2016-2022) have been stable.

An increasing trend in chloride concentrations is identified at an off-site monitoring well location. Additional assessments conducted in 2015-2017 determined that these impacts are due to road-salting activities on Route 7.

Domestic water samples collected from wells on the Site have concentrations of arsenic above the Guidelines for Canadian Drinking Water Quality (GCDWQ). The water at the Site is not consumed and bottled water is provided for consumption. According to the New Brunswick Groundwater Chemistry Atlas: 1994-2007, it is not uncommon for groundwater in the Saint John region to have naturally occurring concentrations of arsenic above the GCDWQ.

GEMTEC has not completed a quantitative groundwater study (i.e., sampling program, data analysis, or gradient/flow interpretation, etc.) as part of this EIA as the Project is not expected to affect ground water quality or quantity beyond what is observed as a result of overall Landfill development.

4.3 Ecological Environment

The proposed PDA is subject to on-going land disturbances required for the landfilling activities that have, and will, broadly alter the natural habitat, including the topography, drainage patterns, vegetation communities, and surficial geology. The PDA is not within 30 metres of regulated watercourses or wetlands outside the approved landfill containment area.

In order to assess any influence of the Project on the ecological environment, four components have been identified and are described below:

- Terrestrial Habitat describes the environmental features observed surrounding the Site.
 Terrestrial habitat types were determined by reviewing the readily available aerial imagery (i.e., Google Earth, GeoNB, etc.) and based on the assessor's familiarity with the Site and general region;
- Wetlands and Watercourses are features that offer biologically diverse ecosystems that support a wide variety of vegetation and wildlife species:
 - Wetlands are lands where the water table is at, near, or above the land's surface, or which is saturated, for a long enough period to promote wetland or aquatic processes as indicated by hydric soils, hydrophytic vegetation, and various kinds of biological activities adapted to the wet environment (NBDELG, 2021). In New Brunswick, wetlands are regulated under the Clean Water Act Watercourse and Wetland Alteration Regulation (90-80) administered by NBDELG;
 - Watercourses are features in which the primary function is the conveyance or containment of water, which includes: the bed, banks and sides of any incised channel greater than 0.5 metres in width that displays a rock or soil bed; water/flow does not have to be continuous and may be absent during any time of

year; or a natural or man-made basin (NBDELG, 2021). In New Brunswick, watercourses are regulated under the *Clean Water Act - Watercourse and Wetland Alteration Regulation (90-80)* administered by NBDELG;

- Flora is primarily focused on flora Species at Risk (SAR) that have a protective status under Schedule 1 of the federal Species at Risk Act (SARA) or are protected under the provincial New Brunswick Species At Risk Act (NBSAR).
- Fauna and Avifauna, which for the purpose of this assessment includes any fauna SAR, and migratory birds protected under the federal Migratory Bird Convention Act (MBCA).
 Fauna SAR are considered species that have a protective status under Schedule 1 of the federal SARA or are protected under the provincial NBSAR.

Field studies for flora and fauna (including avifauna) are considered outside the scope of this assessment as the Project PDA is situated within an approved footprint for a landfill site.

4.3.1 Terrestrial Habitat

The Landfill is situated in the Appalachian Mountains ecoregion, which covers a large area in eastern North America. This ecoregion encompasses a wide variety of landscapes, including mountains, hills, forests, and wetlands. The ecoregion covers an area of approximately 427,000 square kilometers and is characterized by its rugged and diverse landscape, with high peaks, deep valleys, and extensive forests with a variety of different habitats, including mixed forests, deciduous forests, coniferous forests, and wetlands (New Brunswick Department of Natural Resources, 2007).

The terrestrial habitat in the area surrounding the Landfill is primarily composed of mixed forests, which are dominated by deciduous trees such as maple, birch, and oak, as well as conifers like spruce and fir. The forest understory is characterized by a diverse array of shrubs, herbs, and ferns, which provide food and shelter for a wide variety of wildlife (New Brunswick Department of Natural Resources, Our Landscape Heritage: Fundy Coast Ecoregion_Chapter 10, 2007).

The Site is approximately 24 ha in size and is developed as an operational Landfill that encompasses: closed and active landfill cells (Photo 1), Leachate lift stations, a leachate surge pond, sedimentation ponds, construction and demolition disposal site, a public drop off, recycling facilities, composting facilities, a household hazardous waste depot, administrative building, LFGUS including a generator, a LFG enclosed flare, and access roadways. The perimeter of the Site is largely undeveloped, vegetated and/or wetland and watercourse areas (GeoNB, 2023).

Final cover applied to the containment cells at the Facility is a composite system, consisting of a gas venting layer, drainage layers, low permeability material (GCL or clay), frost protection material, and topsoil, and is planted with grass seed as a means of erosion control. The final

cover is graded to promote drainage and minimize erosion and infiltration (Photo 2). See Appendix B for construction drawings for the 2022 capping program.

4.3.2 Ecological Significant Areas (ESAs)

A data request was submitted to the Atlantic Canada Conservation Data Centre (AC CDC) for a 5 km radius of the Site. The AC CDC report provides the location and information on significant or managed natural areas. A Managed Area (MA) is a site with some level of protection for wildlife within the boundaries. The Ecological Significant Areas (ESA) are sites that may or may not have legal protection. The AC CDC report is presented in Appendix D.

The AC CDC report identified three (3) Mas within a 5 km radius of the Site; however, no ESAs were identified within a 5 km radius of the Site (AC CDC, 2023, Appendix D):

- The Loch Alva Protected Natural Area is a class II MA located approximately 400 metres
 west of the PDA and is approximately 22,000 ha in size. This MA is legally protected by
 the New Brunswick Department of Natural Resources and Energy Development
 (NBDNRED) under the New Brunswick Fish & Wildlife Act;
- The Blueberry Hill Nature Preserve area is located approximately 4 km northeast of the PDA and is approximately 50 ha in size. This MA is an environmentally sensitive area located along the shore of the St. John River. This property was acquired from the Province of New Brunswick in 2010 by the Nature Trust of New Brunswick with access to the property via River Valley Drive at Station Street in Grand Bay-Westfield. This MA is managed by a group of volunteers, organized in 2009 as the Friends of Blueberry Hill and was officially opened on June 14, 2014.
- The Noremac Habitat Nature Preserve Area is located approximately 2 km southeast of the PDA and is approximately 8 ha in size. This MA was donated to the Nature Trust of New Brunswick in 2019 by Marion Cameron.

No National Wildlife Areas, Migratory Bird Sanctuaries, or Ramsar Sites are located within the Assessment Area (Environment Canada Protected Areas Network, 2022; Ramsar Sites Information Service, 2022; NBDNRED Protected Natural Areas, 2022).

Photo 1: View of capped and active landfill containment cells (2023).

Photo 2: View of final capped landfill containment cells (2023).

4.3.3 Wetlands and Watercourses

Based on GeoNB Mapping, the nearest watercourse, Mill Brook, is located approximately 500 metres south of the PDA (Figure 2; GeoNB Mapping, Appendix D). Mill Creek generally flows southeast of the Site, and eventually tributaries into the Saint John River, 4.5 km northeast of the Site.

GEMTEC biologists attended the Site on May 17, 2023, to complete a delineation of the wetland within the PDA. To determine the delineated wetland boundaries, the assessor(s) used the NBDELG Source and Surface Water Management Branch Protocol for Wetland Delineation in New Brunswick, and accepted industry standards as described by the *Corps of Engineers Wetlands Delineation Manual - Technical Report Y-87-1*, U.S. Army Corps of Engineers (1987), and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region*, U.S. Army Corps of Engineers (2012). This includes identifying the presence of dominating hydrophytic vegetation, hydric soils and any hydrological indicators such as surface water, soil saturation and drainage patterns, etc. A paired data point (wetland and upland) was recorded at any encountered wetland type to show the three parameter determinations. A handheld GPS was used to capture the coordinates of the wetland boundary and data points.

One wetland complex exists within the approved Landfill footprint and extends east on the Site. Within the PDA, a forested wetland is present with dominant vegetation of Eastern cedar (*Thuja occidentalis*), Balsam fir (*Abies balsamea*), and Starflower (*Trientalis borealis*), supported by saturated histic epipedon soils. The delineated wetland boundaries are shown on Figure 6; the two areas are connected by stormwater drainage ditching with culvert and are hydrologically connected. Table 4 details the wetland/upland characteristics at each datapoint. General wetland characteristics are shown in Photo 3 and Photo 4.

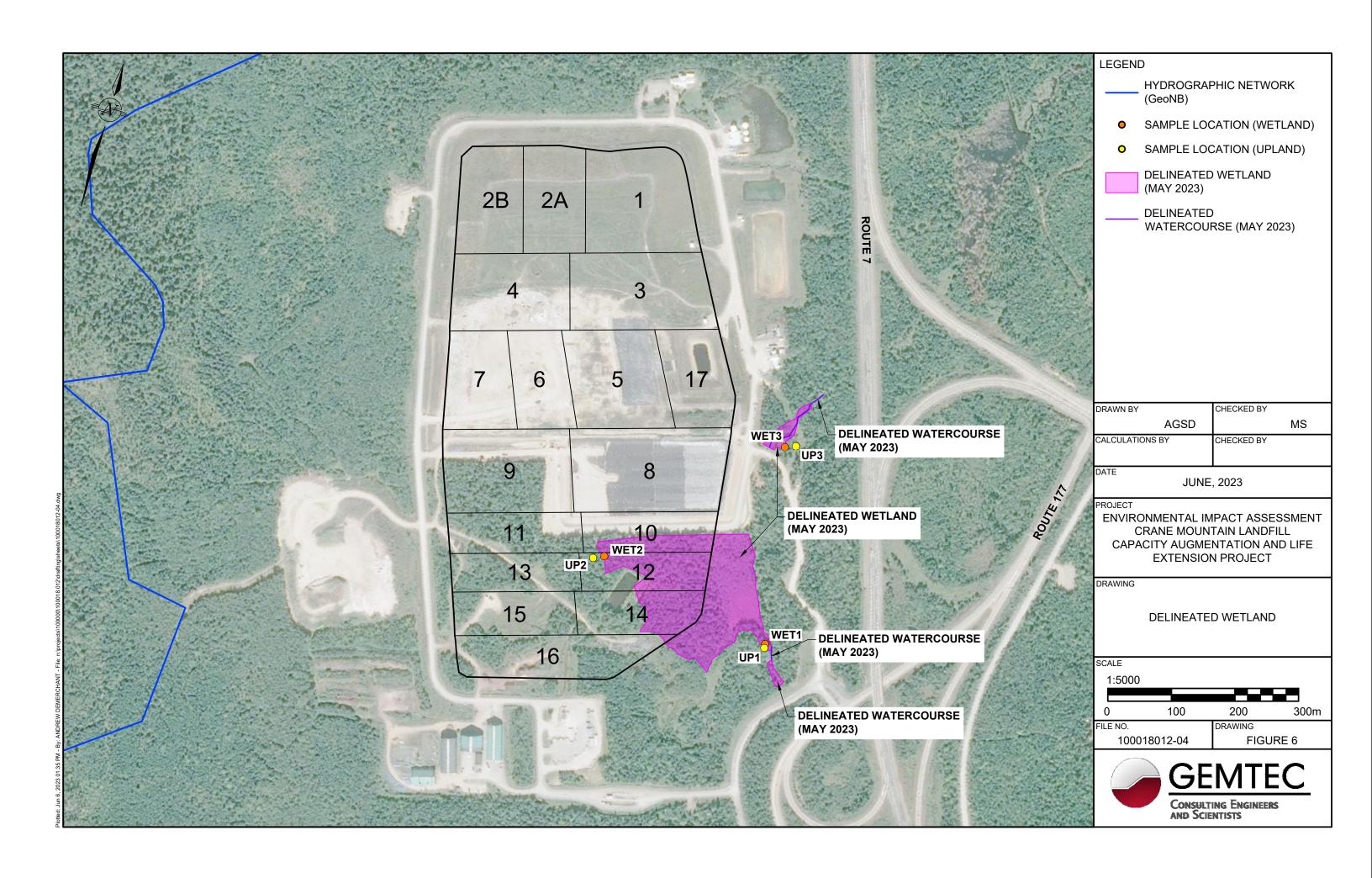


Table 4 Wetland Delineation and Observed Wetland Summary

Wetland Type	General Description	Dominant Vegetation Species	Hydrology Features	Soils Classification
Wet 1	 Open-water swamp. Characterized by the presence of a surface water input from adjoining stormwater infrastructure. 	 Betula papyrifera Betula populifolia Onoclea sensibilis Osmunda cinnamomea Athyrium sp. Equisetum sp. 	 Surface Water (A1) Saturation (A3) Water Stained Leaves (B9) Water table at 2cm 	Depleted Matrix (F3)
Up 1	Steep embankment adjoining open water wetland.	 Populus trumula Betula papyrifera Lonicera sp.	• None.	0 to 1 cm is organic.1 to 30 cm consisted of sandy silt particles.
Wet 2	Forested wetland.	Thuja occidentalisAbies balsameaTrientalis borealis	Surface Water (A1)Saturation (A3)Water depth at 25cm.	Histic epipedon (A2)
Up 2	Forested area adjoining access roadway.	Betula papyriferaBetula alleghaniensisAbies balsameaTrientalis borealis	• None.	 0 to 10 cm is predominantly organic. 10 to 25 cm consisted of sandy particles.
Wet 3	 Forested wetland. Located downgradient of the PDA, along a watercourse flowing towards Highway 2 right of way. 	Thuja occidentalisAbies balsamea	 Surface Water (A1) Saturation (A3) Moss Trim Lines (B16) Stunted or Stressed Plants (D1) 	Histic epipedon (A2)
Up 3	 Area was historically disturbed; adjoins of old access roadway nearby. 	 Betula alleghaniensis Amelanchier canadensis Trientalis borealis Solidago sp. 	• None.	 0 to 3 cm is organic. 3 to 10 cm consisted of silty sand particles. 10 to 30 cm is organic. 15 to 25 cm consisted of silty sand particles

Photo 3: View of open water wetland (May 17, 2023).

Photo 4: View of forested wetland (May 17, 2023).

4.3.4 Flora

The AC CDC report identified one (1) flora species of which is considered SAR under Schedule 1 of SARA and under NBSAR (Table 5).

Table 5 Summary of Flora SAR Within 5 km of the Site

Scientific Name	Common Name	COSEWIC ¹	SARA ²	Provincial Legal Protection	S- Rank³	NBDNRED General Status ⁴	Preferred Habitat
Symphyotrichum anticostense	Anticosti Aster	Special Concern	Special Concern	Endangered	S3	Vulnerable	Moist, rocky, and shaded areas in coniferous forests, as well as along streams and rivers.

Notes:

- 1. Committee on the Status of Endangered Wildlife in Canada
- 2. Species at Risk Act
- 3. Sub-national (provincial) rank
- 4. NBDNRED general status of Wildlife Species

Anticosti Aster (*Symphyotrichum anticostense*) is listed as a species of special concern under *SARA* and as endangered under provincial legal protection in New Brunswick. This species is mainly found in calcareous cliffs and ledges near the coast. Anticosti Aster has been identified as endangered in New Brunswick due to several threats, including habitat loss and degradation caused by coastal development and quarrying. The species is also threatened by invasive plant species and overgrazing by livestock. Anticosti Aster is rare and is restricted to a few locations in eastern Canada. Its population size and distribution are poorly known, but it is estimated that fewer than 10,000 individuals exist globally (Environment and Natural Resource, 2023). A rare vascular flora survey was not completed for the Project.

4.3.5 Wildlife and Wildlife Habitat

The AC CDC report identified seven (7) wildlife species that are considered SAR under Schedule 1 of SARA and under NBSAR (Table 6).

Table 6 Summary of Wildlife SAR Within 5 km of the Site

Scientific Name	Common Name	COSEWIC ¹	SARA ²	Provincial Legal Protection	S-Rank³	NBDNRED General Status ⁴	Preferred Habitat
Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	Critically imperiled	Mature forests with a dense understory of shrubs and leaf litter.
Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	Imperiled	Open habitats such as fields, meadows, and farmland with access to water bodies for foraging.
Contopus virens	Eastern Wood- Pewee	Special Concern	Special Concern	Special Concern	S3B	Vulnerable	Breeds in deciduous and mixed forests, with a preference for forest edges, clearings, and young second-growth forests.
Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	Vulnerable	Inhabits subalpine forests and high-elevation coniferous forests, with a preference for mature forests with snags for perching and open areas for foraging.
Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern	-	S3B,S3S4N,SUM	Vulnerable	Inhabits coniferous and mixed forests, with a preference for mature forests with a variety of tree species and seeds available for feeding.
Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	Vulnerable	Breeds in moist deciduous and mixed forests, with a preference for forested wetlands and shrubby areas with a dense understory.
Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	Imperiled	Inhabits a wide range of habitats, including meadows, fields, gardens, and open woodlands, with a preference for areas with milkweed plants for feeding and laying eggs.

Notes:

- Committee on the Status of Endangered Wildlife in Canada
- Species at Risk Act 2.
- Sub-national (provincial) rank
 NBDNRED general status of Wildlife Species

The Wood Thrush is a medium-sized bird that migrates from the Neotropics. Its population has been declining significantly in the long and short term due to habitat loss and fragmentation on its breeding and wintering grounds, as well as high rates of nest predation and cowbird parasitism. The Canadian population is estimated to be between 260,000 and 665,000 mature individuals (Environment and Natural Resources, Wood thrush (Hylocichla mustelina): COSEWIC assessment and status report 2012, 2023).

The Barn Swallow is a medium-sized passerine bird with metallic blue upperparts, cinnamon underparts, and a chestnut throat and forehead. Despite experiencing a substantial population decline in North America for over two decades, the Canadian population has remained largely stable over the past decade, with a substantial increase in Saskatchewan offsetting ongoing declines in other provinces. Key threats include declining populations of insect prey, severe temperature fluctuations during migration and breeding, and loss of suitable nesting sites. The Canadian population is estimated to be about 6.4 million mature individuals (Environment and Natural Resources, Barn Swallow (Hirundo rustica): COSEWIC assessment and status report 2021, 2023).

The Eastern Wood-Pewee is a small forest bird and one of the most common and widespread songbirds in North America's eastern forests. While it is resilient to many types of habitat changes, it has experienced persistent declines over the past 40 years in Canada and the United States, with a 10-year rate of decline approaching the criteria for Threatened. The causes of the decline are not fully understood but may be linked to habitat loss or degradation on its wintering grounds in South America or changes in the availability of insect prey. The Canadian population is estimated to be about 217,500 breeding pairs or 435,000 mature individuals (Environment and Natural Resources, Eastern wood-pewee (Contopus virens): COSEWIC assessment and status report 2012, 2023).

The Olive-sided Flycatcher is a medium-sized songbird with a substantial long-term decline in the Canadian population, although the rate of decrease has slowed over the past decade. Loss of wintering habitat in northern South America is the greatest threat, but the species may also be affected by changes on the breeding grounds such as altered fire regimes and changing climates. The Canadian population is at risk due to ongoing threats, and those related to climate change may increase (Environment and Natural Resources, Olive-sided Flycatcher (Contopus cooperi): COSEWIC assessment and status report 2018, 2023).

The Evening Grosbeak is a stocky, boldly colored songbird found across Canada's forests, but it has experienced significant long-term declines over most of its range since 1970, with some data suggesting a further decline of nearly 40%. Threats to the species include reduced availability of mature and old-growth mixed wood and conifer forests, collisions with windows, and mortality associated with feeding on grit and salt along roads in winter. The Canadian population is estimated to be approximately 2,200,000 mature individuals (Environment and

Natural Resources, Evening grosbeak (Coccothraustes vespertinus): COSEWIC assessment and status report 2016, 2023).

The Canada Warbler is a small songbird that breeds in Canada and winters in the northern Andes Mountains. The long-term decline of the Canadian population has slowed down since 2003, and numbers have increased steadily since 2012, with an overall growth of 46% over the past decade. However, significant threats persist, particularly the clearing of forests in South America for agriculture. The Canadian population is estimated to be between 2 million and 10.4 million individuals (Environment and Natural Resources, Canada Warbler (Cardellina canadensis): COSEWIC assessment and status report 2020, 2023).

The Monarch is a large, showy, orange and black butterfly with a population of millions to over one billion individuals. The most sensitive stage of its annual cycle is overwintering, and threats from logging in the Oyamel Fir forests of Central Mexico, where 90% of the population overwinters, suggest that the species could become Threatened in the near future (Environment and Natural Resources, Monarch (Danaus plexippus): COSEWIC assessment and status report 2016, 2023).

A bird survey (e.g., point counts) was not completed as part of this assessment.

According to the ACCDC report, four (4) "location sensitive" species are also found within 5 km of the Site (Table 7).

Table 7 Local Sensitive Wildlife Species within the PDA.

Scientific Name	Common Name	COSEWIC ¹	SARA ²	Provincial Legal Protection	Preferred Habitat
Chrysemys picta picta	Eastern Painted Turtle	Special Concern	Special Concern	-	Shallow and well-vegetated wetlands (e.g., swamps, marshes, ponds, fens, bogs, and oxbows) and water bodies (e.g., lakes, rivers, creeks, and streams) with abundant basking sites and organic substrate.
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	Meandering rivers and streams with moderate current and sand or gravel substrates.
Haliaeetus leucocephalus	Bald Eagle	Not at Risk	-	Endangered	Wetland habitat such as seacoasts, rivers, large lakes or marshes or other large bodies of open water with an abundance of fish.
Myotis Iucifugus	Little Brown Myotis				
Myotis septentrionalis	Long-eared Myotis	Endangered	Endangered	Endangered	Cold and humid hibernacula (caves/mines).
Perimyotis subflavus	Tri-colored Bat or Eastern Pipistrelle				

Notes:

- 1. Committee on the Status of Endangered Wildlife in Canada
- 2. Species at Risk Act

The Eastern Painted Turtle faces several continuing threats, such as habitat degradation and loss, road mortality, invasive species, and subsidized predators, which are expected to persist in the future. Due to their "slow" life history, characterized by late maturation, long lifespan, and long generation time, this species is vulnerable to these threats and has limited resilience to recover from them (Environment and Natural Resources, Midland and Eastern Painted Turtle (Chrysemys picta marginata): COSEWIC assessment and status report 2018, 2023).

The Wood Turtle is declining across much of its range, with small and increasingly disjunct subpopulations separated by distances greater than the species can disperse. It requires both aquatic and terrestrial habitats, but being more terrestrial than other freshwater turtles, it is vulnerable to roadkill, land use practices, and collection for the pet trade. Its "slow" life history, characterized by delayed maturation and extreme longevity, requires exceedingly high adult survival to maintain stable populations. The species is at risk of destabilization and

unsustainability due to any chronic increase in adult or juvenile mortality or catastrophic adult mortality events. Increased exposure to traffic on paved and unpaved roads, agricultural activities, and expanding populations of subsidized predators, along with changing regimes in watersheds, have increased mortality and put subpopulations at risk. The overall estimated total population size of Wood Turtle in Canada, based on varying precision estimates from researchers across its Canadian range, is 13,650-31,790 adults (Environment and Natural Resources, Wood Turtle (Glyptemys insculpta): COSEWIC assessment and status report 2018, 2023).

The Bald Eagle is an uncommon but widespread inhabitant of Canada, with the highest concentrations on the west coast. The most significant current threat to the species' habitat is coastal and shoreline developments that alter and disturb prime nesting, feeding, and roosting habitats. The Canadian population is estimated to be between 50,000 to 500,000 individuals (Government of Canada, 2023).

The Little Brown Myotis, Long-eared Myotis, and Tri-colored Bat or Eastern Pipistrelle are small, brown-pelaged, insectivorous species of the Family Vespertilionidae. The Little Brown Myotis is likely the most common bat species in Canada. Public concerns over zoonotic diseases (such as rabies and histoplasmosis), noise, and hygiene have led to periodic extermination of maternity colonies and/or elimination of their roosts. Bats are predators of insects, some of which are pests in agriculture and forestry sectors, providing an essential ecological service. The three species were emergency listed as Endangered on Schedule 1 of the SARA in 2014 due to the sudden and dramatic declines across the eastern portions of the ranges of Little Brown Myotis and Northern Myotis, and throughout the entire Canadian range of Tri-colored Bat (Environment and Natural Resources, Little Brown Myotis (Myotis lucifugus), the Northern Myotis (Myotis septentrionalis), and the Tri-colored Bat (Perimyotis subflavus): recovery strategy 2018, 2023).

4.4 Cultural Features

There are no national or provincial parks located within 5 km of the Site. There are no federally, provincially, or locally recognized heritage areas located within 5 km of the Site.

The nearest First Nations communities to the Site are:

- Bilijk (Kingsclear) First Nation, located approximately 85 km northwest of the Site and approximately 20 km west of Fredericton. The community has a population of around 1,300 people and a land area of 3.4 square kilometers. Kingsclear First Nation has a strong cultural heritage and offers a range of services to its community members, including health care, education, and social services.
- Oromocto (Welamukotuk) First Nation, located in Oromocto approximately 70 km northeast of the Site. The community has a population of around 2,100 people and a

- land area of 5.1 square kilometers. Oromocto First Nation has a strong focus on economic development, with several businesses and initiatives aimed at creating employment opportunities for its community members.
- Saint Mary's (Sitansisk) First Nation, located in Fredericton approximately 85 km northwest of the Site. The community has a population of around 2,000 people and a land area of 3.9 square kilometers. Saint Mary's First Nation has a rich cultural heritage and offers a range of programs and services to its community members, including education, health care, and social services. The community also has a strong focus on economic development, with several businesses and initiatives aimed at promoting local employment opportunities.
- The Brother's Indian Reserve Number 18 is located approximately 6.5 km east of the Project Site and encompasses three islands at the convergence of the Saint John River and the Kennebecasis River, near Ragged Point, Saint John. The Brother's Indian Reserve has affiliation with the Kingsclear First Nation, Madawaska Maliseet First Nation, Tobique First Nations, and Woodstock First Nation.

4.5 Socio-Economic Environment

In order to assess any influence of the Project on land use and economy, three environmental components have been identified and are described below:

- Existing Land Use describes the current residential, industrial, and commercial
 arrangements within proximity to the Project, as well as the land use compatibility of the
 Project;
- Visual Landscape is the impact to the local vistas within proximity to the Project, from various viewpoints accessible to the public; and
- Local Economy and Local Socio-economic Structure identifies the economic background of the regional area.

4.5.1 Existing Land Use

The Site is situated in a rural area in Saint John County, within the limits of the City of Saint John. The Site is situated on the northwest side the City of Saint John, approximately 15 km northwest of the downtown core. The Landfill serves the communities in the Fundy Region, including Saint John, Rothesay, Quispamsis, Grand Bay-Westfield, Fundy-St. Martins, and the Fundy Rural District. The Landfill operates in accordance with an Approval to Operate (I-11079; valid to November 30, 2025) issued to the FRSC by NBDELG (Appendix A). The Landfill accepts a variety of waste types, including municipal solid waste (MSW), construction and demolition debris, industrial waste, and hazardous waste. The waste is deposited in cells that are lined with a composite liner system to prevent contamination of the surrounding environment. In addition to waste, the Landfill also accepts and processes a variety of recyclable materials and sorted organics.

The surrounding land uses are generally forested Crown Lands and rural residential properties (Figure 1). A summary all adjoining PIDs and the respective City of Saint John zoning classification is presented in Table 8 (Service New Brunswick, 2023).

Table 8 Adjoining Property Land Use

Location Relative to the Site	PID	Zoning Classification
North	55087043	Rural (RU)
West	00419481	Rural (RU)
	55230551	Rural (RU)
Southwest	00289587	Rural (RU)
South	55043277	Rural (RU)
East/Southeast	55230163	Rural (RU)
	55220289	Rural (RU)
Northeast	55230155	Rural (RU)

All adjacent properties to the Site are located in the Rural (or RU) zone. The City of Saint John's Municipal Plan (PlanSJ) describes RU zoned properties as typically accommodating resource-related activities such as agriculture, fishery, and forestry operations, as well as other land uses appropriate to the respective area. Residential development is permitted but on a very limited basis and must not interfere with resource activities (PlanSJ, 2023).

The Treasury Board of Canada Secretariat maintains an inventory of federal contaminated sites. This inventory was reviewed, in conjunction with the SNB Planet, to determine the current and historical extent of commercial and/or industrial sites adjoining the Site. Neither the Site nor any adjoining properties are identified to be federal contaminated sites. The Federal Contaminated Sites mapping, relative to the Site, is included in Appendix D.

Site and surrounding properties were searched in SNB's Registry and Mapping Services for review of the Land Gazette for each property. The Land Gazette is an information repository of land-related notices, restrictions, and other information about land parcels (i.e., PIDs). Based on a review of online Land Gazette information, there are no records of contamination or

remediation for the Site or adjoining properties. However, the adjoining property, PID 00419481 is listed as watershed protected area (East and West Musquash Watershed, Appendix D). The area is managed by the Saint John Water Utility and is protected under the *Watershed Protected Area Designation Order* pursuant to the New Brunswick *Clean Water Act*.

4.5.2 Visual Landscape

The Site adjoins the Route 7 Highway, which experiences high traffic volumes, especially during commuter intervals. Portions of the Site, and active landfilling activities are currently visible on public roadways (Photo 5 and Photo 6; Figure 7). Based on the assessor's analysis and familiarity with the general area, the current Landfill is not known to be visible from residential dwellings, based on current vegetation conditions.

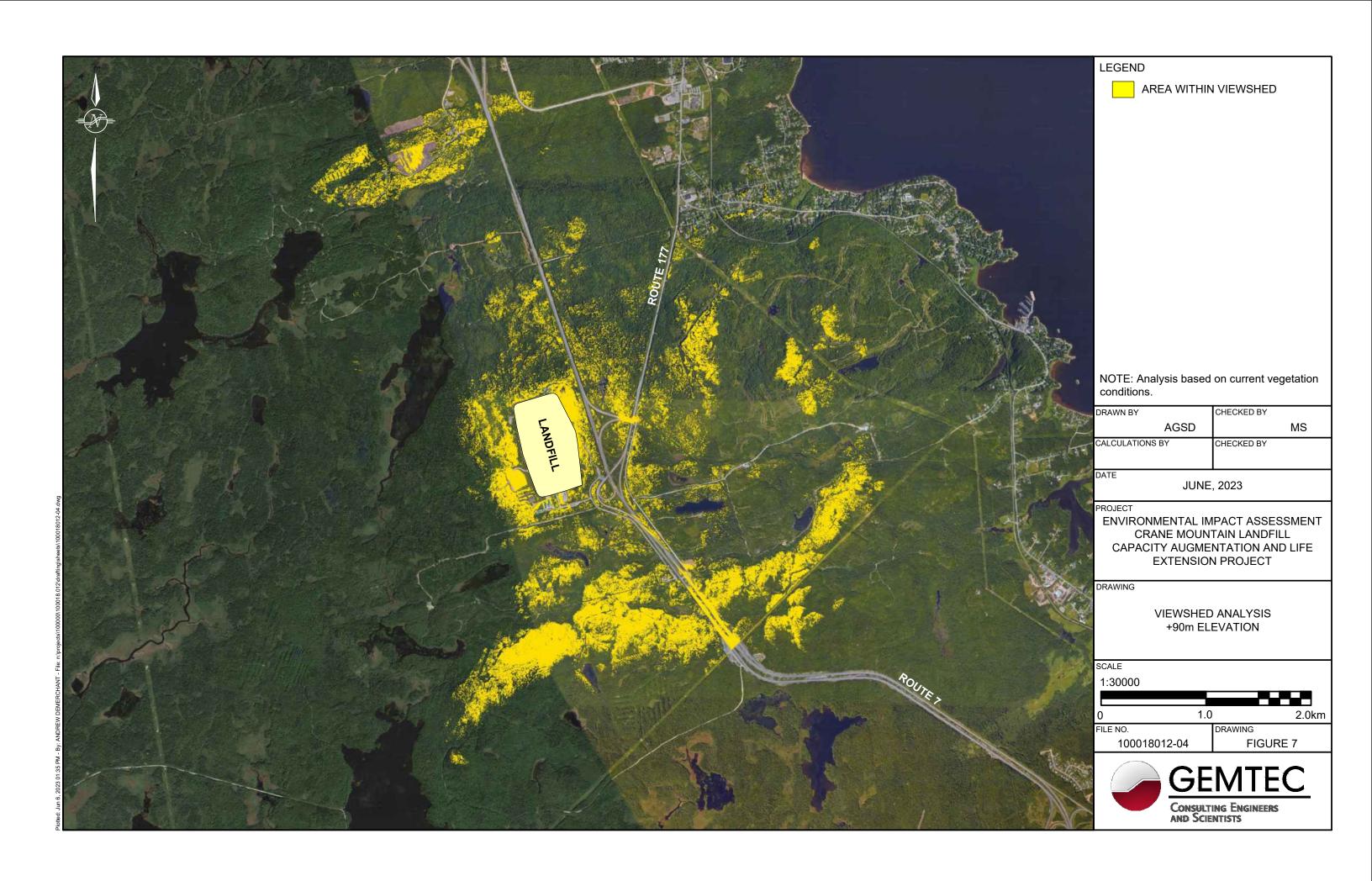


Photo 5: View of Landfill travelling north on Route 7 (Google)

Photo 6: View of Landfill from Martinon Bypass at the northbound Route 7 on-ramp (Google)

4.5.3 Local Economy and Local Socio-economic Structure

The Landfill is located in Saint John, New Brunswick and serves a number of communities in the surrounding area. The Landfill is managed by the FRSC, which is responsible for providing waste management services to the residents in that catchment.

According to Statistics Canada, the city of Saint John is the largest city in the province of New Brunswick, with a population of approximately 70,000 people. While the total population of the region served by the Landfill is approximately 125,000.

The Landfill is designed to handle a wide variety of waste materials, including MSW, construction and demolition debris, and hazardous waste. As currently approved, the Landfill has a capacity of approximately 4.9 million cubic meters and receives around 70,000 tonnes of MSW waste each year.

The regional economy is diverse, with a range of industries contributing to the local economy. One of the largest industries in the area is manufacturing, particularly in the areas of pulp and paper production, oil refining, and fabrication. Saint John is home to the Irving Oil Refinery, which is the largest oil refinery in Canada and a major employer in the region. The region is also home to several small and medium-sized businesses in a variety of industries, including retail, hospitality, and professional services.

In addition to manufacturing and business, the region is also known for its natural resources, including forestry, fishing, and agriculture. The Bay of Fundy is a major tourist attraction and a hub for whale watching, fishing, and other outdoor activities.

Although the funding model for the FRSC is based on each communities' tax base and population, the Landfill is funded solely through the tipping fees. This Project is funded by the Landfill's general operation budget.

5.0 SUMMARY OF POTENTIAL EFFECTS

5.1 Atmospheric Environment Potential Effects

The Project is not expected to affect the atmospheric environment beyond what is currently observed on the Site. The Project involves general landfilling practices within the existing footprint of the Landfill facility. Airborne contaminants within the PDA and/or the Site are not expected to exceed regulatory conditions as outlined in the current Approval to Operate (I-11079, Appendix A) and/or the New Brunswick Air Quality Objectives.

5.1.1 Climate Conditions Potential Effects

It is not expected the Project will affect climate conditions such as ambient temperatures, precipitation amounts and wind patterns; therefore, climate conditions are not discussed further in this EIA.

5.1.2 Air Quality Potential Effects

There will be a short-term increase of particulate matter and dust within the PDA during ground disturbing activities such as clearing and grading the Site and adding liner cover system. Dispersed garbage debris is also expected at any landfill facility.

It is anticipated that there will be gaseous emissions within the PDA from Project machinery and equipment (i.e., excavator, crusher, dump trucks, garbage trucks, personnel trucks, etc.).

The Landfill currently implements several mitigating efforts to reduce the amount of dust and wind-blown debris within, and beyond the Site which will continue to be employed during the Project, including:

- The Landfill implements a mechanical compacting technique to reduce the release of such debris into the surrounding environment. The compacting technique will be used throughout the Project, as applicable, to limit the release of wind-blown debris at the increased height.
- Soil cover material (commonly referred to as "daily cover") is applied to the disposal area on an as-needed basis, and at a minimum of once per week.
- Sequential covering and capping of the full or inactive containment cells is required throughout the Landfill operation as described in Section 2.5.1, per the Approval to Operate (I-11079). The application of intermediate or final cover material over inactive MSW cells or cells at capacity will prevent the release of debris from a containment cell.
- The Approval to Operate (I-11079) mandates that the Landfill ensures that the windblown debris is controlled to the immediate disposal area, which may include utilizing appropriate barriers or fencing. Any debris or litter found outside the containment cells shall be routinely collected.

The Landfill maintains a mature vegetated buffer between the disposal cells and edges
of the property. This vegetated buffer consisting of mature trees helps to mitigate windblown debris and dust from leaving the Site.

The effectiveness of the measures listed above is not anticipated to be reduced by the proposed increase in elevation of the Landfill. All of the aforementioned effects are currently observed within the PDA and Site as part of on-going Landfill operations and approved in the current Approval to Operate (I-11079, Appendix A). The Project activities are not anticipated to result in a significant increase to adverse impacts on air quality.

5.1.3 Sound Quality Potential Effects

Sound production within the PDA is expected from operating Project machinery and equipment (i.e., excavator, crusher, dump trucks, garbage trucks, etc.). However, it is not anticipated that there will be significant increase to sound quality impacts as a result of the Project beyond what is currently observed from the operating activities at the Landfill and approved in the current Approval to Operate (I-11079, Appendix A).

The prevailing wind direction in the area is generally from the southwest to the northeast. The predominant receptor of noise emissions is expected to be the rural residential properties located northeast of the Landfill across the Route 7 Highway. The Site elevation ranges from approximately 65 meters above sea level at its lowest point to approximately 90 meters above sea level at its highest point. In contrast, the nearby residential community located to the northeast of the Landfill is situated at a lower elevation, with an average elevation of approximately 24 meters above sea level. The residential community is located at a lower elevation than the proposed Project and a natural, vegetated area provides a noise barrier between the two areas.

Two factors that would affect the transmission of noise emissions generated at the Landfill are atmospheric pressure and wind velocity, both of which were considered when reviewing this Project. Changes in atmospheric pressure are influenced by a wide range of factors, including temperature, humidity, wind speed, and the presence of other weather systems in the region. The difference in atmospheric pressure between +90 metres (current finished elevation) and +117 meters (Figure 8) is considered to be negligible.

Based on the wind profile power law relationship, the wind speed at an elevation of +117 meters would be about 4% higher than the wind speed at an elevation of +90 meters, assuming all other factors are constant. This small increase is not expected to have a significant effect on the transmission of sound away from the Landfill.

DRAWN BY

AGSD

CALCULATIONS BY

CHECKED BY

CHECKED BY

DATE

JUNE, 2023

PROJECT

ENVIRONMENTAL IMPACT ASSESSMENT CRANE MOUNTAIN LANDFILL CAPACITY AUGMENTATION AND LIFE EXTENSION PROJECT

DRAWING

RENDERINGS OF LANDFILL ELEVATION AT +90m AND +117.5m

SCALE

NOT TO SCALE

FILE NO.

100018012-04

DRAWING

FIGURE 8

The Landfill currently implements several mitigating efforts to reduce the amount of noise emissions from the Site, all of which will continue to be applied throughout Project implementation, including:

- A dense, mature vegetated buffer is maintained around the boundary of the Site. The buffer acts as a natural barrier between the Landfill and surrounding environment for onsite noise control.
- On-site equipment is maintained according to emission standards and in good working order and is muffled when feasible.
- Generally, on-site activities are be limited to day-time hours (i.e., 8 hours per day
 Monday to Friday and 4 hours on Saturdays) and generally not on Sundays or holidays.
- Additionally, the existing Landfill Approval to Operate (I-11079) mandates that noise
 emissions released from the Landfill are controlled to prevent impacts to off-site
 receptors. Should a noise impact event occur, the FRSC may be required to develop,
 submit and implement a Control Plan that mitigates the impacts such that they are no
 longer a nuisance to off-site receptors.

The effectiveness of the measures listed above is not anticipated to be reduced by the proposed increase in elevation of the landfill; there should be no significant impacts to noise emissions as a result of the Project.

5.1.4 Odorous Emissions Potential Effects

The GCCS currently emits combusted LFG collected at the Landfill. The Project is not expected to produce additional LFG that exceed the capabilities of the GCCS. The GCCS is expanded on an as needed basis by installing additional LFG collector wells.

Since operational methods will generally be similar to what is currently performed, odorous emissions from the Project are not expected to exceed what is currently observed as ambient emissions from the operating activities at the Landfill and approved in the current Approval to Operate (I-11079, valid to November 30, 2025; Appendix A).

The prevailing wind direction in the area is generally from the southwest to the northeast. The predominant receptor of odor emissions is expected to be the rural residential properties located northeast of the Landfill, across the Route 7 Highway. The Site elevation ranges from approximately 65 meters above sea level at its lowest point to approximately 90 meters above sea level at its highest point. In contrast, the nearby residential community located to the northeast of the landfill is situated at a lower elevation, with an average elevation of approximately 24 meters above sea level. The residential community is located at a lower elevation than the proposed Project and a natural, vegetated area provides an odour barrier between the two areas.

The main factors that would affect the transmission of odor emissions generated at the Landfill is wind velocity, which was considered when reviewing this Project. The wind speed at an elevation of +117 meters would be about 4% higher than the wind speed at an elevation of +90 meters, assuming all other factors are constant. The Project is not expected to have a significant effect on the transmission of odours away from the Landfill.

The Landfill currently implements several mitigating efforts to reduce odours within and beyond the Site, including:

- Sequential capping of the completed or inactive containment cells is required throughout the Landfill operation per the Approval to Operate (I-11079) issued by the NBDELG. The application of intermediate cover and eventually final cover will mitigate the release of odorous emissions from inactive containment cells.
- The Landfill utilizes a GCCS which collects and converts the odorous gases produced by the landfilling activities into electric power, and also serves as an odour reducing agent at a destructive rate greater than 99 percent (%). The Project is not expected to produce additional LFG or odorous gases that exceed the capabilities of the GCCS.
- The existing Landfill Approval to Operate (I-11079) mandates that odour emissions
 released from the Landfill are controlled to prevent impacts to off-site receptors. Should
 an odour impact event occur, the FRSC may be required to develop, submit and
 implement a Control Plan that mitigates the impacts such that they are no longer a
 nuisance to off-site receptors.

The effectiveness of the measures listed above is not anticipated to be reduced by the proposed increase in elevation of the Landfill. Further, in order to maintain the regulated side slope of 4H: 1V during the proposed height increase, the open surface area of the active containment cell(s) may be reduced, per a pyramid-shape assemblage (Figure 3). Thus, reducing the available area for odorous emissions at the higher elevations.

Due to supply chain issues for the enclosed flare replacement parts, the GCCS system was not fully operational in 2022. The supply chain issues were resolved and in March 2023, the GCCS is functional and regularly operating at the time of this issuance.

It should be noted that Environment and Climate Change Canada (ECCC) released a framework for a performance standard for LFG and methane emissions from Landfills in early 2023, with final regulations anticipated to be released later in 2023. These regulations, or similar Provincial regulations, are expected to be applied to Crane Mountain Landfill.

Further, Tetra Tech Canada Inc. has been retained to develop a comprehensive gas management plan to further improve LFG collection which will mitigate odorous emissions from the Landfill. The LFG Master Plan will consider the changes that the Project will have to the

GCCS. Recommendations from this plan may be incorporated separately from the Project. Findings of the Tetra Tech Canada Inc. report were not available for submission with this EIA document but will be included in subsequent Technical Review Committee (TRC) submissions.

5.2 Groundwater Resources Potential Effects

Potential effects to regional groundwater resources as a result of Project activities are not expected. Some localized changes in topography within the PDA as a result of the proposed Project are expected. However, overland surface water flow and overall drainage patterns are expected to remain similar to pre-Project conditions (i.e., utilize existing underdrains, leachate holding and treatment ponds, and stormwater infrastructure).

5.2.1 Drainage and Topography Potential Effects

Some localized changes in topography within the PDA are expected but are restricted to the vertical height increase of the Landfill (i.e., from +90 metres elevation to +117 metres elevation). The side slopes of 4H:1V will be maintained and all new, capped waste containment cells will be integrated into the existing and future Landfill footprint.

The overall drainage patterns and volumes will remain consistent or similar to existing conditions (i.e., flow patterns continuing to be directed toward existing stormwater infrastructure). The drainage patterns are not expected to interact with groundwater. Drainage and topography are not discussed further in this EIA.

5.2.2 Geology and Hydrogeology Potential Effects

Potential effects to surficial geology as a result of Project activities include ground disturbance, excavation and the placement of fill atop an existing landfill site. These activities in the PDA are not expected to interact with groundwater resources, and are therefore not discussed further in this FIA

5.2.2.1 Groundwater Quality and Quantity Potential Effects

Potential effects to groundwater quality as a result of Project activities include the potential for contaminants to be released through spills of fuels and lubricants from on-site equipment, and/or the release of leachate, with subsequent infiltration into a groundwater resource. The Project is limited to activities currently undertaken at the Landfill; no new or unique activities will be undertaken as part of the Project.

Increased volumes of leachate are not expected as the amount of open surface areas (i.e., active disposal cells) subjected to surface water infiltration will remain similar to the conditions currently observed on Site. Additionally, in order to maintain the regulated side slope of 4 H:1V during the proposed height increase, the open surface area of the active containment cell(s) may be reduced, per a pyramid-shape assemblage.

Routine compliance monitoring of surface, groundwater and select treatment system conditions is coordinated by the FRSC, per the Approval Operate (I-11079, Appendix A; Appendix E). The focus of the compliance monitoring program is to assess the potential environmental impact of the Landfill on the groundwater and surface water systems in the vicinity of the Landfill. Therefore, groundwater quality and quantity are not discussed further in this EIA.

5.3 Ecological Environment Potential Effects

The Project is not expected to affect the terrestrial habitat, wetlands and watercourses, flora, or wildlife beyond what is currently observed on the Site. The Project involves general landfilling practices within the existing approved footprint of the Landfill and no new or unique activities will be undertaken as part of the Project.

5.3.1 Terrestrial Habitat Potential Effects

No new ground disturbance or new operational activities are proposed as part of the Project. The Project involves increasing the regulated containment cell height for approved MSW cells. No further discussion on terrestrial habitat is presented in this EIA.

5.3.2 Wetlands and Watercourses Potential Effects

The Project involves increasing containment cell height for active and future MSW cell and will not affect any regulated wetlands outside the area of the Landfill as it was originally approved in 1997. A wetland is present within the approved Landfill footprint and any alterations may be pursuant to the *Watercourse and Wetland Alteration Regulation (90-80) – Clean Water Act*.

Any potential effects to wetlands and watercourses with respect to the established Landfill footprint and landfilling activities were identified and discussed in the original EIA document (Fundy Solid Waste Action Team, 1994) and are considered outside the scope of this assessment

5.3.3 Flora Potential Effects

The ACCDC report has identified the Anticosti Aster (*Symphyotrichum anticostense*) as a species of special concern under *SARA* that is located within a 5 km radius of the Site. However, as the proposed Project involves increasing the elevation of the waste contaminant cells of the Landfill; it is not expected to have any significant impact on the natural habitat surrounding the Landfill. Therefore, it is unlikely that the Anticosti Aster or any native flora species in the surrounding area will be adversely affected by the proposed project on a population level. Flora is not discussed further in this EIA.

5.3.4 Wildlife and Bird Habitat Potential Effects

The identified potential effects to wildlife and bird habitat as a result of the Project include:

- Noise from Project activities may disrupt wildlife and birds; however, this is not considered new Project-related activity as heavy equipment is currently utilized within the PDA and Site;
- Motor vehicle traffic will occur during the Project and vehicular collisions may cause injury or death to involved wildlife and birds. This is not considered new Project-related activity as vehicle traffic is currently observed within the PDA and Site;
- There is a possibility of human interaction with wildlife as a result of personnel being
 present within the Site. In addition, there is a possibility of wildlife attraction to waste,
 garbage and stockpiled material stored on Site. This is not considered new Projectrelated activity as human presence is currently observed within the PDA and Site;
- There is low potential for migratory birds to utilize the habitat within the PDA due to the
 frequent ground disturbance and human presence. The Project is unlikely to alter or
 destroy migratory bird habitat as described in MBCA, with the exception of the following:
 - Attraction to cleared or stockpile areas may result in an increase in bird injuries or deaths, and/or destruction of nests. This is not considered new Project-related activities as stockpiles are currently observed within the PDA and Site;
 - Use of artificial light during nighttime operations may attract bird species. In general, Project activities will be limited to daylight hours. This is not considered new Project-related activity as artificial lights are currently observed within the PDA and Site; and
 - Increasing the height of the Landfill may influence the foraging bird population to fly at a higher elevation than the currently observed conditions. The change in elevation is considered negligible and is not expected to impact the accessibility of the Site or migratory patterns of any bird species.

Landfills can attract certain bird species, which may feed on waste material. This can lead to an increase in some bird populations around a landfill and potentially impact other bird species, such as the Chimney Swift (*Hylocichla mustelina*) and Bald Eagle (*Haliaeetus leucocephalus*), that rely on the same food sources. However, as the proposed Project involves increasing the elevation of the containment cells and not altering the current waste management practices, it is unlikely that there will be a significant increase in bird populations around the Landfill.

Additionally, landfills may also provide nesting sites for certain bird species, such as the Barn Swallow (*Hirundo rustica*), which build mud nests on vertical surfaces, including buildings and bridges. However, as the proposed Project does not involve any changes to the physical structures around the Landfill, it is not expected to have a significant impact on nesting sites for bird species.

The proposed Project is not expected to have a significant impact on the SAR discussed in Section 4.3.5, or the surrounding wildlife habitat. This is because the Project does not involve any changes to the waste management practices of the Landfill, and the increased elevation of the containment cells is unlikely to alter the availability of food or nesting sites for bird and wildlife species.

5.4 Cultural Features Potential Effects

The Site is currently utilized as an active Landfill and no new footprint, beyond what is currently approved for future containment cells, will result as part of this Project. An invitation for comments and concerns will be sent to nearby First Nations as part of the EIA process. Any received correspondence and concerns will be presented to NBDELG under a separate cover detailing public and First Nations consultation.

5.5 Socio-Economic Environment Potential Effects

The Project involves the utilization of existing roadway infrastructure for the transportation of waste material and the use of the designated Landfill area for appropriate disposal. There are no anticipated significant changes to emissions or discharges being generated by the Landfill as currently observed on-Site. The FRSC will continue to operate the facility in accordance with the requirements of the Approval to Operate (I-11079; Appendix A). As such, there are no anticipated adverse socio-economic impacts to surrounding properties.

5.5.1 Existing Infrastructure Potential Effects

The PDA is within existing and future approved MSW containment cells, which consist of containment berms, subdrains, containment liners, and leachate collection layers. The liner and leachate collection systems are described in Section 2.5 in this report.

As a result of increasing the height of the MSW in the containment cells, additional weight or pressure will be exerted on the existing infrastructure, and therefore the potential effects are considered. A height increase of approximately 27 metres is expected to exert an additional 325 kPa pressure on the underlying infrastructure.

When designing a leachate collection piping system in landfills, the pipe must be assessed to ensure excessive deflection and local buckling failure will not occur. All leachate collection pipes in Cells 1 to 9 are perforated, 200-millimetre (mm) diameter, HDPE Standard Dimensional Ratio (SDR) 17 pipes. It is assumed this pipe will also be used for all future cells.

Based on a 50-metre total thickness/height of MSW (projected assumption), the deflection ratio (deflection of pipe/diameter of pipe) of the leachate collection pipe was determined to be less than 1 percent (%), which is less than the allowable deflection ratio of 2.7 % for HDPE SDR 11 pipe (Table 9.4, Geotechnical Aspects of Landfill Design and Construction, Quian, Koerner, Gray, 2002).

Also, using a maximum MSW thickness/height of 50 metres overlying the leachate pipes, the factor of safety (FOS) against local buckling failure was calculated to exceed 6; a minimum FOS of 2 is generally required (Geotechnical Aspects of Landfill Design and Construction, Quian, Koerner, Gray, 2002).

As demonstrated by the above assessment, the existing leachate collection infrastructure can sustain the additional pressures that will result from the additional 27 metres of MSW.

According to the original EIA document, the in-situ soils on the Site generally consist of 1.2 to over 13 metres of medium dense to dense glacial till material, underlain by bedrock. The additional 27 metres of MSW will not exceed the bearing capacity of the underlying subgrade tills. Any unsuitable or disturbed subgrade soils are removed and replaced with well-compacted granular material during containment cell construction.

The composite liner system, consisting of an HDPE geomembrane and re-compacted clay liner will not be adversely affected by the additional 27 metres of MSW placed in the containment cells. The additional overburden pressure will not reduce the permeability of the recompacted clay liner. The added weight may help to compact/consolidate the soil liner and reduce (improve) its permeability. The HDPE geomembrane liner would not be adversely affected by the increased loads from the additional MSW.

5.5.2 Existing Land Use Potential Effects

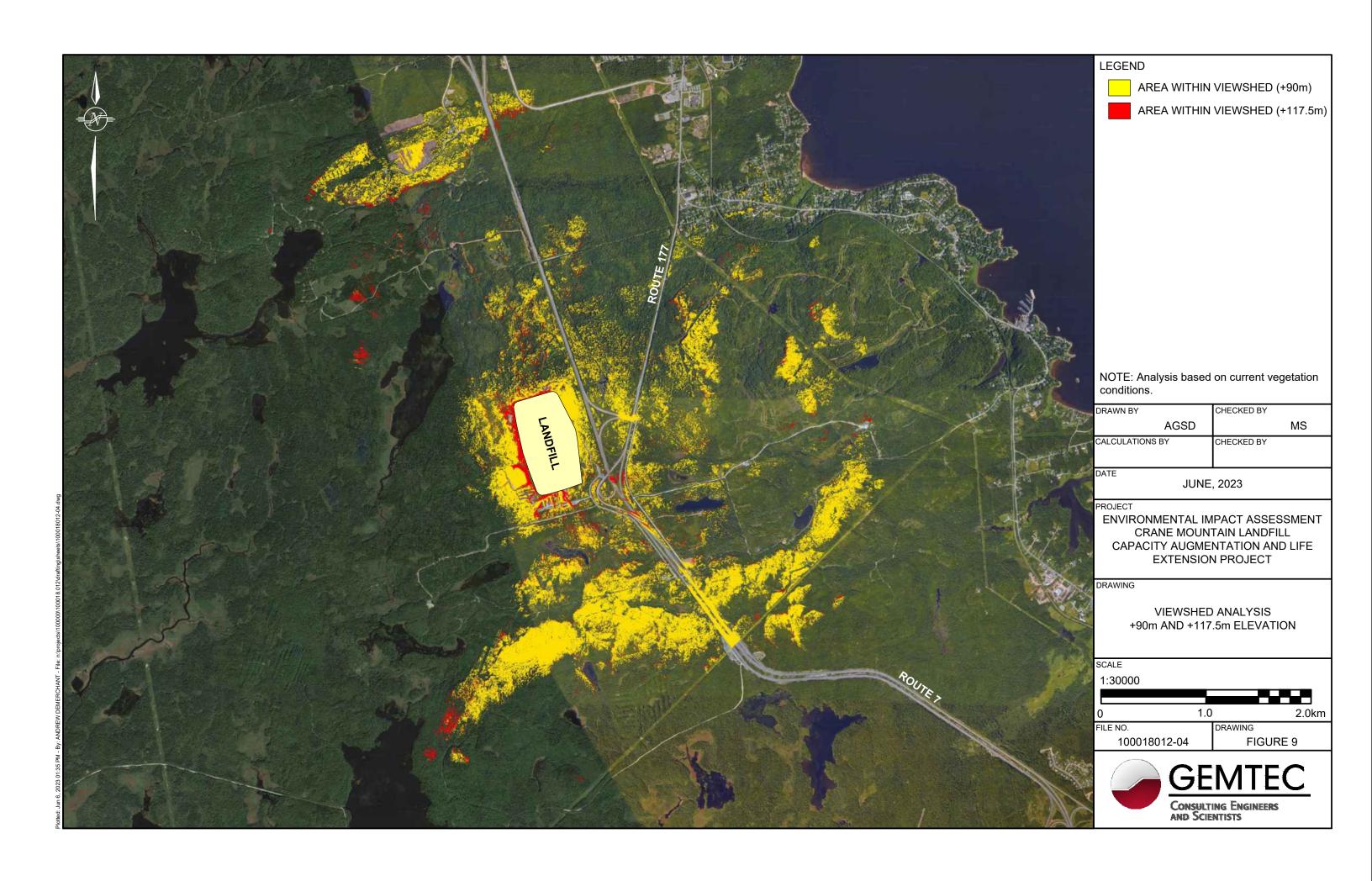
Based on the distance between the Landfill and existing residential dwellings, and the future landscape projections presented herein (Viewplane Sections and Viewscape Projections, Appendix F), no new viewpoints from existing residential areas will arise as a result of the Project, based on current vegetation cover. Potential effects to visual landscape are discussed further in Section 5.5.3.

The additional storage capacity of the Landfill will not increase traffic type or volume along the established hauling routes (Route 7). Similar traffic volumes will be observed as per the current conditions.

Operational activities required for landfilling (i.e., heavy equipment use, construction sequencing, garbage disposal/bailing, noise and odours, etc.), are currently undertaken at the Landfill and no new activities/impacts to residential areas are expected as a result of the Project. As such, potential effects to existing land use is not discussed further in this EIA.

5.5.3 Visual Landscape Potential Effects

A Digital Surface Model (DSM) and Digital Terrain Model (DTM) from GeoNB and NRCAN, were used to create a 3D Autodesk Infraworks model of the surrounding Landfill area, allowing the creation of a 3D view of the proposed design from several vantage points. The vantage points were selected by first running QGIS Viewshed analyses using the proposed Landfill height as


the observer location, with targets having a height of 1.75 metres above the DTM. Using the DTM allowed the exclusion of vegetation or trees effect on the initial pass. Resulting areas overlapping with existing roads or clearings were then used as observer locations, reversing the process, and providing a viewshed of the proposed Site from each location. Two QGIS Viewshed analyses were conducted per observation location as a quality check. One analysis used the DSM as the input surface, and one used the DTM. Google Earth was used, along with a 3D model of the proposed design, to help confirm or adjust the Infraworks model. Treed areas along lines of sight were assessed by stand, with average heights derived from DSM and DTM cross sections.

Based on the 3D model and analysis, it was determined it is unlikely the Landfill will be visible from the ground level at any nearby existing residential dwelling or commercial area (Viewplane Sections, Appendix F). Viewpoints are expected along Route 7, near the Martinon Bypass junction; however, the Landfill is currently visible by traffic traveling on these roads (Photo 3 and Photo 4). New viewpoints may be experienced by traffic on portions of Yellow Gate Road (Acamac Backland Road), Round Lake Road, Timmy Road, and Colonel Nase Road (Figure 9). This is based on the current level of vegetation and topography.

A viewplane analysis also shows that the Landfill could be visible from the top floor of the Worker's Rehabilitation Centre building located at 3700 Westfield Road but will not be visible from ground level in that area (Appendix F). The Landfill may also be visible from Ragged Point Cove, but at a distance of 8,000 metres away (Appendix F).

A vegetated buffer will be maintained around the Landfill to limit the view of the PDA.

5.5.4 Local Economy and Local Socio-economic Structure Potential Effects

The Project is expected to extend the lifetime of the Landfill by up to 22 years, which will provide a secure and consistent MSW disposal site for communities in the FRSC area beyond 2070. This project will dramatically reduce the costs of containment cell construction, and a reduction of construction and operational costs/uncertainties as the Landfill approaches the end of its original estimated service life (based on a top of MSW elevation of +90 metres).

Extending the life of the existing Landfill ultimately would benefit all landfill users (tipping fee rate payers), including the municipalities and local service districts included in the area, with conservative, preliminary estimates of approximately \$22 million in savings over the 22 years that the Landfill's life is extended. The only economically feasible and sustainable alternative to this Project would be to site, engineer, and construct a new landfill in the FRSC area as Crane Mountain Landfill approaches capacity. Siting a new landfill is a timely undertaking (years), and preliminary costs for the construction phase are estimated to be over \$30 million in 2023 dollars.

No impacts to local contractors are expected as a result of the Project. Construction, operation and landfilling activities will remain as per the existing practices. FRSC will continue to follow the New Brunswick Procurement Act for the supply of construction materials and construction, when applicable.

The Site is an active landfill site and as such the proposed Project involves an existing land use considered compatible with other land uses in the area. The site is currently zoned Utility Service Landfill (or USL) by the City of Saint John and meets all land use requirements under the City of Saint John's Municipal Plan (PlanSJ, 2023).

6.0 SUMMARY OF PROPOSED MITIGATION

The potential effects and proposed mitigation measures to minimize the potential adverse effects to the environment during the Project are summarized in Table 9. An EMP has been established for the on-going operations of the Landfill and is referenced below when applicable (included in Appendix C).

 Table 9
 Summary of Proposed Mitigation Measures

Project Component	Summary of Potential Interaction	Mitigation Measures
Air Quality	Potential for particulate matter and dust.	Dust suppressants may be used during periods of dry weather; Dry materials/stockpiles may be covered or windrowed to prevent blowing dust or debris. Similarly, dusty material may be transported in covered haulage vehicles; Dust generating activities will be limited during periods of dry or windy conditions; Wind prone areas will be stabilized in a timely manner; and Dust and litter control procedures are in place as outlined in the EMP (Appendix C).
	Potential for gaseous emissions from equipment and truck traffic.	Any non-essential internal combustion engines will be shut off when not in use, and heavy equipment will not remain idling for periods exceeding 15 continuous minutes as a best management practice; and Equipment will be maintained according to emission standards and in good working order.
Sound Quality	Noise levels and vibration from equipment and truck traffic.	Equipment will be maintained according to emission standards and in good working order; Equipment will be muffled, when feasible; A dense, mature vegetated buffer is maintained around the Site to reduce sound impacts to the surrounding receptors; Generally, on-site activities will be limited to day-time hours (<i>i.e.</i> , about 10 hours per day Monday to Friday and about 5 hours on Saturdays); The Approval to Operate (I-11079; Appendix A) mandates noise emissions released from the Landfill are controlled to prevent impacts to off-site receptors. Should a noise impact event occur, the FRSC may be required to develop, submit and implement a Control Plan that mitigates the impacts such that they are no longer a nuisance to off-site receptors; and Noise control procedures are in place as outlined in the EMP (Appendix C).

Project Component	Summary of Potential Interaction	Mitigation Measures
	Odour from waste disposal and landfill gas generation.	Sequential capping of the completed or inactive MSW containment cells by placement of intermediate cover, followed by final cover is conducted as required throughout the Landfill operation per the Approval to Operate (I-11079; Appendix A);
Odorous		GCCS collects and combusts LFG that contains some odorous gases produced by the landfilling activities. The GCCS also serves as an odor reducing agent at a destructive rate greater than 99 %. The Project is not expected to produce additional odorous gases that exceed the capabilities of the GCCS;
Emissions		The Approval to Operate (I-11079; Appendix A) mandates odor emissions released from the facility are controlled to prevent impacts to off-site receptors. Should an odor impact event occur, the FRSC may be required to develop, submit and implement a Control Plan that mitigates the impacts such that they are no longer a nuisance to off-site receptors;
		Odour control procedures are in place as outlined in the EMP (Appendix C); and
		Additional mitigations may be implemented based on the recommendations in the Tetra Tech Landfill Gas Master Plan report to be received by FRSC in 2023.
	Noise from Project activities may disrupt wildlife and birds; Possibility of human interaction as a result of personnel within the Site, possible attraction to waste/garbage stored on Site; and Attraction to cleared/stockpile areas may result in an increase in bird injuries and/or deaths or destruction of nests.	Nearby wildlife will likely be deterred by the noise on the Site during Project activities and suitable habitat types are not limiting on adjoining properties;
		Equipment will be maintained in good working order;
		Equipment will be muffled, if feasible;
Wildlife and Birds		A vegetated buffer will be maintained around the Site to reduce sound impacts to the surrounding receptors;
		If a nesting bird species is encountered, contact with and disturbance of the species and its habitat will be avoided; and
		An appropriate vegetated buffer will be established around any nests encountered to protect them from disturbance, and work in that area will be avoided until after the birds have fledged or vacated.

Project Component	Summary of Potential Interaction	Mitigation Measures				
Accidents, Malfund	Accidents, Malfunctions & Unplanned Events					
Vehicle Mishaps	Potential for injury, death or destruction of infrastructure from vehicle accidents within the Site.	Vehicles will travel at appropriate speeds within the Site; Vehicles will kept in good working order; Restricted access protocols will be implemented; and Emergency and spill response procedures will be implemented as outlined in the EMP (Appendix C).				
Fire	Potential for destruction of infrastructure, habitat and wildlife death from fire.	No new chemical or petroleum storage will occur within 30 metres of an environmental sensitive area (i.e., wetland, watercourse); Equipment will be kept in good working order; and Emergency and spill response procedures will be implemented as outlined in the EMP (Appendix C).				
Accidental Release of Contaminants	Potential for contaminants to be released into surrounding habitat through the accidental release of fuels and lubricants from equipment.	No new chemical or petroleum storage will occur within 30 metres of an environmental sensitive area (<i>i.e.</i> , wetland, watercourse); Equipment will be kept in good working order; and Emergency and spill response procedures will be implemented as outlined in the EMP (Appendix C).				

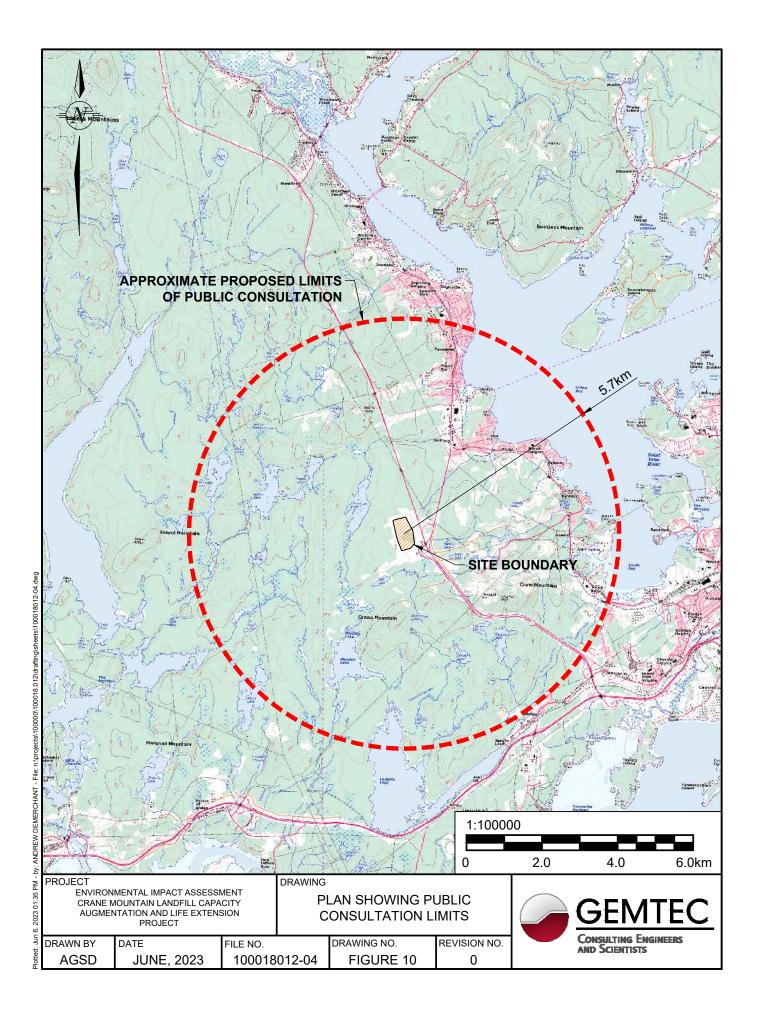
Project Component	Summary of Potential Interaction	Mitigation Measures
	Potential for sediment loading in habitats from ground disturbance.	Appropriate Erosion and Sediment Control (ESC) structures will be properly installed around work areas prior to commencement of Project activities, as applicable. All structures will be inspected regularly to ensure that they are functioning as intended;
		At the first evidence runoff of sediment is starting to occur, Project work will temporarily cease. All siltation prevention devices shall be inspected and monitored; any necessary repairs will be made such that they accomplish their intended function prior to work commencing;
Failure of Erosion Control		On-site water may be treated in a sedimentation pond, as required, prior to discharge into the surrounding environment;
Structures		Once the Project work is complete, all exposed, erodible soil will be permanently stabilized against erosion;
		Existing vegetation will be retained whenever possible and tree/vegetation clearing will be kept to a minimum; and
		Emergency and spill response procedures will be implemented as outlined in the EMP (Appendix C).

7.0 PUBLIC AND FIRST NATIONS INVOLVEMENT

7.1 First Nations Involvement

The Province of New Brunswick has a constitutional Duty to Consult, and accommodate where required, Aboriginal Peoples whenever a decision or activity is being contemplated that could adversely impact Aboriginal or Treaty rights. As per the Interim Proponent Guide published by the Province of New Brunswick, project proponents play a valuable role in the consultation process by engaging Aboriginal Peoples in the development of any project or proposal.

In keeping with the above guidance, a project description and invitation for comments and concerns will be sent to nearby First Nations as part of the EIA process. Any received correspondence and concerns will be presented to NBDELG under a separate cover detailing public and First Nations consultation.


7.2 Public and Stakeholder Involvement

The public involvement standards for registered projects are outlined in the Guide to Environmental Impact Assessment in New Brunswick (January, 2018).

A detailed public consultation report will be prepared and submitted by FRSC under separate cover. It is expected that public involvement will include, at a minimum:

- A published notice of registration in the Telegraph Journal;
- A Project information letter to Members of the Legislative Assembly (MLAs) for the FRSC catchment area;
- A Project information letter to local governments including the City of Saint John and Town of Grand Bay-Westfield;
- A Project information letter to the Department of Aboriginal Affairs;
- A notice of registration will be distributed (via registered mail) to landowners within the proposed limits depicted on Figure 10;
- The registration and supporting documents will be made available at the Landfill and online at https://www.fundyrecycles.com/
- The registration and supporting documents will be made available online at https:// https://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/environmental impactassessment/registrations.html

8.0 APPROVAL OF THE PROJECT

Subsequent to the receipt of a Certificate of Determination, an amendment to the Approval to Operate (I-11079) will be obtained, if required.

9.0 FUNDING

The Project will be funded solely by FRSC as a part of their typical operational budget.

10.0 REFERENCES

- AC CDC, A. (2023). *Data Report 7616: Crane Mountain Landfill, NB.* Atlantic Canada Conservation Data Centre.
- Energy Production. (2023). Retrieved from Fundy Regional Service Commission: https://www.fundyrecycles.com/solid-waste/crane-mountain-landfill/energy-production/
- Environment and Local Government. (2023). *Air Quality Data Portal*. Retrieved from Government of New Brunswick:
 - https://www.elgegl.gnb.ca/AirNB/en/SamplingLocation/Details/32?type=1
- Environment and Local Government. (2023). *Air Quality Monitoring*. Retrieved from Government of Canada:
 - https://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/air_quality.html
- Environment and Natural Resource. (2023). *Anticosti aster (Symphyotrichum anticostense):*COSEWIC assessment and status report 2017. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/anticosti-aster-2017.html
- Environment and Natural Resources . (2023). Wood thrush (Hylocichla mustelina): COSEWIC assessment and status report 2012. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/wood-thrush-2012.html
- Environment and Natural Resources. (2023). Barn Swallow (Hirundo rustica): COSEWIC assessment and status report 2021. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/barn-swallow-2021.html
- Environment and Natural Resources. (2023). Canada Warbler (Cardellina canadensis): COSEWIC assessment and status report 2020. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/canada-warbler-2020.html
- Environment and Natural Resources. (2023). Canadian Climate Normals 1981-2010 Station Data. Retrieved from Government of Canada:

 https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=s
 tnProv&lstProvince=NB&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0
 &txtCentralLongSec=0&stnID=6250&dispBack=0
- Environment and Natural Resources. (2023). Eastern wood-pewee (Contopus virens):

 COSEWIC assessment and status report 2012. Retrieved from Government of Canada:

 https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/eastern-wood-pewee-2012.html
- Environment and Natural Resources. (2023). Evening grosbeak (Coccothraustes vespertinus): COSEWIC assessment and status report 2016. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/evening-grosbeak-2016.html
- Environment and Natural Resources. (2023). Little Brown Myotis (Myotis lucifugus), the Northern Myotis (Myotis septentrionalis), and the Tri-colored Bat (Perimyotis subflavus): recovery strategy 2018. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/recovery-strategies/little-brown-myotis-2018.html
- Environment and Natural Resources. (2023). *Midland and Eastern Painted Turtle (Chrysemys picta marginata): COSEWIC assessment and status report 2018.* Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-

- change/services/species-risk-public-registry/cosewic-assessments-status-reports/midland-eastern-painted-turtle-2018.html#toc0
- Environment and Natural Resources. (2023). *Monarch (Danaus plexippus): COSEWIC assessment and status report 2016.* Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/monarch-2016.html
- Environment and Natural Resources. (2023). Olive-sided Flycatcher (Contopus cooperi): COSEWIC assessment and status report 2018. Retrieved from Government of Canada: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/olive-sided-flycatcher-2018.html
- Environment and Natural Resources. (2023). Wood Turtle (Glyptemys insculpta): COSEWIC assessment and status report 2018. Retrieved from Government of Candad: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/wood-turtle-2018.html
- Environment, D. o. (2023). *Online Well Log System*. Retrieved from Government of Canada: https://www.elgegl.gnb.ca/0375-0001/index.aspx
- Fahmy, S., Hann, S., & Jiao, Y. (2010). Soils of New Brunswick: The Second Approximation. Potato Research Centre, Research Branch, Agriculture and Agri-Food Canada, and Atlantic Region, Agri-Environment Service Branch, Agriculture and Agri-Food Canada, Fredericton, New Brunswick.
- FSAWT. (1994). Environmental Impact Statment Regional Landfill at Crane Mountain or Paddy's Hill Sites.
- Geological Survey of Canada. (2014). Bedrock Geology of the Grand Bay-Westfield Area, Southern New Brunswick (Memoir 360). Retrieved from Geological Survey of Canada: chrome
 - extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www2.gnb.ca/content/dam/gnb/Departments/en/pdf/Minerals-Minerales/Bedrock_Geology_MapNR1-e.pdf
- GeoNB. (2023). *GeoNB Map Viewer*. Retrieved from GeoNB: http://www.snb.ca/geonb1/e/index-E.asp
- GeoNB. (2023). *Protected Wellfields*. Retrieved from GeoNB: http://geonb.snb.ca/wellfields/index.html
- GeoNB. (2023). Wetland Mapping. Retrieved from GeoNB: https://geonb.snb.ca/geonb/
- Government of Canada. (2023). Status of Birds in Canada 2019. Retrieved from Government of Canada: https://wildlife-species.canada.ca/bird-status/oiseau-bird-eng.aspx?sY=2019&sL=e&sM=a&sB=BAEA#ref78
- Health Canada. (2023). Guidelines for Canadian Drinking Water Quality. Retrieved from Government of Canada: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf
- McClenaghan, M., Edwards, T., & Paulen, R. (1996). *Hydrogeology of the Grand Bay-Westfield area, New Brunswick.* Geological Survey of Canada.
- Natural Resources and Energy Development. (2023). *Protected Area*. Retrieved from Government of Canada: https://www2.gnb.ca/content/gnb/en/departments/erd/forestry-conservation/content/protected-areas.html#:~:text=About%20437%2C400%20hectares%20(6.0%25),rugged%20peaks%2C%20and%20purifying%20wetlands.
- Natural Resources and Energy Development. (2023). Species at Risk Act. Retrieved from Government of Canada: https://www2.gnb.ca/content/gnb/en/departments/erd/forestry-conservation/content/species-at-risk.html

- Natural Resources Canada. (2023). *The Atlas of Canada Toporama. 2021*. Retrieved from Government of Canada: https://atlas.gc.ca/toporama/en/index.html
- New Brunswick Department of Environment and Local . (2002). Order Establishing Objectives under Section 8 of the Clean Air Act. New Brunswick Department of Environment and Local Government. doi:https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Air-Lair/OrderEstablishingObjectives.pdf
- New Brunswick Department of Environment and Local . (January 2018). *A Guide to Environmental Impact Assessment in New Brunswick*. New Brunswick Department of Environment and Local Government.
- New Brunswick Department of Natural Resources. (2007). *Our Landscape Heritage : Fundy Coast Ecoregion Chapter 10.* New Brunswick Department of Natural Resources.
- New Brunswick Department of Natural Resources. (2007). *Our Landscape Heritage: The Story of Ecological Land Classification in New Brunswick*. New Brunswick Department of Natural Resources.
- PlanSJ. (2023, 05 12). *City of Saint John*. Retrieved from ZoneSJ Mapping App: https://saintjohn.maps.arcgis.com/apps/webappviewer/index.html?id=7b69f0b5e2d34b9 584eb887d3687e264
- Service New Brunswick. (2023). *SNB Planet*. Retrieved from Government of New Brunswick: https://www.planet.snb.ca/PLANET/index.html
- Statistics Canada. (2023). *Statistics on Indigenous peoples*. Retrieved from Government of Canada: https://www.statcan.gc.ca/en/subjects-start/indigenous peoples

11.0 STATEMENT OF LIMITATIONS

This report has been prepared for the sole benefit of the Fundy Region Service Commission. Any other person or entity without the express written consent of GEMTEC Consulting Engineers and Scientists Limited and the Fundy Region Service Commission may not rely upon this report.

Any use that a third party makes of this report, or any reliance or decisions made based on it, is the responsibility of such third parties. GEMTEC Consulting Engineers and Scientists Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Some of the information presented in this report was provided through existing documents and interviews. Although attempts were made, whenever possible, to obtain a minimum of two confirmatory sources of information, in certain instances, GEMTEC Consulting Engineers and Scientists Limited has been required to assume that the information provided is accurate.

The conclusions presented represent the best judgment of the trained professional and technical staff based on current environmental standards and on the Site conditions observed by staff at the time the work was performed.

Should additional information become available, GEMTEC Consulting Engineers and Scientists Limited requests that this information be brought to our attention so that we may re-assess the conclusions presented herein.

APPROVAL TO OPERATE

I-11079

Pursuant to paragraph 8(1) of the *Water Quality Regulation - Clean Environment Act*, and paragraph 5 (3) (a) of the *Air Quality Regulation - Clean Air Act*, this Approval to Operate is hereby issued to:

Fundy Regional Service Commission for the operation of the

Crane Mountain Landfill

Description of Source:	A regional sanitary landfill with leachate collection and disposal.
Source Classification:	Fees for Industrial Approvals Regulation - Clean Water Act
Parcel Identifier:	Air Quality Regulation Class 4 55087001, 55087027, 55086987, 55087019, 55043301, 55043293, 55160352
Mailing Address:	P.O. Box 3032 Grand Bay-Westfield, NB E5K 4V3
Conditions of Approval:	See attached Schedules "A" and "B" of this Approv
Supersedes Approval:	I-9959
Valid From:	December 01, 2020
Valid To:	November 30, 2025
Recommended by: Sherye	Jhustone
Issued by: The Minister of Environment and the Minister of	November 30, 2020 1 Climate Change Date

SCHEDULE "A"

A. DESCRIPTION AND LOCATION OF SOURCE

The Fundy Regional Service Commission operates a regional solid waste management and disposal facility that is commonly referred to as the Crane Mountain Landfill. The Landfill is located in Saint John near Grand Bay-Westfield and serves the residents of Saint John county and the western portions of Kings and Queens county. The Commission operates a construction and demolition debris disposal site, a household hazardous waste depot, an organics transfer facility, material recovery facility, a landfill gas collection system, and a flare/electric generation system at the Landfill. A designated area on site is also utilized for the temporary storage of metal, tires, wood, white goods and other such salvageable/recyclable materials.

The operation of the regional solid waste management and disposal facility by the Fundy Regional Service Commission, located in the City of Saint John, County of Saint John, and the Province of New Brunswick and identified by Parcel Identifier (PID) numbers 55087001, 55087027, 55087019, 55043301, 55086987, 55160352 & 55043293 is hereby approved **subject to the following:**

B. DEFINITIONS

- 1. "Approval Holder" means Fundy Regional Service Commission.
- 2. "**Department**" means the New Brunswick Department of Environment and Local Government.
- 3. "Minister" means the Minister of Environment and Climate Change and includes any person designated to act on the Minister's behalf.
- 4. "Director" means the Director of the Authorizations Branch of the Department of Environment and Local Government and includes any person designated to act on the Director's behalf.
- 5. **"Facility"** means the property, leachate collection and treatment systems, buildings, equipment and any other activities involved with the operation of the regional solid waste management and disposal facility by the Fundy Regional Service Commission at PID numbers 55087001, 55087027, 55086987, 55087019, 55043301, 55160352 & 55043293.
- 6. **"containment cell"** means the area at the Facility approved in writing by the Department for the disposal of solid waste.

- 7. **"watercourse"** means the full width and length, including the beds, banks, sides and shoreline, or any part of a river, creek, stream, spring, brook, lake, pond, reservoir, canal, ditch or other natural or artificial channel open to the atmosphere, the primary function of which is the conveyance or containment of water whether the flow be continuous or not.
- 8. **"friable asbestos"** means waste material containing asbestos fibre or asbestos dust in a concentration greater than 1% by weight that is **not** tightly bound within a solid matrix such that it is easily crumbled by the hands.
- 9. "petroleum product" means a mixture of hydrocarbons, or their by-products, of any kind and in any form, including airplane fuel, asphalt, bunker "C" oil, crude oil, diesel fuel, engine oil, fuel oil, gasoline, kerosene, lubricants, mineral spirits, naphtha, petroleum based solvents regardless of specific gravity, transformer oil and waste petroleum products and excluding propane and paint.
- 10. **"biomedical waste"** means,
 - a) any part of the human body, including tissues and bodily fluids, but excluding fluids, extracted teeth, hair, nail clippings and the like, that are not infectious,
 - b) any part of the carcass of an animal infected with a communicable disease or suspected by a licensed veterinary practitioner to be infected with a communicable disease,
 - c) non-anatomical waste infected with communicable disease,
 - d) a mixture of a waste referred to in clause (a), (b) or (c) and any other waste or material; or
 - e) a waste derived from a waste referred to in clause (a), (b) or (c), unless the waste that is derived from the waste referred to in clause (a), (b) or (c) is produced in accordance with a certificate of approval that states that, in the opinion of the Director, the waste that is produced in accordance with the certificate of approval does not have characteristics similar to the characteristics of waste referred to in clause (a), (b) or (c).
- 11. "hazardous waste" means any waste material intended for disposal or recycling, that is identified as a hazardous waste or hazardous recyclable material by the federal *Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations*, and/or is included in Class 1 and/or Class 7 of the federal *Transportation of Dangerous Goods Regulations*. This definition excludes any waste(s) for which the Director of the Approvals Branch has issued a written exemption.
- 12. **"sludge"** means a solid, semi-solid or liquid residue having less than 15% solids generated during the treatment of municipal and/or industrial wastewater, or generated as a result of other processes.
- 13. **"liquid waste"** means bulk liquids in a volume greater than 20 litres.
- 14. "liquid oily waste" means any waste containing free flowing petroleum products.

15. **"petroleum contaminated soil"** means soil that contains petroleum products at quantities determined, to the satisfaction of the Department, to be above the level indicated in the most recent version of the RBCA Tier I Risk-Based Screening Level (RBSL) Guidelines for Soil: Commercial, Non-potable, Coarse-grained for Modified TPH (Gas + Diesel#2 + #6 Oil).

16. "C&D debris" means

- a) concrete, brick and untreated wood,
- b) siding, ceiling tile, gyproc, insulation,
- c) asbestos that is not friable asbestos,
- d) solid roofing materials such as asphalt shingles,
- e) glass from doors and windows,
- f) metal, wood, fibreglass and durable plastic structural materials from the demolition of a building,
- g) wiring and incandescent light fixtures that do not contain fluorescent tubing/lighting,
- h) toilets, bathtubs, wash basins, and plumbing fixtures,
- i) floor coverings attached to a building during demolition,
- j) broken and aged asphalt, or
- k) any mixture of (a) thru (j)

that has been obtained during the construction, renovation or demolition of a building or structure. Debris or other materials obtained from commercial, industrial and manufacturing sources is not acceptable. Debris: i) from a building that has or may have manufactured, contained, transferred or distributed contaminated or hazardous (such as a pesticide storage warehouse) products; or ii) that contains PCB's (polychlorinated biphenyls), or iii) that contains lead paint of a known concentration greater than 1000ppm (parts per million) or that has been deemed leachable toxic (exceeds 5 mg/L) or contains lead paint that is flaking/chipping/peeling is not considered C&D debris for the purpose of this Approval.

- 17. "C&D Site" means the portion of the Facility approved by the Department for the disposal of C&D debris.
- 18. **"disposal cell"** means the area at the C&D Site approved by the Department for the disposal of C&D debris.
- 19. **"sorting area"** means a location at the C&D Site, if approved in writing by the Director, where loads of C&D debris may be dumped and sorted. Unapproved materials may temporarily be stored here.
- 20. **"household hazardous waste"** means, for the purposes of this approval, hazardous waste that is generated in New Brunswick households.

- 21. "hazardous waste collection and transportation network" means a company that is approved by or acceptable to the Department to collect and transport hazardous waste.
- 22. **"landfill gas control and collection system"** is the system used to capture landfill gas from the containment cells. The system consists of the collection wells, piping, generator, flare and skid mount blower.
- 23. "SWIM" means Environment Canada's Single Window Information Manager, which is a one-window secure online electronic data reporting system accessible at: https://www.canada.ca/en/environment-climate-change/services/reporting-through-single-window.html

C. EMERGENCY REPORTING

- 24. The Approval Holder, operator or any person in charge of the Facility **shall immediately** notify the Department where:
 - a) there has been, or is likely to be, a release of a contaminant or contaminants, such as leachate, wastewater, petroleum products, hazardous materials, or gaseous material, from the Facility which is of such magnitude or duration that there is a concern for the health or safety of the public, or there could be an impact to the environment.

Notification Procedure

During normal office hours, telephone the Department Regional Office **until personal contact is made** (i.e. no voice mail messages will be accepted) and provide as much information that is known about the environmental emergency. The telephone number for the Regional Office is provided below:

Saint John Regional Office (Phone) at (506) 658-2558

After hours, or if contact cannot be made to the Regional Office, telephone Environment and Climate Change Canada's National Environmental Emergencies Centre (NEEC) **until personal contact is made** and provide as much information that is known about the environmental emergency. The telephone number for NEEC is provided below:

NECC (Phone) at 1-800-565-1633

At this time the problem that occurred, its resulting impact and what was done to minimize the impact should be clearly expressed.

Within 24 hours of the original notification, a copy of an "Incident Report" shall be electronically mailed to the Region 4 (Saint John) Office and Central Office. The "Incident Report" shall clearly detail as much information about the incident that is available. As a minimum the report should include: details of the problem, its resulting impact and what was done to minimize the impact.

Within five (5) working days from the original notification, a "Detailed Emergency Report" shall be emailed to the Region 4 (Saint John) Office and also to Central Office in Fredericton. The "Detailed Emergency Report" shall describe in detail the problem that occurred, why the problem occurred, what the environmental impact was, what was done to minimize the impact, and what measures have been taken to prevent a re-occurrence of the problem.

Electronic Mail Addresses:

Saint John Regional Office at elg.egl-region4@gnb.ca Central Office in Fredericton to the assigned Approvals Engineer

D. GENERAL INFORMATION

- 25. The issuance of this Approval does not relieve the Approval Holder from the responsibility of complying with other applicable federal, provincial or municipal legislation and/or bylaws.
- 26. A copy of this Approval to Operate should be maintained on-site or in the office of the Approval Holder.
- 27. The Approval Holder shall immediately notify the Department in writing of any change in the legal name or address of the Facility.
- 28. Any operating problems or other matters that could cause the Facility to be in non-compliance with this Approval should be reported to the Department immediately.

E. TERMS AND CONDITIONS

GENERAL CONDITIONS

29. In the event of Facility closure, the Approval Holder shall, in addition to any requirements under the *Environmental Impact Assessment Regulation* 87-83 filed under the *Clean Environment Act*, prepare plans and an engineering closure proposal with ongoing monitoring, landfill gas and leachate management and complete site rehabilitation if appropriate. The plan shall also include other information as requested in writing by the Minister. The plans shall be submitted to the Director for review and approval **at least six** (6) **months** before the planned closure date. The plans must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick.

- 30. In the event of closure of the C&D Site at the Facility, the Approval Holder shall ensure that a Closure Plan is prepared and submitted to the Director for review and approval at least three (3) months before the planned closure date. The plans must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick and include, but not necessarily be limited to, updated site plans and an engineering proposal for the site rehabilitation, monitoring, leachate treatment if appropriate and closure.
- 31. The Approval Holder shall ensure that any item received at the Facility containing ozone-depleting substances, including but not limited to those utilized for refrigeration and/or air conditioning, are decommissioned according to the *Ozone Depleting Substances Regulation 97-132* filed under the *Clean Air Act*.
- 32. The Approval Holder shall ensure that waste, including C&D debris and friable asbestos, that originates from outside of New Brunswick is not accepted at the Facility unless specifically approved by the Minister following an evaluation under the *Environmental Impact Assessment Regulation*.
- 33. The Approval Holder shall ensure that an Environmental Management Plan (EMP) is in place at the Facility. The EMP should include detailed emergency, contingency response and clean-up procedures for potential spillage, release or mishandling of leachate, a petroleum product, or other dangerous materials at the Facility. The EMP should also include details on how the Facility will respond to emergency situations that may arise such as forest fires, restricted access to the Facility (traffic accidents or other blockade for example), failure of the leachate treatment and sedimentation ponds or leachate collection systems or other events that would interrupt normal operation of the Facility.

Facility personnel should be appropriately trained to perform emergency and contingency response procedures as described in the EMP.

34. The Approval Holder shall continue to work on developing and implementing the statistical approach, which includes trigger parameters, in order to quickly identify potential impacts from the landfill.

OPERATING CONDITIONS

- 35. The Approval Holder shall ensure that the Facility is not used for the disposal of the materials listed below unless otherwise approved in writing by the Director.
 - petroleum contaminated soil,
 - liquid wastes (with the exception of septage from the Facility sewage system),
 - sludge (with the exception of sludge from the Facility leachate treatment system),
 - liquid oily wastes,
 - hazardous wastes,
 - biomedical waste or
 - any mixture of the above

- 36. The Approval Holder shall ensure that any solid waste disposed of at the Facility is done so in the containment cells at the Facility unless otherwise approved in writing by the Director. It is recommended that the waste be regularly and uniformly compacted.
- 37. The Approval Holder shall ensure that the minimum 25-year breakthrough requirement for the containment cells at the Facility is maintained.
- 38. The Approval Holder shall ensure that all exposed waste in the containment cells of the Facility is covered with a minimum of 150 mm of clean soil (or an alternate daily cover that has been pre-approved by the Department), as a minimum, at the end of each operating day.
- 39. The Approval Holder shall provide supervision when any material is being disposed of at the Facility, including the C&D Site. No disposal at the Facility, including the C&D Site, is permitted otherwise.
- 40. The Approval Holder shall ensure that the incoming waste at the Facility is routinely scrutinized to ensure that unacceptable waste is not received at the Facility.
- 41. The Approval Holder shall ensure that a buffer strip of native softwood trees is maintained around the Facility in accordance with the Environmental Impact Assessment Study.
- 42. The Approval Holder shall ensure that a Pest Management Program is in place at the Facility that is in compliance with "Pest Control at NB Landfill Sites and Transfer Stations", attached as Schedule "B".

CONSTRUCTION

- 43. The Approval Holder shall ensure that the necessary engineering documentation is submitted to the Director, and approved in writing by the Department, prior to the construction, modification or expansion of:
 - 1) additional solid waste disposal cells;
 - 2) landfill gas management systems;
 - 3) sludge handling facilities;
 - 4) leachate collection and treatment systems;
 - 5) facilities for processing recyclables;
 - 6) storage of waste including household hazardous waste;
 - 7) special waste disposal cells/locations or
 - 8) any other pertinent construction activity at the Facility.

44. The Approval Holder shall ensure that final cover applied to the containment cells at the Facility shall be a minimum of 300 mm granular layer, 600 mm low permeability clayey till @ 1 x 10⁻⁷ cm/sec hydraulic conductivity, 150 mm granular protection layer, 150 mm growing medium and vegetative cover and shall be sloped a minimum of 2% to promote precipitation runoff from the disposal cell. All holes, cave-ins and faults shall be filled in or repaired, as required, until the final cover has been properly stabilized. All side slopes shall be designed to ensure proper slope stability and full containment of leachate. As a minimum, a side slope of less than 4 horizontal to 1 vertical should be utilized.

If approved in writing by the Director, an alternative final cover plan may be used.

- 45. The Approval Holder shall ensure that a Quality Assurance and Quality Control (QA/QC) report is submitted to the Department upon completion of the installation of final cover on a containment cell or cells at the Facility. The report must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick or is licensed to practise as a professional engineer pursuant to the *Engineering Profession Act* and include as a minimum:
 - commentary that confirms that all construction activities and testing associated with the installation of final cover were supervised by a qualified independent third party and that the final cover meets the Department's requirements as detailed in the previous condition;
 - all test parameters, the number of tests and locations;
 - copies of any inspection and testing reports;
 - a summary of any problems or deficiencies encountered and how they were corrected; and
 - other information as requested by the Department.

The QA/QC report should be forwarded to the Department no later than 3 months upon completion of the final cover.

- 46. The Approval Holder shall ensure that all future containment cells at the Facility are designed such that the installed leachate piping can be inspected in the future by video or an alternate method approved in writing by the Director, to ensure that the leachate piping is in proper working condition.
- 47. The Approval Holder shall ensure that, prior to decommissioning any monitoring wells at the Facility, a decommissioning plan and schedule is submitted to the Director and approved in writing by the Department.

LEACHATE AND SURFACE WATER

48. The Approval Holder shall ensure that no leachate (including treated leachate) or water that has come in contact with solid waste, is released from the Facility to the environment or to the Facility's surface water drainage system including the sedimentation ponds.

- 49. The Approval Holder shall ensure that all leachate and all water at the Facility that has come in contact with solid waste is directed to the Facility's leachate collection system.
- 50. The Approval Holder shall ensure that the leachate levels in the disposal cells at the Facility are monitored and recorded Monday thru Friday. If precipitation is scheduled on Saturday and/or Sunday, or if the leachate levels in the disposal cells are high, then monitoring on Saturday and Sunday is also required.
- 51. The Approval Holder shall ensure that any leachate taken from the Facility to the Lancaster Wastewater Treatment Facility is treated to a level that is acceptable to the City of Saint John.
- 52. The Approval Holder shall ensure that surface water at the Facility that has not been in contact with leachate or solid waste is directed to the sedimentation pond(s). Clean surface water that has a total suspended solids (TSS) value of 25mg/l or less may be diverted from the sedimentation pond(s) if approved in writing by the Department. Water from empty disposal cells that has not been in contact with leachate or solid waste should bypass the leachate collection system and be directed to the surface water drainage system at the Facility.
- 53. The Approval Holder shall ensure that the drainage ditches at the Facility are maintained to ensure they remain free flowing at all times.
- 54. The Approval Holder shall ensure that there is a continuous, permeable layer of gravel surrounding the waste at the Facility from the top of the upper side slopes through the top of the berm area to the leachate collection system. Particular care must be exercised at the top of berm area so that the final cover will properly intersect the top of berm.
- 55. The Approval Holder shall ensure that the leachate collection piping at the Facility is properly maintained to ensure they remain free flowing.
- Frior to October 15, 2021, and at least once every two years thereafter, the Approval Holder shall ensure that the leachate collection piping at the Facility is inspected by video or other method pre-approved in writing by the Director, to ensure the leachate collection system is in proper working condition.

WASTE DISPOSAL

57. The Approval Holder shall ensure that hot loads arriving at the Facility containing ashes or other materials that could potentially cause a fire in the containment cells are temporarily stored in a separate secure location until the risk of fire has been eliminated. The material shall then be disposed of in the containment cells (or a designated area that has been approved in writing by the Director) at the Facility.

- 58. The Approval Holder shall ensure that any friable asbestos accepted at the Facility for disposal has been wetted, placed in securely tied, double bagged 6 mil polyethylene bags or securely tied single 6 mil polyethylene bag that has been placed in a drum or cardboard box with all seams securely taped and each bag, cardboard box and/or drum is clearly labelled "WASTE ASBESTOS UN2590" or "DECHETS D'AMIANTE UN2590" and there are no punctures in the containers (if they are punctured, the contents must be wetted and repackaged prior to land filling) and they are placed at a dedicated location within the containment cells and are immediately covered with a minimum of 300 mm of clean cover material, or 1000 mm of municipal solid waste. Asbestos should be accepted at the Facility by appointment only, and not disposed during windy conditions.
- 59. The Approval Holder shall ensure that there is a sufficient quantity of wetting agent onsite when asbestos is being handled and disposed at the Facility.
- 60. The Approval Holder shall ensure that any unloading of friable asbestos at the Facility is done by the driver (or assistant) and that they or any personnel at the Facility who handle the asbestos are wearing the proper respirators and clothing during the unloading and disposal of the asbestos waste. Appropriate facility staff must supervise the unloading and covering of the asbestos waste.
- 61. The Approval Holder shall ensure that an "Asbestos Disposal Record" is maintained. The Record shall include, but not necessarily be limited to, the disposal date, volume of asbestos waste, origin of the shipment, contractor delivering the asbestos waste and a detailed plan of the disposal location at the Facility.

HOUSEHOLD HAZARDOUS WASTE

- 62. The Approval Holder shall ensure that the household hazardous waste depot at the Facility is operated in accordance with the most recent edition of the household hazardous waste Operations Manual that has been approved in writing by the Department.
- 63. The Approval Holder shall ensure that only household hazardous waste that is generated in New Brunswick is received and stored in the household hazardous waste depot at the Facility. All household hazardous waste received by the Facility is to be stored in the household hazardous waste depot.
- 64. The Approval Holder shall ensure that all household hazardous waste being stored in the household hazardous waste depot at the Facility is collected by a hazardous waste collection and transportation network. No household hazardous waste is to be stored at the Facility for more than one year.
- 65. The Approval Holder shall ensure that household hazardous waste at the Facility shall only be received, sorted, stored, and transferred from the Facility.

- 66. The Approval Holder shall ensure that all household hazardous waste stored in the household hazardous waste depot is:
 - a) secured in sealed and chemically resistant containers;
 - b) away from high traffic areas and protected from vehicle impacts;
 - c) away from electrical panels;
 - d) in a containment area that has secondary containment adequate to contain 110 % of the total volume contained within the containment area;
 - e) in a containment area that is designed to prevent contact between incompatible chemicals; and
 - f) in a containment area designed to prevent the release or discharge of chemicals to the environment as a result of a spill or other upset condition.
- 67. **Within 15 days of the end of each month**, the Approval Holder shall submit a monthly report to the Director that includes:
 - a) a summary report of all household hazardous waste stored in the household hazardous waste depot for the previous month using a form acceptable to the Department, and
 - b) a summary report of all spills that have occurred in association with the operation of the household hazardous waste program. This summary shall identify the material spilled, the approximate volume spilled, the date of the spill, the containment methods employed, and the steps taken to prevent a future recurrence of the spill. This does not relieve the Approval Holder of compliance with the Emergency Reporting section of this Approval.

CONSTRUCTION AND DEMOLITION DEBRIS

- 68. The Approval Holder shall ensure that only C&D debris is disposed of in the C&D Site's disposal cell. Any material at the C&D Site that is not located in a designated sorting area is considered disposed.
- 69. The Approval Holder shall ensure that all loads of C&D debris that are brought to the C&D Site have been properly scrutinized before they are disposed. If previously approved in writing by the Director, a designated sorting area may be used to scrutinize loads of C&D debris brought to the C&D Site.
- 70. The Approval Holder shall ensure that any unapproved materials brought to the C&D Site, including those in a designated sorting area, are either immediately placed in a temporary storage area and removed daily from the C&D Site and properly disposed. If the unapproved material is hazardous or may cause immediate impacts to the environment then it shall be immediately removed from the C&D Site and properly disposed of.
- 71. The Approval Holder shall provide on-site supervision when C&D debris is being disposed of at the C&D Site. No disposal at the C&D Site is permitted otherwise.

- 72. The Approval Holder shall ensure that clean/uncontaminated cover material at least 150 mm deep is applied to all exposed C&D debris at the C&D Site at least once per week.
- 73. The Approval Holder shall ensure that any final cover applied at the C&D Site is sloped in such a manner to ensure positive drainage and prevent standing or pooling of water on the surface.
- 74. The Approval Holder shall ensure that the area between the property line of the Facility and the C&D Site disposal cell is maintained with a treed or bermed buffer zone.
- 75. The Approval Holder shall ensure that the C&D Site is designed and operated such that surface water is prevented from entering the C&D debris disposal cell. No C&D debris shall be disposed of in free standing water.
- 76. The Approval Holder shall ensure that a minimum of 1.5 metres of overburden is maintained between the C&D debris and the bedrock and seasonal high groundwater.
- 77. The Approval Holder shall ensure that the C&D debris disposed of at the C&D Site is regularly compacted to minimize voids. Compaction with a dozer or equivalent is recommended.
- 78. The Approval Holder shall ensure that the side slopes of the disposal area of the C&D Site are properly stabilized (using riprap or a vegetative layer as part of the cover system for example) and maintained to limit erosion.
- 79. The Approval Holder shall ensure that a 50 metre treed or bermed buffer zone is maintained on the southern, northern and western boundaries of the C&D Site. It is understood at this time that the entire approved area for the C&D Site may be clearcut as part of a scientific evaluation of woodlot procedures. Ensure that the clearcut area is not grubbed if the scientific evaluation proceeds.

SITE MANAGEMENT

- 80. The Approval Holder shall ensure that areas of the containment cells at the Facility that will be inactive for at least three months are covered with a 300 mm intermediate cover layer, graded to promote drainage and minimize erosion and infiltration. Any leachate or any water that has, or could, come in contact with waste in the containment cells must be directed to the leachate collection system.
- 81. The Approval Holder shall ensure that white goods, scrap metals, electronics, propane tanks/canisters, wood, tires and any other materials being salvaged at the Facility are stored in a secured area separate from the main waste disposal area.

- 82. The Approval Holder shall ensure that debris and litter at the Facility is controlled. Adequate barriers and/or fencing shall be utilized to confine debris and litter to the immediate disposal area. Any debris or litter found along the access roads or otherwise not contained in the disposal cells shall be routinely collected and disposed in an appropriate location.
- 83. The Approval Holder shall ensure that unauthorized access to and scavenging at the Facility is controlled.
- 84. The Approval Holder shall ensure that the visibility buffer that has been established on the south and west borders of the Facility is maintained at a height of at least 6 meters.

LANDFILL GAS MANAGEMENT

- 85. The Approval Holder shall ensure that any landfill gas that is not utilized by the electric generator should be sent to the landfill gas flare as necessary to reduce greenhouse gases.
- 86. The Approval Holder shall ensure that a continuous temperature monitor is fully functional and in operation at all times when the landfill gas flare is in use. The temperature shall be recorded once every hour.
 - An electronic record of the temperature results shall be maintained for a minimum of two years and shall be made available to an inspector upon request.
- 87. The Approval Holder shall ensure that the landfill gas control and collection system is properly operated and maintained.
- 88. The Approval Holder shall ensure that when the flare of the landfill gas control and collection system is operated with a minimum gas residence time of 0.75 seconds at a minimum temperature of 875 degrees Celsius to maximize the destruction efficiency.
- 89. The Approval Holder shall notify the Department if the continuous temperature monitor is taken out of service for maintenance or repair while the landfill gas flare is in operation. During the maintenance or repair the temperature shall be manually monitored and recorded on a schedule approved in writing by the Department.

EMISSIONS AND DISCHARGES

- 90. The Approval Holder shall ensure that no leachate is discharged from the Facility to the environment.
- 91. The Approval Holder shall ensure that any discharge from the Facility, including the sedimentation pond, to a watercourse has a total suspended solids (TSS) value of 25 mg/l or less.

- 92. The Approval Holder shall ensure that there is no open burning conducted at the Facility, including the C&D Site.
- 93. The Approval Holder shall ensure that both odour and noise emissions released from the Facility are controlled to prevent impacts to off-site receptors. In the event that odour or noise emission impacts do occur, the Department may require the Approval Holder to develop, submit and implement a Control Plan that mitigates the impacts such that they no longer cause a nuisance to off-site receptors. The Control Plan shall be submitted to the Director for review and approval prior to implementation.
- 94. The Approval Holder shall ensure that fugitive dust emissions generated from truck traffic or other activities at the Facility are controlled by the use of water. Written permission from the Department must first be obtained if calcium chloride or other chemical compounds are to be used for dust control. The use of a petroleum product for dust control is **prohibited.**

TESTING AND MONITORING

95. The Approval Holder shall ensure that the groundwater monitoring wells at the Facility are sampled at seasonal intervals that provide an accurate representation of groundwater quality at the Facility. The existing network of groundwater monitoring wells at the Facility is as follows:

Well Nest	Shallow Till	Deep Till	Shallow Bedrock	Mid Bedrock	<u>Deep</u>
Bedrock					
MW	/31		\mathbf{N}	1W31-S	MW31-U
MW	/31-L				
MW	/32		\mathbf{N}	1 W32-U	MW32-L
MW.	33 MW3	33-S	\mathbf{N}	1W33-U	
MW.	34 MW3	34-S	\mathbf{N}	1 W34-U	
MW.	35 MW3	35-S1 MV	W35-S2 M	1W35-L	
MW.	36 MW3	36-S	\mathbf{N}	1W36-U	MW36-L
MW.	37 MW3	37-S			
MW.	38 MW3	38-S	\mathbf{N}	1W38-U	MW38-L
MW.	39 MW3	39-S			
MW_4	40 MW ²	40-S	\mathbf{N}	1W40-U	
MW_4	41 MW ²	41-S	\mathbf{N}	1 W41-U	MW41-L
MW_4	42 MW ²	42-S	\mathbf{N}	1 W42-U	MW42-L
MW_4	43 MW ²	43-S	\mathbf{N}	1 W43-U	
MW_4	44 MW ²	14-S	\mathbf{N}	1 W44-U	
MW_4	45		\mathbf{N}	1W45-U	MW45-L
MW_4	46		\mathbf{N}	1 W46-U	MW46-L
MW_4	47 MW ²	47-S	\mathbf{N}	1 W47-U	MW47-L
MW_4	48 MW ²	48-S	\mathbf{N}	1 W48-U	MW48-L

MW49	MW49-S		MW49-U	MW49-L
MW50	MW50-S		MW50-U	MW50-L
MW51	MW51-S1	MW51-S2		MW51-D
MW52	MW52-S			MW52-D
MW53				MW53-D
MW54	MW54-S		MW54-U	

- 96. The Approval Holder shall ensure that any new groundwater monitoring wells, underdrains, leak detection systems or other sampling points at the Facility are sampled and analyzed as directed by the Department in writing.
- 97. The Approval Holder shall ensure that all ground and surface water samples required to be obtained for the Facility are obtained by a qualified technician and, unless otherwise approved in writing by the Director, analyzed by a laboratory that is, as a minimum, a member in good standing of the Canadian Association for Laboratory Accreditation (CALA) Proficiency Testing Program for Environmental Laboratories.

For the purpose of this Approval, "GENERAL CHEMISTRY" shall include the following analyses:

Ammonia	Alkalinity (as CaCO ₃)	Calcium
Chemical Oxygen Demand	Chloride	Colour
Copper	Hardness (as CaCO ₃)	Iron
Nitrate-Nitrite (as N)	Magnesium	Manganese
o-Phosphate (as P)	Phenols	Potassium
r-Silica (as SiO ₂)	Sodium	Sulphur (Sulphate & Sulphide)

Total Suspended Solids Total Organic Carbon

Total Kjeldahl Nitrogen (TKN) Zinc

with the associated calculated parameters: Bicarbonate, Carbonate, Hydroxide, Cation Sum, Anion Sum, % difference, Theoretical conductance, Saturation pH (5°C) and Langelier Index (5°C).

Turbidity

and "TRACE METALS" shall include the following analyses:

Aluminum	Antimony	Arsenic	Barium
Beryllium	Bismuth	Boron	Cadmium
Calcium	Chromium	Cobalt	Copper
Iron	Lead	Magnesium	Manganese
Mercury (CV	AAS)	Molybdenum	Nickel Potassium
Selenium	Silver	Sodium	Strontium
Thallium	Tin	Uranium	Vanadium
Zinc			

and "BTEX/TPH" shall be analyzed in accordance with the Atlantic RBCA Tier 1 Guidelines for Laboratories and shall include the following parameters:

Benzene C6-C10 Hydrocarbons
Toluene >C10-C21 Hydrocarbons
Ethylbenzene >C21-<C32 Hydrocarbons
Xylene Modified TPH (Tier 1)

% Rec. iso-butylbenzene-Volatile
% Rec. iso-butylbenzene-Extractable
% Rec. n-dotriacontane-Extractable

98. The Approval Holder shall ensure that the following field parameters are obtained during each sampling event at the Facility:

Conductivity Dissolved Oxygen pH

Temperature ground water elevations (referenced to geodetic datum)

- 99. The Approval Holder shall ensure that prior to obtaining a ground water sample from a monitoring well at the Facility, a minimum of one well volume and a maximum of three well volumes be purged from that monitoring well.
- 100. The Approval Holder shall ensure that all field testing equipment is calibrated before and after each sampling event conducted at the Facility.
- 101. The Approval Holder shall ensure that groundwater samples to be submitted for analysis of TRACE METALS are field filtered using 0.45 μm in-line waterra filter or equivalent. All other samples should be unfiltered.
- 102. The Approval Holder shall ensure that the leachate surge pond, leachate holding pond and disposal cell underdrains at the Facility are sampled on at least 5 different occasions each calendar year and analyzed for GENERAL CHEMISTRY, TRACE METALS and BTEX/TPH.
- 103. The Approval Holder shall ensure that the leachate discharged from the containment cells at the Facility (MH#1) is sampled monthly and analyzed for the following parameters:

Alkalinity Ammonia Barium Boron BOD_5 Cadmium COD Chromium Calcium Chloride Copper Cyanide Iron Magnesium Manganese Lead Nitrite-Nitrate Nickel Phenols Mercury

Sodium Sulphate TSS/TDS Total Organic Carbon (TOC)

TKN Total Phosphate Zinc

and BTEX/TPH

- 104. The Approval Holder shall ensure that the groundwater monitoring well nests MW31 thru MW50 are sampled during the Spring and Fall seasons of each calendar year for GENERAL CHEMISTRY, TRACE METALS and BTEX/TPH.
- 105. The Approval Holder shall ensure that the groundwater monitoring well nests MW51 thru MW54 are sampled in the Spring, Summer and Fall months and analyzed for GENERAL CHEMISTRY, TRACE METALS & BTEX/TPH.
- 106. The Approval Holder shall ensure that the groundwater monitoring wells MW33U, MW34S, MW34U, MW35S2, MW35L, MW38U, MW41S and MW41U are sampled on at least five different occasions between February and November of each year and analyzed for GENERAL CHEMISTRY.
- 107. The Approval Holder shall ensure that the surface water sampling stations SW1, SW2, SW3, SW4, SW5, SW6 and the sedimentation pond discharge shall be sampled in the Spring and Fall seasons of each year and analyzed for GENERAL CHEMISTRY, TRACE METALS, BTEX/TPH, TKN, BOD₅ and TSS/TDS.

The sedimentation pond discharge shall be sampled near the mid-point of a discharge event.

- 108. The Approval Holder shall ensure that the results of all sampling and analysis conducted at the Facility are kept on file in both a hardcopy and electronic version.
- 109. The Approval Holder shall ensure that in September or October of each year the domestic wells chosen for the Domestic Well Monitoring Program are sampled and analyzed for the following parameters:

Ammonia Alkalinity (as CaCO₃) Calcium
Chloride Copper Iron
Nitrate-Nitrite (as N) Magnesium Manganese
o-Phosphate (as P) Potassium pH

o-Phosphate (as P) Potassium pH
r-Silica (as SiO₂) Sodium Sulphate
Total Disolved Solids Total Organic Carbon Turbidity
Zinc Conductivity Temperature

with the associated calculated parameters: Bicarbonate, Carbonate, Hydroxide, Cation Sum, Anion Sum, % difference, Theoretical conductance, Hardness (as CaCO₃), Ion Sum, Saturation pH (5°C) and Langelier Index (5°C).

110. The Approval Holder shall ensure that for each discharge of water from the sedimentation pond at the Facility a sample is obtained at the mid-point of the discharge event and analyzed for Total Suspended Solids (TSS).

111. The Approval Holder shall ensure that all monitoring samples required under this approval are obtained by a qualified technician and, unless otherwise Approved, analyzed by a laboratory that is accredited by the Canadian Association for Laboratory Accreditation (CALA) and having completed the CALA Proficiency Testing Program for the requested parameters.

REPORTING

- 112. On or before May 31, August 31 & November 30 of each calendar year, the Approval Holder shall ensure that an environmental monitoring report is submitted to the Director. It is understood that the May report will include monitoring from January to March, the August report will include monitoring from April to June and the November report will include monitoring from July to September. The 4th quarter report for monitoring of October to December will be included with the Annual Environmental Report. The reports must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick or is licensed to practice as a professional engineer pursuant to the Engineering Profession Act and include, as a minimum, a copy of the analysis, a comparison of the analysis with previous analytical results from the Facility, and commentary indicating whether their is an indication of any immediate, or potential threat or impact to the environment, ground or any surface waters. If an impact has occurred or is suspected the report must include a proposal for further investigation and/or remediation.
- 113. On or before **February 28 of each year**, the Approval Holder shall ensure that an Annual Environmental Report for the previous calendar year is submitted to the Director. The report must include as a minimum:
 - a) a copy of the Asbestos Disposal Record;
 - b) recommendations for any future monitoring, groundwater well installation or other work at the Facility;
 - c) confirmation that all field testing equipment has been calibrated before and after each sampling event conducted at the Facility;
 - d) confirmation that each groundwater monitoring well has been appropriately purged prior to obtaining a sample;
 - e) dates of all sampling conducted at the Facility;
 - f) dates of each discharge from the sedimentation pond;
 - g) a copy of the analytical results of the sampling and monitoring data obtained from the Facility for the previous calendar year and a review of those analytical results that is completed by a professional engineer or geoscientist licensed with the Association of Professional Engineers and Geoscientists of New Brunswick that includes as a minimum:
 - h) comparisons with historical results from the Facility;
 - i) identification of possible analytical anomalies;
 - j) an evaluation and discussion of the results for the surface water sampling points, groundwater monitoring wells, any cell or leachate pond underdrains/subdrain collection manholes and commentary on whether or not there is evidence of an immediate or potential impact to the environment, ground or surface waters and if so, recommendations for additional investigation, monitoring and remediation to mitigate the impacts;

- k) confirmation that the containment cells and leachate pond(s) have been operated such that the minimum breakthrough requirements have been maintained; and
- l) trending graphs for each monitoring well at the Facility and the leachate pond leak detection and cell underdrain manholes for the following indicator parameters showing results vs. time:

Alkalinity, Ammonia, Barium, Boron, Calcium, Chloride, Conductivity, Iron, Magnesium, pH, Sodium, Sulphate, and Dissolved Organic Carbon.

Note: Trending graphs should be completed on an annual basis but an alternate schedule may be accepted if approved in writing by the Director.

- 114. In the event the Approval Holder violates any Term or Condition of this Approval the Approval Holder is to immediately report this violation to the Department by calling (506) 453-7945. In the event the violation may cause the health or safety of the general public to be at risk and/or harm to the environment could or has resulted, the Approval Holder shall follow the Emergency Reporting procedures contained in this Approval.
- 115. In the event the Approval Holder receives a complaint from the public regarding unfavourable environmental impacts associated with the Facility, the Approval Holder is to report this complaint to the Department within one business day of receiving the complaint.
- 116. **Prior to November 30 of each year,** the Approval Holder shall ensure that each homeowner that has their well sampled as part of the Domestic Well Monitoring Program receives a signed copy of the analysis from the laboratory that did the analysis and a summary sheet that highlights any concerns or potential problems found in the analysis.
- 117. **Prior to November 30 of each year**, the Approval Holder shall ensure that a Domestic Well Monitoring Program report is submitted to the Department of Health. The report, as a minimum, shall include a signed copy of the analytical results and a summary of each well that has been completed by a qualified person that highlights any concerns or potential problems found.

A letter shall also be sent to the Department prior to November 30 of each year indicating that the sampling and analysis has been completed and that 1) a report has been forwarded to the Department of Health and 2) a signed copy of the analysis and summary of the results by a qualified person has been sent to each homeowner participating in the program.

118. The Approval Holder shall submit to the Department an annual status report by **June 30th** of each year, with respect to **Condition 34.** The report shall include a summary of work done in the previous year and any new or modified actions taken to the protocols.

- 119. **Prior to December 15, 2022**, the Approval Holder shall submit a Report, for review and approval by the Department, summarizing the Landfill Closure Plan and Post Closure Expenses Report to include a review for information or financial gaps. The Report shall demonstrate compliance with both the Landfill Closure Plan and Expenses Report requirements and provide a strategy for addressing any outstanding items.
- 120. **Beginning in 2021**, the Approval Holder shall submit a greenhouse gas emissions report by June 1st of each year, for the previous calendar year, to the Department by means of the SWIM system. Reporting shall be consistent with Environment Canada's Greenhouse Gas Emissions Reporting Program (GHGRP). Reporting requirements are published annually in the Canada Gazette, Part 1 under the authority of subsection 46(1) of the *Canadian Environmental Protection Act*, 1999 (CEPA 1999).
- 121. **Prior to March 31**st, **2022**, the Approval Holder shall prepare and submit a Greenhouse Gas Management Plan to the Department in accordance with the Guidelines for Greenhouse Gas Management for Industrial Emitters in New Brunswick, July 2015, or as may be updated from time to time. The Greenhouse Gas Management Plan shall be renewed every 5 years, as a minimum.
- 122. **Beginning in 2023**, the Approval Holder shall prepare and submit an Annual Greenhouse Gas Progress Report to the Department by July 1st of each year, for the previous calendar year, in accordance with the Guidelines for Greenhouse Gas Management for Industrial Emitters in New Brunswick.

Prepared by:

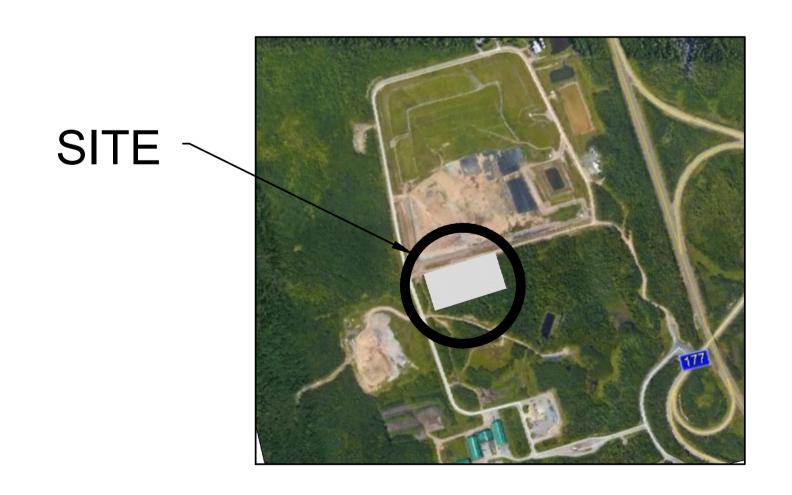
Sheryl Johnstone, P.Eng.

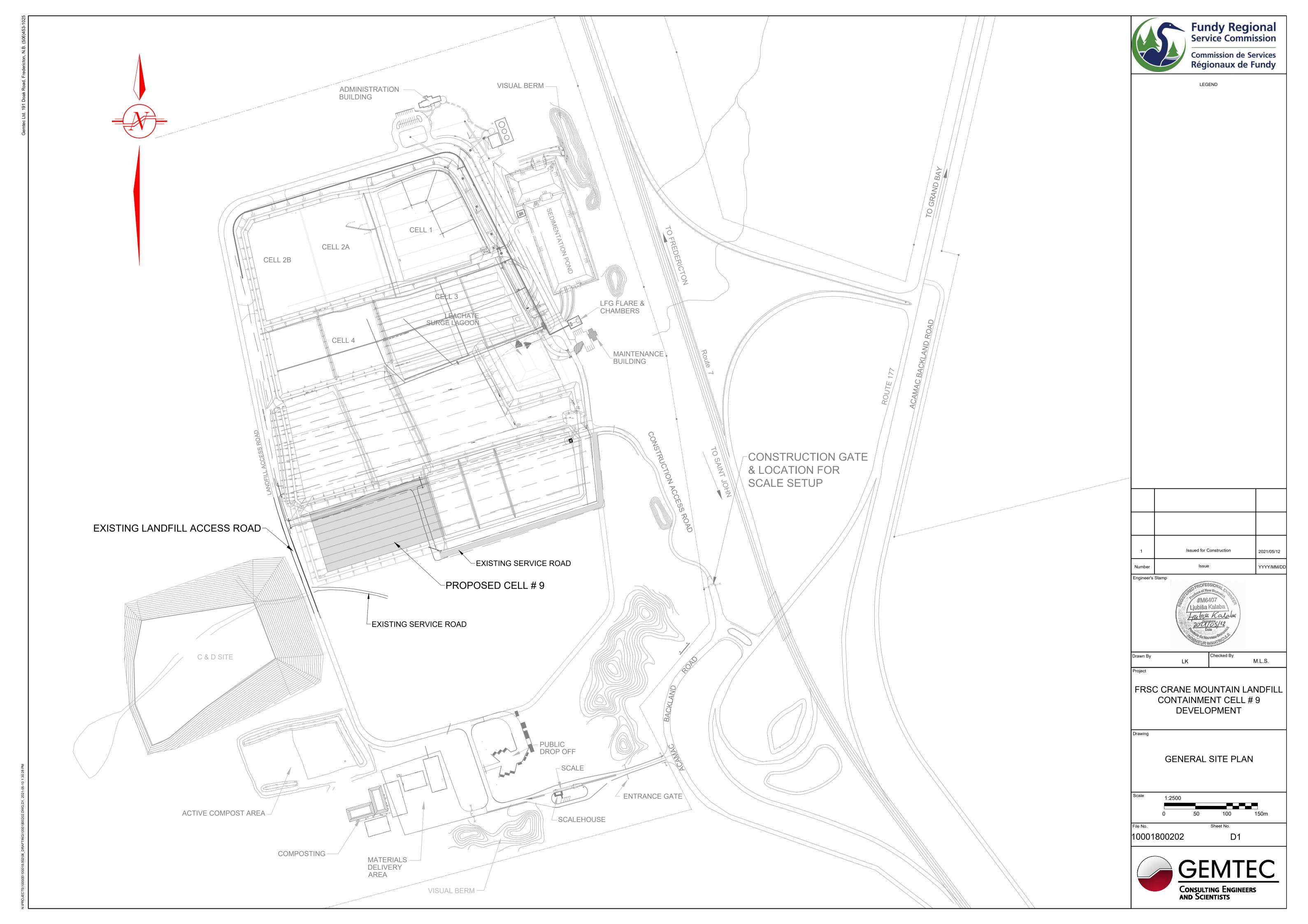
Senior Approvals Engineer, Authorizations

SCHEDULE "B"

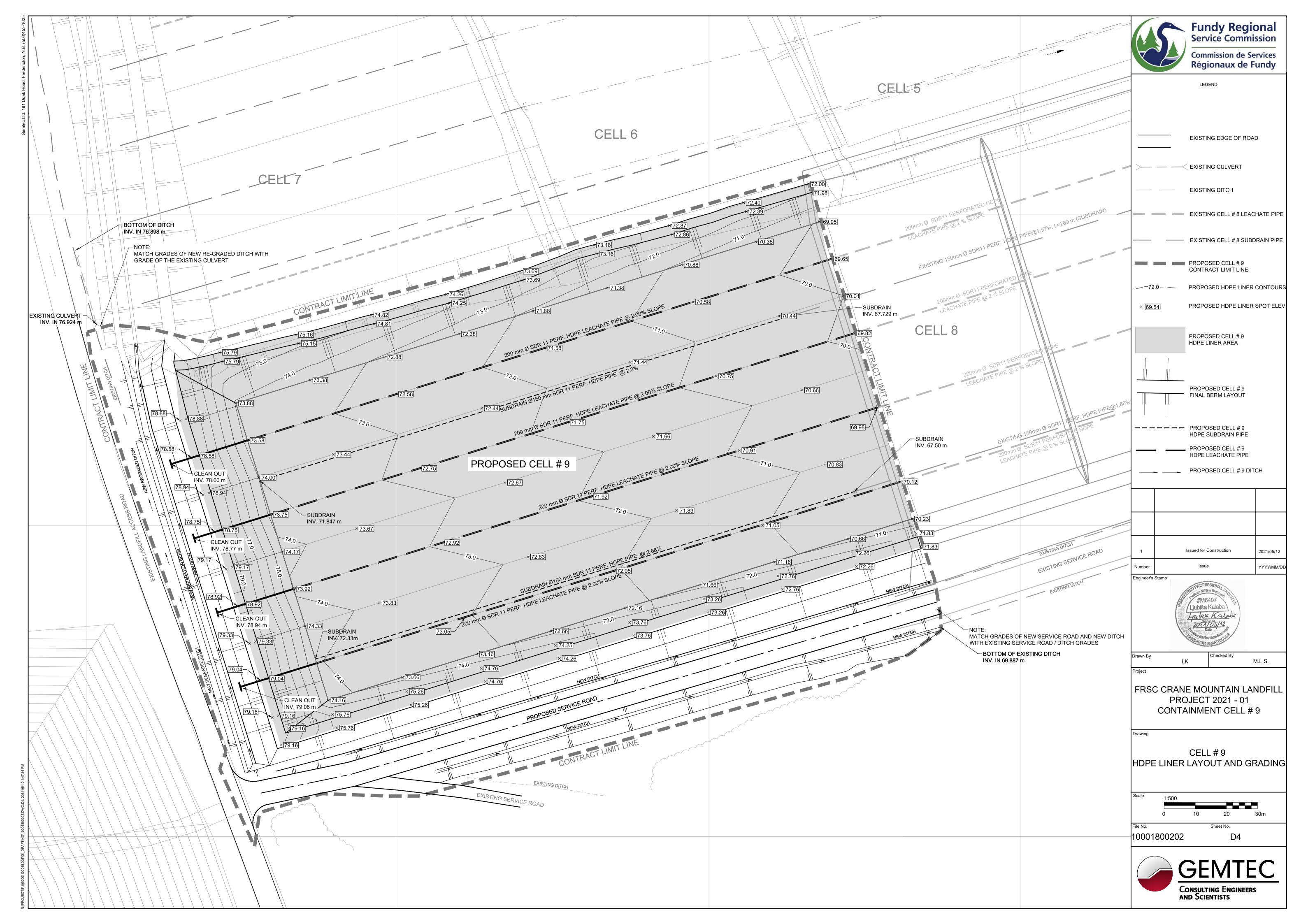
PEST CONTROL AT NB LANDFILL SITES AND TRANSFER STATIONS

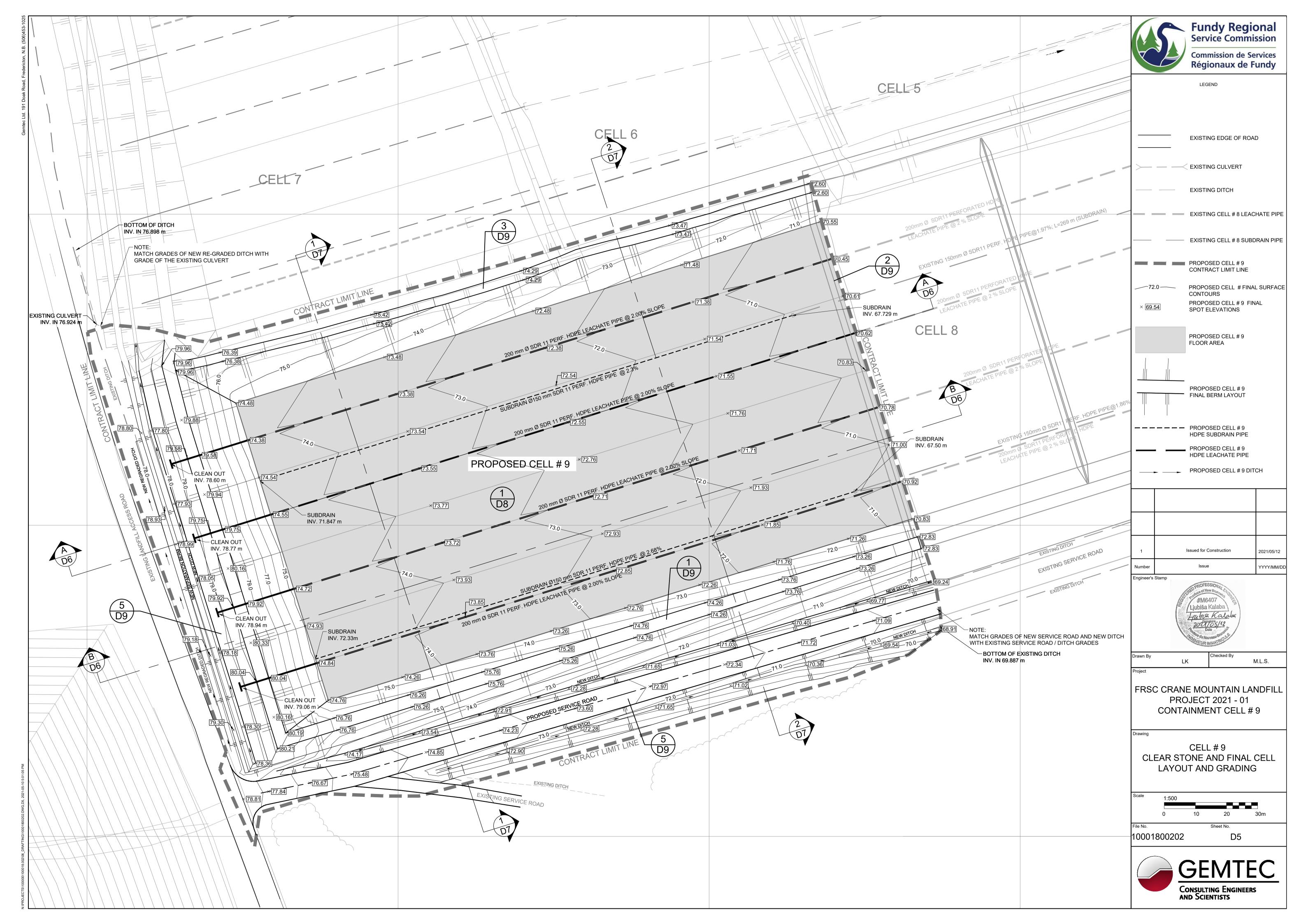
1. Terms and Conditions for Rodent Control at NB Landfill Sites and Transfer Stations

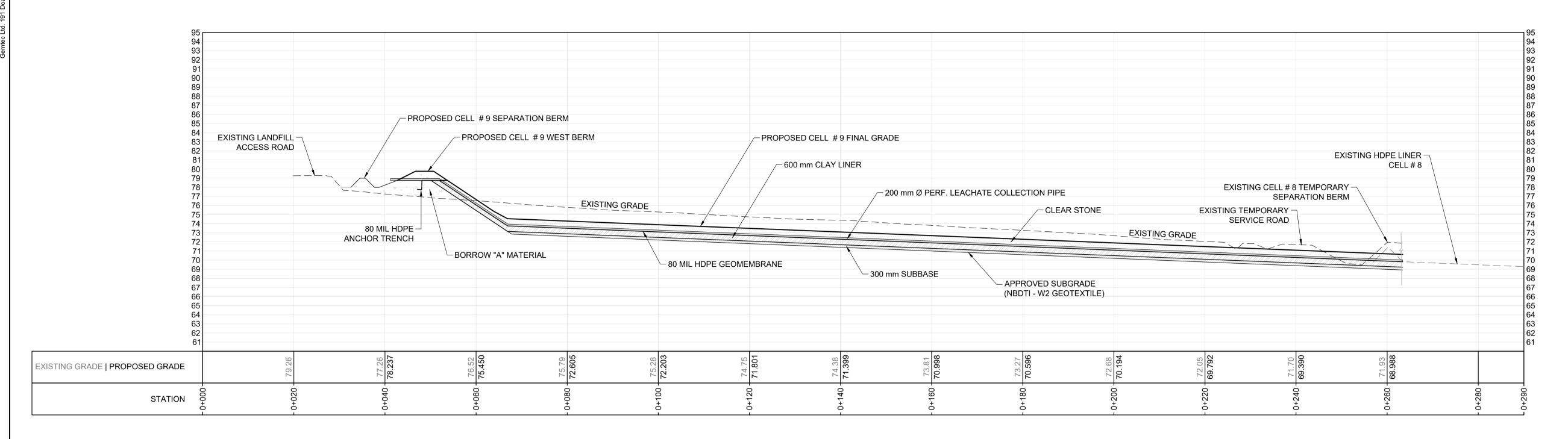

- 1. All personnel directly involved in the mixing, loading and application of the pesticides for the control of rodents at waste disposal facilities must hold a valid Class E, Class F, or Class L Pesticide Applicator's Certificate, which must be in their immediate possession.
- 2. Professional companies hired to conduct this work must hold a valid Provincial Operator's License and Pesticide Use Permit.
- 3. The treatment area must be posted with an approved sign prior to the treatment.
- 4 The signs are to be conspicuously posted at all ordinary points of access.
- 5 The applicator shall ensure that the signs are removed after either the completion of treatment or the expiration of their permit.
- 6 The sign shall be rectangular in shape with a minimum size of 14 cm x 21 cm, rain resistant with type or letters of sufficient size and clarity to be easily read together with a symbol of a cautionary raised hand inside a symbol of a stop sign. The information on the sign must be bilingual and must contain the words "Attention, Pesticide Application", the name of the pesticide, the Pest Control Product registration number, date of application, name of applicator, operator name or logo and telephone number.
- 7 Industry approved tamper resistant bait stations must be attempted before using other methods of baiting.
- 8 The Director of Pesticides Control or any member of the Pesticides Management Unit must approve areas that require alternative baiting methods. They can be contacted at (506) 453-7945.

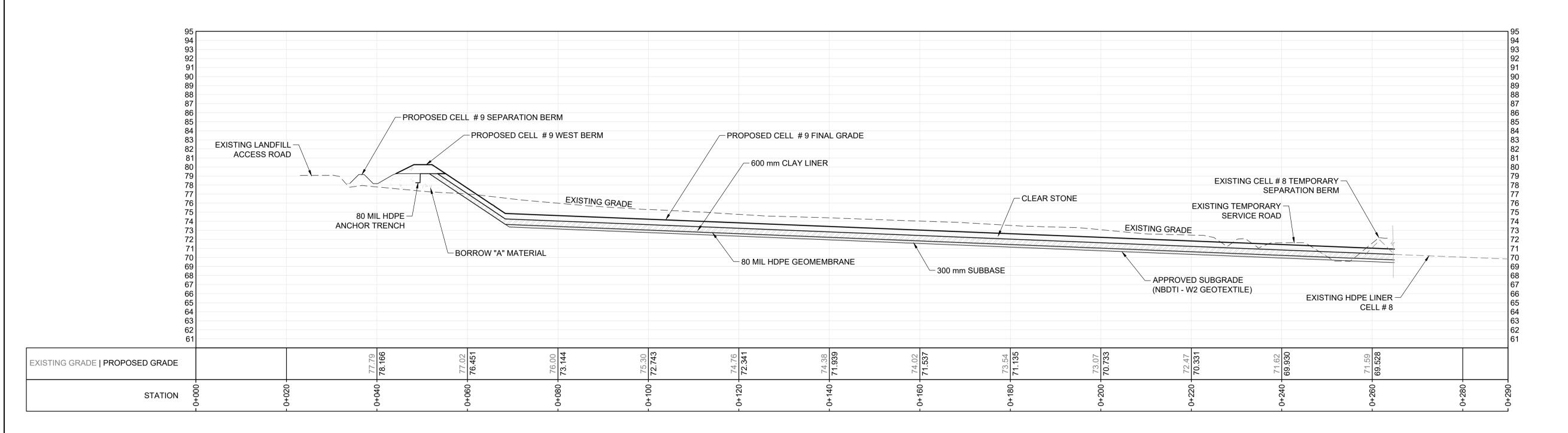

FRSC CRANE MOUNTAIN LANDFILL PROJECT 2021 - 01 CONTAINMENT CELL # 9






DRAWING INDEX		
D1	GENERAL SITE PLAN	
D2	SITE PLAN SHOWING EXISTING CONDITIONS	
D3	CELL # 9 SUBGRADE LAYOUT AND GRADING	
D4	CELL # 9 HDPE LINER LAYOUT AND GRADING	
D5	CELL # 9 CLEAR STONE AND FINAL CELL LAYOUT AND GRADING	
D6	CELL # 9 CROSS SECTION PROFILES - 1	
D7	CELL # 9 CROSS SECTION PROFILES - 2	
D6	CELL # 9 DETAILS - 1	
D6	CELL # 9 DETAILS - 2	

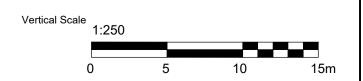




A-A PROFILE

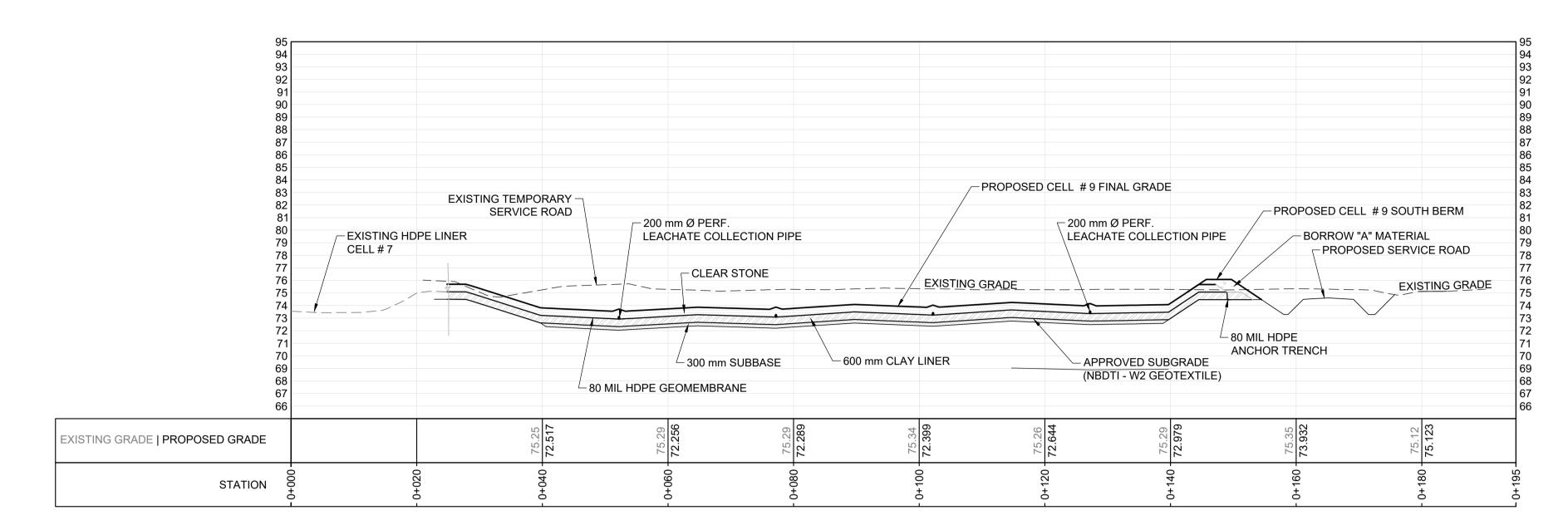
B-B PROFILE

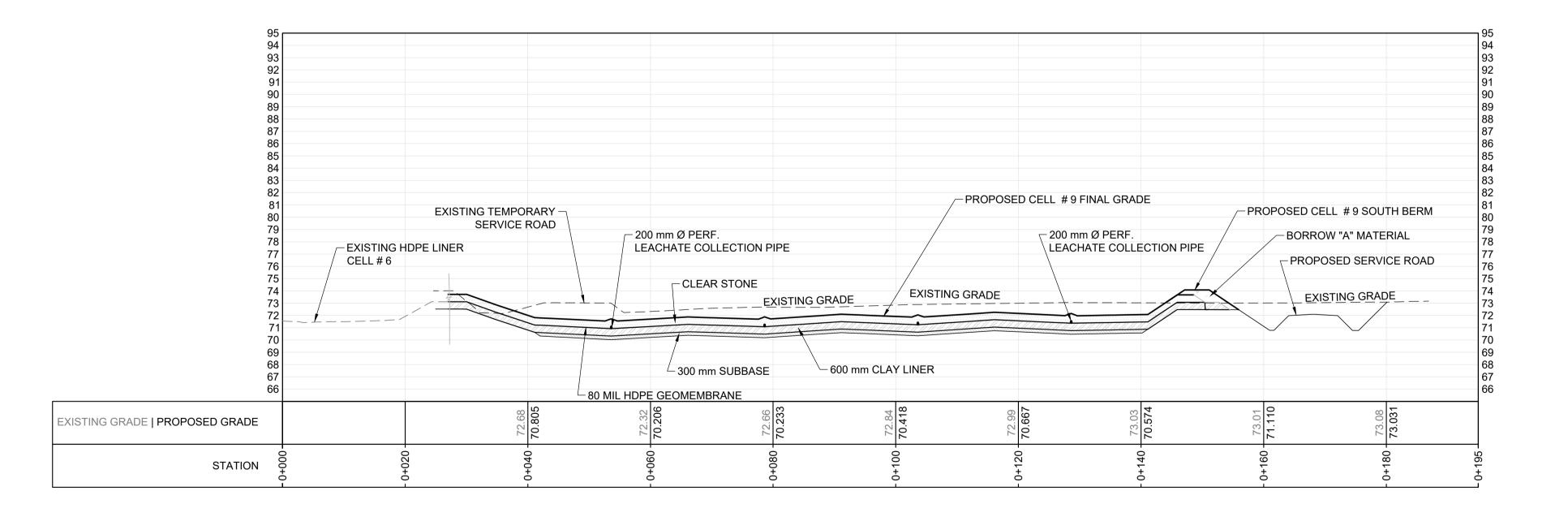
Issued for Construction 2021/05/12 YYYY/MM/DE


M.L.S.

FRSC CRANE MOUNTAIN LANDFILL PROJECT 2021 - 01 CONTAINMENT CELL # 9

CELL #9 CROSS SECTIONS PROFILES - 1


10001800202 D6



emtec Ltd. 191 Doak Koad, Fredericton,

1-1 PROFILE

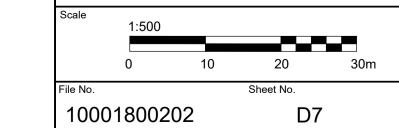
2-2 PROFILE

LEGEND

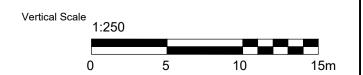
1 Issued for Construction 2021/05/12

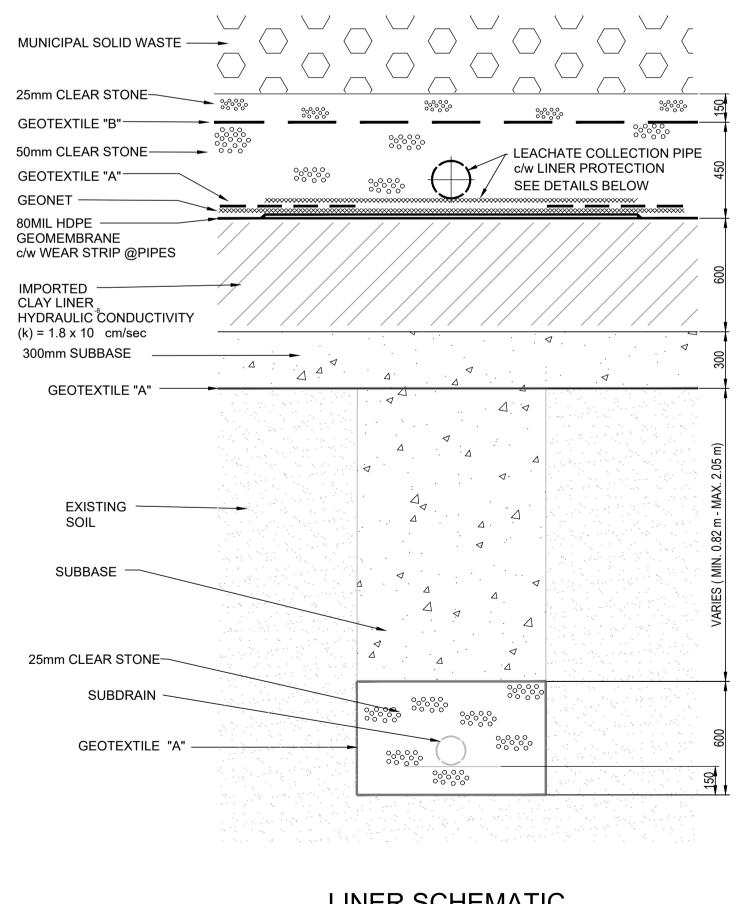
Number Issue YYYY/MM/DD

Engineer's S

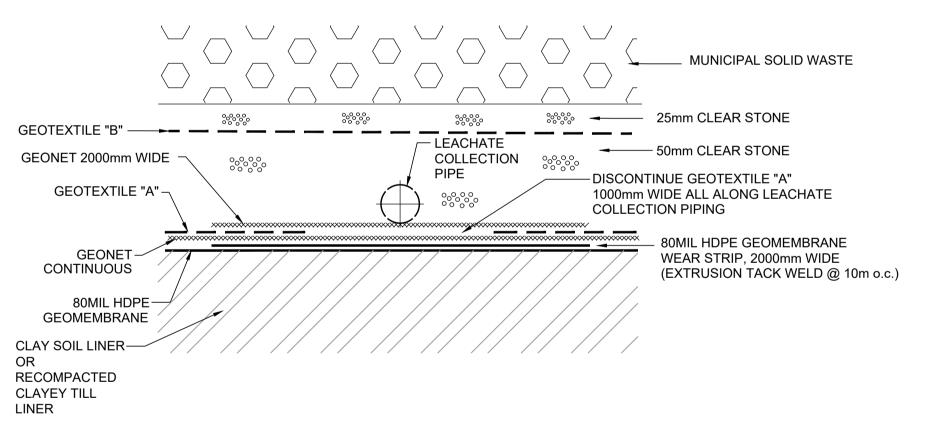

Drawn By
L.K.
Checked By
M.L.S.

Project

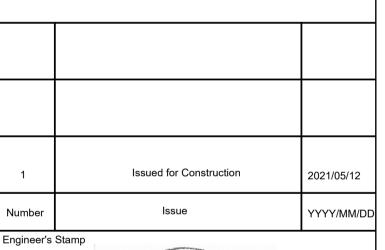

FRSC CRANE MOUNTAIN LANDFILL
PROJECT 2021 - 01
CONTAINMENT CELL # 9


Drawii

CELL #9 CROSS SECTIONS PROFILES - 2

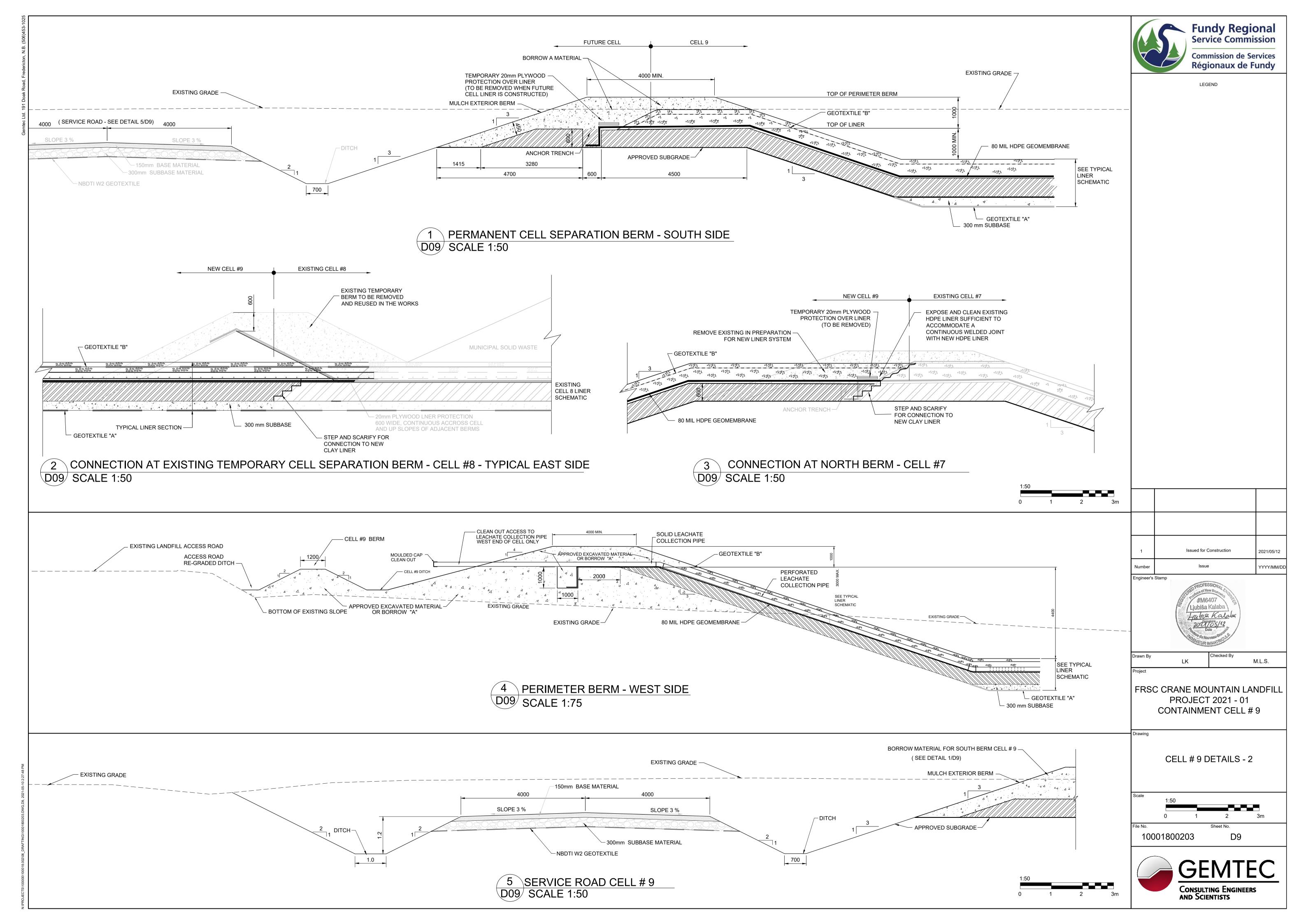


LINER SCHEMATIC SCALE 1:20


LINER PROTECTION DETAIL AT LEACHATE COLLECTION PIPE SCALE 1:20

PERFORATED LEACHATE **COLLECTION PIPE DETAIL** NOT TO SCALE

LEGEND


Checked By M.L.S.

FRSC CRANE MOUNTAIN LANDFILL PROJECT 2021 - 01 CONTAINMENT CELL # 9

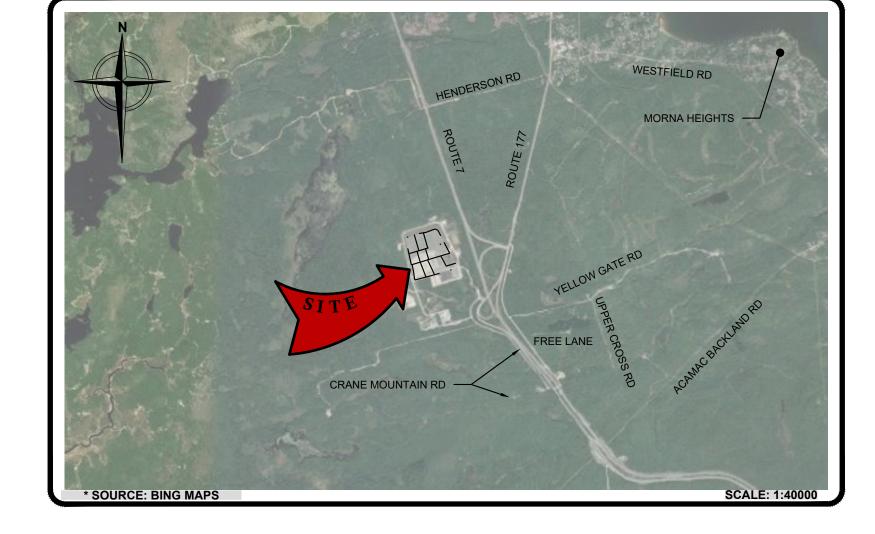
CELL # 9 DETAILS - 1

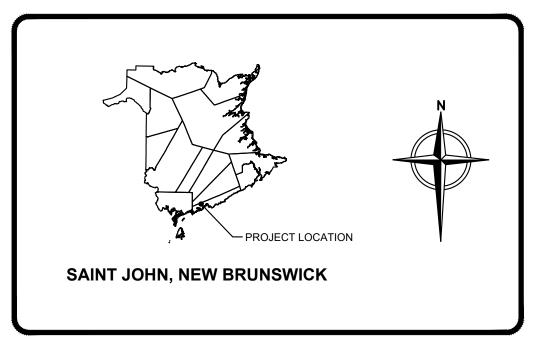
DESIGN DRAWINGS FOR THE

2023 LFG SYSTEM EXPANSION LFG WELLS INSTALLATION

PREPARED FOR

FUNDY REGIONAL SERVICE COMMISSION CRANE MOUNTAIN LANDFILL


SAINT JOHN, NEW BRUNSWICK


APRIL 2023

1		
ĺ	0	COVER SHEET
	1	LFG EXPANSION PLAN
	2	LFG EXTRACTION WELL DETAILS

LOCATION MAPS

PREPARED BY:

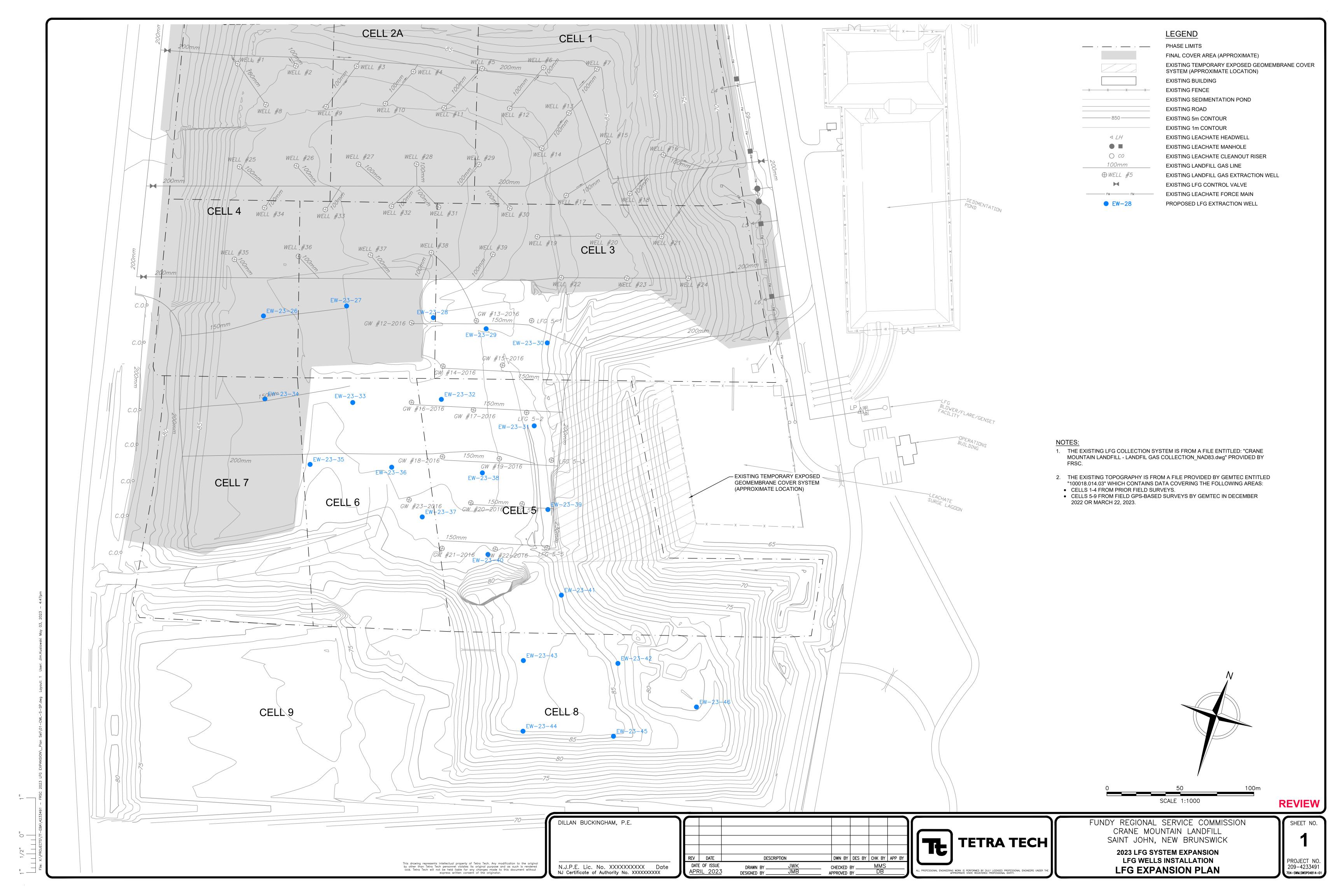
TETRA TECH CANADA INC.

140 QUARRY PARK BLVD SE, SUITE 110

CALGARY, AB, T2C 3G3

Tel: (403) 203-3355

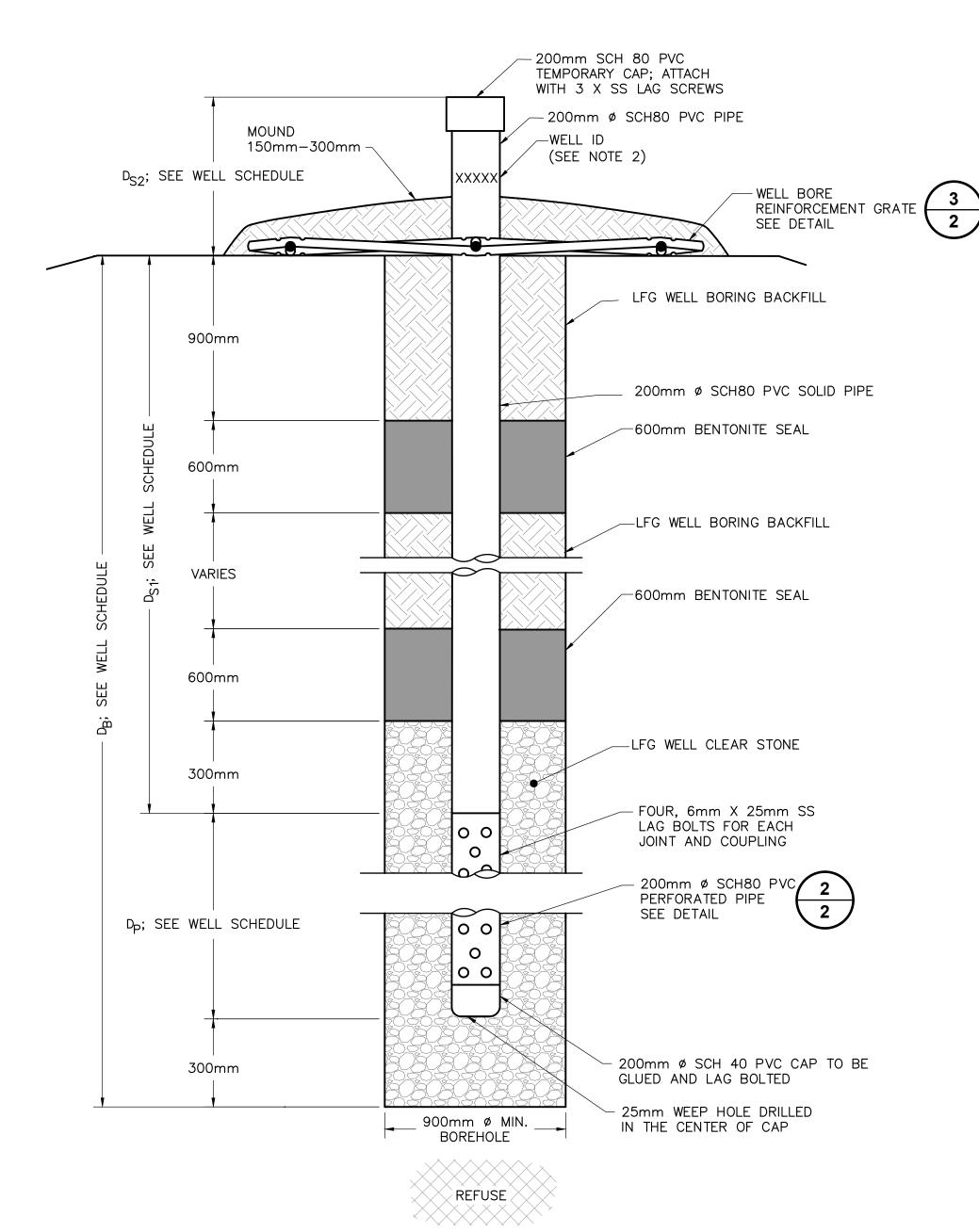
PROJECT NO. 704-SWM.SWOP04814-01


TETRA TECH
100 CRYSTAL RUN ROAD SUITE 101
MIDDLETOWN, NEW YORK 10941
Tel: (877) 294-9070
Fax (845) 692-5894
PROJECT NO. 209-4233491

This drawing represents intellectual property of Tetra Tech. Any modification to the original by other than Tetra Tech personnel violates its original purpose and as such is rendered void. Tetra Tech will not be held liable for any changes made to this document without express written consent of the originator.

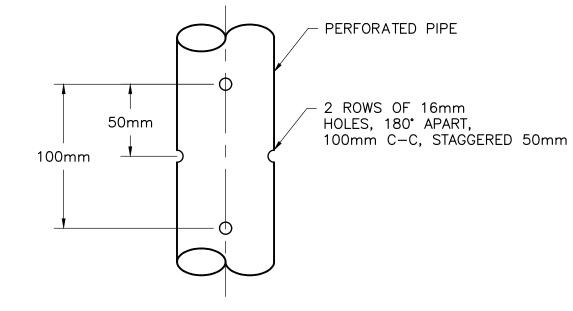
REVIEW

ILLAN BUCKINGHAM, PROFESSIONAL ENGINEE


N.B.P.Eng. Lic. No. XXXXXXXXXXXX NB Certificate of Authorization No. XXXXXXXXXXX

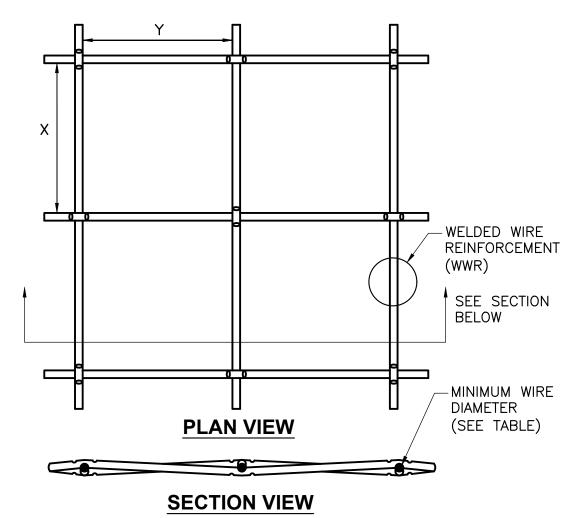
CLIENT	ABOVE GRADE						
SUBJECT Landfill Gas Extraction Well Schedule SURVEY STAKE ID LOCATION NORTHING (m) EASTING (m) SURFACE ¹ BOTTOM OF WASTE (m) DEPTH OF WASTE (m) DEPTH (m) (D _B) ³ DEPTH (m) DEPTH (m) (D _B) ³ DEPTH (m) SUBGRADE SOLID CASING (D _{S1}) DEPTH (m) CD _B (D _B) SUBGRADE SOLID CASING (D _{S1}) DEPTH (m) CD _B (D _B) SUBGRADE SOLID CASING (D _{S1}) CD _B (D _B) CD _B (D	4/24/2023 DATE 4/24/2023 m) ABOVE GRADE SOLID CASING (D _{S2}) 1.5 1.5						
NORTHING NORTHING M NORTHING	ABOVE GRADE SOLID CASING (D _{S2}) 1.5 1.5						
WELL ID ⁶ SURVEY STAKE ID LOCATION NORTHING (m) EASTING (m) GROUND SURFACE ¹ BOTTOM OF WASTE ² DEPTH OF WASTE (m) DEPTH OF WASTE (m) BOREHOLE DEPTH (m) (D _B) ³ PERFORATED (D _B) SUBGRADE SOLID CASING (D _{S1}) EW-23-26 Cell 4 7,363,383.4 2,522,461.4 87.8 73.6 14.2 11.1 4.4 6.4 EW-23-27 Cell 4 7,363,406.9 2,522,513.3 89.0 71.5 17.5 14.4 7.7 6.4 EW-23-28 Cell 4 7,363,417.1 2,522,571.9 87.2 72.0 15.2 12.1 5.4 6.4	ABOVE GRADE SOLID CASING (D _{S2}) 1.5 1.5						
EW-23-27 Cell 4 7,363,406.9 2,522,513.3 89.0 71.5 17.5 14.4 7.7 6.4 EW-23-28 Cell 4 7,363,417.1 2,522,571.9 87.2 72.0 15.2 12.1 5.4 6.4	1.5						
EW-23-27 Cell 4 7,363,406.9 2,522,513.3 89.0 71.5 17.5 14.4 7.7 6.4 EW-23-28 Cell 4 7,363,417.1 2,522,571.9 87.2 72.0 15.2 12.1 5.4 6.4							
EW-23-28 Cell 4 7,363,417.1 2,522,571.9 87.2 72.0 15.2 12.1 5.4 6.4	1.5						
	1.5						
EW-23-30 Cell 3 7,363,424.0 2,522,651.0 85.3 69.2 16.1 13.0 6.3 6.4	1.5						
EW-23-31 Cell 5 7,363,367.5 2,522,659.5 85.5 69.3 16.2 13.1 8.7 4.1	2.4						
EW-23-32 Cell 5 7,363,365.7 2,522,593.9 87.4 70.6 16.8 13.7 8.8 4.7	2.4						
EW-23-33 Cell 6 7,363,345.5 2,522,537.0 87.5 71.1 16.3 13.2 8.6 4.3	2.4						
EW-23-34 Cell 7 7,363,329.8 2,522,479.3 87.2 73.2 14.0 10.9 4.2 6.4	1.5						
EW-23-35 Cell 6 7,363,296.6 2,522,522.0 86.4 72.3 14.2 11.1 7.0 3.8	2.4						
EW-23-36 Cell 6 7,363,311.5 2,522,575.5 87.4 70.7 16.7 13.6 9.4 3.9	2.4						
EW-23-37 Cell 6 7,363,285.5 2,522,605.5 86.4 70.2 16.2 13.1 9.4 3.4	2.4						
EW-23-38 Cell 5 7,363,326.4 2,522,635.5 87.3 69.9 17.4 14.3 8.9 5.1	2.4						
EW-23-39 Cell 5 7,363,316.0 2,522,685.5 85.7 68.6 17.1 14.0 9.3 4.4	2.4						
	2.4						
	2.2						
7,000,100.1 2,012,711.0 00.0							
EW-23-42 Cell 8 7,363,230.5 2,522,762.4 83.9 68.0 15.9 12.8 7.6 5.0	2.4						
EW-23-43 Cell 8 7,363,213.0 2,522,700.5 87.3 69.3 18.0 14.9 8.9 5.8	2.1						
EW-23-44 Cell 8 7,363,167.1 2,522,714.7 87.0 69.4 17.6 14.5 8.7 5.5	2.4						
EW-23-45 Cell 8 7,363,182.3 2,522,774.4 85.4 68.2 17.2 14.1 8.7 5.1	2.4						
EW-23-46 Cell 8 7,363,218.3 2,522,822.3 79.8 67.0 12.8 9.7 5.3 4.1	2.4 44.6						
WELL SCHEDULE ACKNOWLEDGEMENTS: THE UNDERSIGNED ACKNOWLEDGES THAT HE/SHE HAS REVIEWED THE ABOVE WELL SCHEDULE DATA AND BELIEVES THE INFOR CORRECT TO THE BEST OF HIS/HER KNOWLEDGE AND HAS NOTIFIED THE DESIGN ENGINEER OF DEFICIENCIES OR OMISSIONS.	MATION TO BE						
TT DESIGN ENGINEER ACKNOWLEDGEMENT:	DATE						
TT QA/QC REVIEWER ACKNOWLEDGEMENT:	DATE						
TT PROJECT MANAGER ACKNOWLEDGEMENT:							
OWNER OR OWNER REPRESENTATIVE ACKNOWLEDGEMENT:	DATE						
CQA INSPECTOR ACKNOWLEDGEMENT:	DATE						
SURVEYOR ACKNOWLEDGEMENT:							
DATE GENERAL CONTRACTOR ACKNOWLEDGEMENT:							
DRILLER ACKNOWLEDGEMENT:							
*UNDER NO CIRCUMSTANCES SHALL DRILLING ACTIVITIES BEGIN WITHOUT PROVIDING THE ABOVE SIGNATURES. ANY CHANGES TO WELL LOCATIONS OR DEPTHS SHALL	DATE REQUIRE THESE						

NOTES:


- GROUND SURFACE ELEVATIONS TAKEN FROM SURFACE REFERENCED WITHIN THE DRAWING TITLED "233491-LFG-CRANE MTN.dwg" PROVIDED BY FRSC, DATED MARCH 22, 2023.
- BOTTOM OF WASTE ELEVATIONS REFERENCED FROM "LANDFILL BASE DECEMBER 2022-CLEAR STONE.dwg", PREPARED BY FRSC, WHICH SHOW TOP OF DRAINAGE STONE LAYER OF BASE LINER SYSTEM.
- BOREHOLE DEPTH TO HAVE A MINIMUM 3.1m SEPARATION BETWEEN THE BASE OF THE BOREHOLE AND THE BOTTOM OF WASTE.
- WELL LOCATIONS MAY BE RELOCATED DURING CONSTRUCTION TO ACCOMMODATE FIELD CONDITIONS. ALL CHANGES MUST BE RE-SURVEYED AND AN UPDATED WELL SCHEDULE FOR THAT LOCATION, APPROVED BY ALL PARTIES PRIOR TO THE COMMENCEMENT OF DRILLING.
- TETRA TECH AND OWNER ARE NOT LIABLE FOR DELAYS INCURRED RESULTING FROM THE CONFIRMATION AND FINAL APPROVAL OF ALL WELL DRILLING LOCATIONS.

VERTICAL EXTRACTION WELL

SCALE: NOT TO SCALE 2


- 1. A WELL SCHEDULE IS PROVIDED ON THIS SHEET. NO DRILLING IS TO TAKE PLACE WITHOUT A FULLY SIGNED WELL SCHEDULE.
- 2. CONTRACTOR TO PROVIDE AND INSTALL WELL ID LABELS ON THE WELLS. DRILLER TO LABEL NEWLY INSTALLED WELLS WITH WELL ID IN GREASE PENCIL.
- 3. WATER SHOULD NEVER BE ADDED TO THE SOIL BACKFILL TO AID IN COMPACTION.
- 4. ALL PVC PIPE JOINTS AND COUPLINGS TO BE PRIMED, GLUED AND LAG BOLTED.

PERFORATED PIPE

DETAIL SCALE: NOT TO SCALE

1. CONTRACTOR TO USE FACTORY-PERFORATED PVC ONLY.

WELL BORE REINFORCEMENT GRATE

DETAIL

- 1. WELL BORE REINFORCEMENT GRATE TO BE INSTALLED AT
- 2. OVERALL DIMENSIONS OF THE WELL BORE REINFORCEMENT GRATE SHALL BE 1200mm X 1200mm.

ALLOWABLE OPENING SIZES

ALLOWABLE OF EIGHTO SIZES			
"X"	"~"	MIN. WIRE DIAMETER	WWR PANEL DESIGNATION
100mm	50mm	6.35mm	W5 x W5
100mm	100mm	7.59mm	W7 x W7
100mm	150mm	7.85mm	W7.5 x W7.5
150mm	150mm	7.85mm	W7.5 x W7.5

REVIEW

DILLAN BUCKINGHAM, P.E. DESCRIPTION DWN BY DES BY CHK BY APP BY DATE OF ISSUE MMS N.J.P.E. Lic. No. XXXXXXXXXX Date CHECKED BY _ DRAWN BY ____ NJ Certificate of Authority No. XXXXXXXXX APPROVED BY _

TETRA TECH

FUNDY REGIONAL SERVICE COMMISSION CRANE MOUNTAIN LANDFILL SAINT JOHN, NEW BRUNSWICK

2023 LFG SYSTEM EXPANSION LFG WELLS INSTALLATION LFG EXTRACTION WELL DETAILS

SHEET NO. PROJECT NO. 209-4233491

704-SWM.SWOP04814-0

This drawing represents intellectual property of Tetra Tech. Any modification to the original by other than Tetra Tech personnel violates its original purpose and as such is rendered void. Tetra Tech will not be held liable for any changes made to this document without express written consent of the originator.

JWK JMB DESIGNED BY ____

PROFESSIONAL ENGINEERING WORK IS PERFORMED BY DULY LICENSED PROFESSIONAL ENGINEERS UNDER APPROPRIATE STATE REGISTERED PROFESSIONAL ENTITY.

ENVIRONMENTAL MANAGEMENT PLAN for the

FUNDY REGION SOLID WASTE COMMISSION

Fundy Region Solid Waste Commission

January 2008

Revision 1

Environmental Management Plan Table of Contents

1.0	Introd	uction				
	1.1	Environmental Policies and Philosophy				
	1.2	Organization of the Environmental Management Plan				
2.0	Project Description and Environmental Legislation and Guidelines					
	2.1	Project Description				
	2.2	\mathcal{C}				
		2.2.1 Construction				
		2.2.2 Operations				
3.0	Implementation of the Environmental Management Plan					
	3.1	Roles and Responsibilities				
		3.1.1 The Commission				
		3.1.2 The General Manager				
		3.1.3 The Environmental Coordinator				
		3.1.4 The Staff				
	3.2	Environmental Training Program				
		3.2.1 Content				
		3.2.2 Documentation of Training				
	3.3	Reporting				
	3.4	Plan Revisions				
4.0	Outlin	e of the Environmental Protection Plan				
5.0	Enviro	onmental Emergency Response Plans				
	5.1	Direction of Emergency Response Procedures				
	5.2	Petroleum Spills				
		5.2.1 Risks				
		5.2.2 Prevention				
		5.2.3 Response Procedures				
	5.3	Chemical Spills				
		5.3.1 Risks				
		5.3.2 Prevention				
		5.3.3 Response Procedures				
	5.4	Forest Fires				
		5.4.1 Risks				
		5.4.2 Prevention				
		5.4.3 Response Procedures				

5.5	Failure	of the Sedimentation Ponds
	5.5.1	
	5.5.2	Prevention
	5.5.3	Response Procedures
The En	vironm	ental Monitoring Plan
6.1	Air Qu	
	_	Monitoring Requirements
		Remedial Measures
6.2	Leacha	ıte
	6.2.1	
	6.2.2	ε 1
	6.2.3	
6.3	Ground	d Water Monitoring Wells
	6.3.1	Monitoring Requirement
	6.3.2	
	6.3.3	0 1
6.4	Ground	dwater Domestic Wells
	6.4.1	Monitoring Requirements
	6.4.2	Monitoring Responsibility
	6.4.3	Remedial Measures
6.5	Surface	e Water
	6.5.1	Monitoring Requirement
	6.5.2	Monitoring Responsibility
	6.5.3	Remedial Measures
6.6	Indiscr	iminate Dumping
	6.6.1	Monitoring Requirement
	6.6.2	Monitoring Responsibility
	6.6.3	Remedial Measures
6.7	Waste	Inspection
	6.7.1	Monitoring Requirement
	6.7.2	Monitoring Responsibility
	6.7.3	Remedial Measures
6.8	Aesthe	tics
	6.8.1	Monitoring Requirement
	6.8.2	Monitoring Responsibility
	6.8.3	Remedial Measures

6.0

- 6.9 Noise
 - 6.9.1 Monitoring Requirements
 - 6.9.2 Monitoring Responsibility
 - 6.9.3 Remedial Measures
- 6.10 Property Assessments
 - 6.10.1 Monitoring Requirements
 - 6.10.2 Monitoring Responsibility
 - 6.10.3 Remedial Measures
- 6.11 Collection Vehicle Maintenance
 - 6.11.1 Monitoring Requirements
 - 6.11.2 Monitoring Responsibility
 - 6.11.3 Remedial Measures
- 6.12 Traffic
 - 6.12.1 Monitoring Requirement
 - 6.12.2 Monitoring Responsibility
 - 6.12.3 Remedial Measures

7.0 Communication

Appendix A

Environmental Protection Plan

Appendix B

Emergency Response Contact List and Response Procedures

Appendix C

Leachate Management Plan

1.0 INTRODUCTION

The Fundy Region Solid Waste Commission (Commission Which is comprised of representatives from municipalities and unincorporated areas within it's geographical boundaries, has been given a mandate by the New Brunswick Department of the Environment (NBDOE) for the management of solid waste generated within it's region. After a review of alternatives, an extensive siting exercise, an environmental impact assessment (EIA), and public consultation, the Commission has opted to implement an integrated waste management strategy which includes waste reduction, waste diversion and the disposal of residential material in a containment landfill. The Landfill situated at Crane Mountain, Adjacent to the northern boundary of the city of Saint John, in Saint John County, New Brunswick.

1.1 Environmental Policies and Philosophy

The Commission's environmental policy is to operate the landfill in a manner that provides a high level of service, at a reasonable cost to all waste generators in the region, while at the same time minimizing any potential negative environmental effects on groundwater, surface water, air quality, aesthetics, generators using the site or on the quality of life of the people living near the facility. It is also part of the environmental policy to ensure that the necessary resources financial or otherwise are provided to allow the environmental policies and commitments made within this document to be met.

The Commission is committed to operating an exemplary facility, ensuring all environmental commitments are met or exceeded and no unacceptable environmental impacts are incurred. The Commission is also committed to a program of ensuring that all subsequent construction phases are carried out with the highest regard to environmental protection. All regulations, guidelines and conditions set out in the EIA will be met and the Commission will follow and meet the conditions in the current and subsequent Certificates of Approval to Operate issued by the NBDOE. The Commission and its employees will manage the containment landfill with respect to all regulations, guidelines and conditions set out in the EIA, the Environmental Management Plan, the Operations Manual and the conditions in the current and subsequent Certificates of Approval to Operate.

The EMP as it applies to landfill operations and to the construction of subsequent disposal cells is used as a tool throughout the entire life of the landfill. With changes and advances in technology, waste diversion requirements and disposal needs the EMP will be updated to provide guidance and ensure all environmental standards are met. As changes occur, the appropriate pages will be revised and the document updated.

1.2 Organization of the Environmental Management Plan

The EMP is broken down into seven sections, as follows. The first section is the Introduction, it sets out the purpose of this document, Commission policies and the organization of the management plan.

The second section provides the detailed description of the project and identifies the applicable regulations, guidelines, permits and approvals.

The third section describes how the plan will be implemented and the revision process and schedule, and describes the Environmental management team, required training and reporting procedures.

The fourth section is an outline of the Environmental Protection Plan (EPP) which is regarded as a project specific plan that is the practical application of the mitigative measures outlined in the EIA and the conditions set out by the Lieutenant Governor-in-Council. The detailed plan is included in the appendices.

The fifth section presents the Environmental emergency Response Plans which detail the actions to be taken in the event of an incident or unplanned environmental upset. Operational emergency response procedures are presented in the Operating manual.

The sixth section is the Environmental Monitoring Plan. It sets out what is to be monitored, the frequency of monitoring, parameters, responsibilities for monitoring and reporting procedures.

The seventh section presents the information with respect to Communications. It identifies the Commission's commitment to continued consultation and mechanisms for communications.

2.0 PROJECT DESCRIPTION AND ENVIRONMENTAL LEGISLATION AND GUIDELINES

2.1 Project Description

The Commission in consultation with the public has developed a comprehensive waste management strategy which includes waste reduction, recycling, composting and containment landfilling. The project description herein refers to the landfill component of the waste management strategy.

The Fundy Region Solid Waste Commission's Landfill is located on a 132 hectare (ha) site, within the City of Saint John, at 10 Crane Mountain Road. The southeast

corner of the site is situated at the intersection of Highway 177 and Highway 7, as shown in *Figure 1*. The waste management Facility includes: scales and scale house, operations building, administration building/interpretative centre, compost facility, construction and demolition disposal area, containment disposal area, household hazardous waste collection and storage facility, sedimentation ponds, leachate surge pond, landfill gas collection and flare system and a three tiered groundwater monitoring network.

The following describes the various components of the waste management facility.

Roadways

Access to the landfill facility is via Crane Mountain road, off the interchange at the intersection of Highway 7 and route 177 from GrandBay-Westfield. The access road off the Crane Mountain road is a paved two lane all weather road and is gated at the entrance. The perimeter road that is used to covey traffic to the disposal area and Administration/ Interpretative centre is a paved two-lane all weather road. All other on site roads are two lane gravel roads. Both the paved and gravel roads are maintained by the Commission.

Scales and Scale House

All incoming vehicles containing waste are weighed by a computerized scale. The scale will be located on the access road beyond the security gate. The scale system will be above grade with ramps up to scale level.

The scales are operated by an individual situated in a scale house adjacent to the scales. The building accommodates the operator, the computer equipment to run the scale and prepare billing tickets, an electrical room and washroom.

Beyond the scale, incoming traffic travels to either, the small load drop off area, the compost receiving area, the construction and demolition materials disposal area, the disposal cell, the administration/interpretive centre, the household hazardous waste disposal storage facility, or the operations maintenance building.

Small Load Drop-off Area

The drop-off is a disposal area for general users with small loads of waste (as opposed to commercial waste haulers) so they do not have to travel to the active tipping face of the landfill. It is situated beyond the scale along the southern boarder of the site. The drop-off area consists of a grade separation defined by a retaining wall, and waste receiving containers next to the retaining wall. The waste from the bins is removed and disposed of in the landfill daily.

The in-vessel compost facility receives organic waste from residential and IC&I generators. The facility consists of a receiving hall where organic material is sorted and processed, two composting buildings, a biofilter for the control of odours, an outside curing area for compost, a large storage building for recyclable materials and an employee building with paved parking area. On site signage directs deliveries to the compost facility which is located directly west of the scale and small load drop-off area.

Construction and Demolition Materials Disposal Area

The construction and demolition materials disposal area (C&D site) is an unlined cell area approved by the NBDOE for the disposal of acceptable debris obtained during the construction, renovation or demolition of a building or structure. Debris or other material obtained from commercial, industrial, manufacturing sources, or materials that may contain contaminants are not accepted at the C&D site. Recyclable metals are removed from the waste material and recycled. The current and subsequent Certificates of Approval to Operate will detail operating requirements. On site signage directs deliveries to the C&D site which is located on the western side of the two lane paved road.

Disposal Cell

The disposal component of the landfill facility is designed to accommodate all residential, commercial and some industrial waste generated within the Fundy Region for a minimum of 25 years and has a footprint of approximately 37 hectares in size. It is evident however; because of waste diversion initiatives the disposal cells will ultimately have a longer lifespan.

The disposal cells will be constructed in a sequential basis such to minimize area exposed to precipitation at any time. The commission will develop an operating plan that details anticipated cell construction and capping schedules. Cells will be constructed according to conditions, drawings and specifications approved by NBDOE in approval to construct documents. Capping of cells will in turn be constructed according to conditions, drawings and specifications approved by NBDOE in approval to construct documents.

The Leachate Collection System

The leachate collection system is situated on top of the lining system. A series of perforated pipes collect the leachate from the waste layer and direct it, via gravity, to collection sumps located on the southern side of the disposal cell. To prevent the storing of leachate in the disposal cell and as a control measure during extreme precipitation events leachate can be pumped to a constructed leachate surge lagoon where it is pumped into tanker trucks and transported to the Lancaster Sewage Treatment Facility for treatment. A back up power system is in place to provide continued operation of the leachate collection system during power interruptions. The current and subsequent Certificates of Approval to Operate will detail the operating conditions and requirements of the leachate collection system.

Administration/Interpretive Building

The administration/interpretive building is located on site opposite the north end of the disposal cell. The building serves as the administrative center for all landfill business and has an interpretive area to host public education activities for school classes, special interest groups and the general public.

Household Hazardous Waste Storage and Receiving Facility

The household hazardous waste storage and collection facility provides disposal service for residentially generated hazardous waste within the Fundy Region. The Commission receives household hazardous waste (HHW) every Saturday morning at the facility located near the northeast corner of the disposal cell area. The Commission contracts a qualified disposal company to remove the HHW from the site for proper disposal or recycling. The facility is operated under the conditions set forth in the current and subsequent Certificates of Approval.

Operations Building

The operation building is situated at the midpoint of the cell just east of the disposal area. It includes offices, washrooms, equipment storage area, emergency response equipment and one garage bay.

Landfill Gas System

The landfill gas system is comprised of a sequence of gas collection wells connecting to a biogas Flare and blower skid system. The biogas flare utilizes automated operation and is designed to destroy safely, with automatic temperature control, typical organic compounds generated by solid waste and other biogas products. The system is controlled with a programmable logic controller (PLC), which receives and transmits signals with respect to operating conditions. If an unacceptable operating condition occurs, the control system discontinues flow of biogas or adjusts the operating parameters to correct the problem. Controls of the *Enclosed ZTOF Biogas Flare* include an initial purge cycle, automatic ignition sequence, and fail safe controls. The system is operated under the conditions set forth in the current and subsequent Certificates of Approval.

Groundwater Monitoring

An extensive three tier groundwater monitoring program is in place as required by the EIA. The purpose of this system is to permit the detection of any impact on the groundwater as a result of landfill construction or operations. This system includes several multi-level, vertical and angled wells set at a distance of 50, 100, 150 and 200 metres or more from the boundary of the disposal cell. The details of the monitoring program including well locations are presented in section 6.

Storm Water Management

The landfill site is drained by a series of perimeter ditches designed to accept a 24 hour 1 in 100 year storm water flow from the site. Sediment laden flows are directed to a permanent two stage pond. Non-sediment laden flows are directed through stabilized ditches around the sedimentation ponds.

A 1.5 hectare sedimentation system is located near the northeast corner of the site and is fed by gravity flow from all areas of the site. It consists of two ponds in series, a gravity settling pond a pond where flocculent may be added if necessary. Discharge is to a stabilized channel.

During the construction of future cells, all reasonable and practical efforts to limit the amount of erosion on the site will be taken. This includes minimizing the area to be cleared and grubbed and stabilizing grubbed areas as soon as possible.

Basic Infrastructure

Electricity – The site is provided with three phase power from the NB power grid. All building on site are provided with electrical power. The leachate collection system and the scale are provided with a back up power supply.

Lighting – Exterior lighting is provided for security at all buildings, at the main gate, scale, parking areas, and small load drop off area.

Telephone – Telephone service, including fax and modem connections, is provided to the scale house, compost facility, administration building, HHW facility and operations building.

Water supply – On-site drinking water is provided by four wells located near the scale house, the administration building, the HHW facility and the operations building.

Waste Water – On-site waste water is treated by four dedicated septic systems which have been inspected and approved by the Department of Health and Community Services.

Visual Buffer

An extensive buffer has been established along Highway 7 for the length of the site and adjacent to Highway 177 extension. The berm enhances existing natural site features and vegetation to provide screening and meets the EIA requirement for visual buffering

Management and Operations

The landfill facility is owned, operated and managed by the Commission on behalf of the member municipalities and local service districts within its geographical boundaries. The Commission is responsible for the overall management of the landfill and is responsible through the General Manager and staff for the day to day operations at the site.

The landfill is open 6 days a week and receives waste between 7:30 am and 5:00 pm except on Saturdays when the site is open between 8:00 am and 12:00 pm.

As previously discussed the commission will develop an operating plan that details anticipated cell construction and capping schedules. As construction of future cells begin, closure of existing cell will be undertaken. The closure of a cell involves the placement of an impermeable cover to limit the amount of precipitation percolating through the waste. In addition a gas collection system will be installed to manage gas generated during the decomposition of organics.

Further details with respect to the day to day operation are detailed in the Operations Manual.

2.2 Environmental Legislation and Guidelines

This section identifies the various regulations, guidelines, permits and approvals under which the landfill has been constructed and is operated. It also identifies operating and construction conditions set-out by the Lieutenant Governor-in-Council, as part of the EIA approval process.

2.2.1 Construction

In order for the landfill to be constructed the following permits/approvals were obtained and conditions met.

Certificate of Approval to Construct

A Certificate of Approval to Construct (COA-C) from the director of the Assessment and Approvals Branch of the New Brunswick Department of Environment (NBDOE) is required before the construction of a landfill may begin. This certificate is issued under the Water Quality Regulation of *The Clean Environment Act*.

The conditions of the certificate for the Crane Mountain Landfill were developed by NBDOE through extensive discussions with the project management team during the design phase. The COA-C stipulates, among other things, requirements with respect to: the need to construct a settling pond before clearing and grubbing and discharge limits from the pond.

Water Course Alteration Permit

A water course alteration permit is not required if a COA-C has been issued, as requirements for the alteration will be included in the COA-C.

However, if construction activities occur before a COA-C is issued and are within 30 metres of a watercourse or involves crossing a watercourse (or any other condition specified in the regulation) then a water course alteration permit is required. In order to obtain the permit, a dimensioned sketch and a brief write-up describing the work to be completed is to be submitted.

Drinking water

All wells drilled on site to provide drinking water must be assigned an identification number and tested in accordance with the Potable Water Regulation. Within one year of the well being dug, the Commission must collect a sample from the well for analysis at the NBDOE laboratory.

On-Site Sewage Disposal System

The sewage disposal system is inspected and permitted by the Department of Health and Community Services.

Woods Work During Fire Season

Fire season in New Brunswick extends from mid-April to mid-October. Any work carried out in the woods during this period must be permitted by the Department of Natural Resources and Energy (DNRE). To obtain the permit, the location of the job site, duration of the project, number of people at the site and the type of equipment being used must be provided to DNRE. DNRE staff may inspect the work area, confirm the equipment and staffing levels, they may also visit the site from time to time to ensure the conditions of the permit are being met. The permit is obtained from the district ranger at the DNRE office in Welsford.

Zoning Requirements- City of Saint John

The Crane Mountain Landfill property is zoned as Utility and service-Landfill (US-L). Land zoned under this designation is for sanitary landfill and associated facilities, including recycling and composting facilities, and any accessory buildings, structures, etc. US-L zoning requires that the landfill be enclosed by "natural buffering and/or constructed earth berms". It also requires that building permits are obtained before construction proceeds.

Construction Conditions Required and Met as Part of EIA Approval

The design and construction of the landfill cells shall ensure the reliability and effectiveness of the soil portion of the liner of not less than 25 years and the advective breakthrough of the liners shall be designed using a distributed gradient approach and approved by the Director of the Assessment and Approvals Branch-NBDOE, prior to the issuance of the COA-C.

Proposed waste diversion initiatives must be registered pursuant to the EIA Regulation of the *Clean Environment Act*, prior to the COA-C being issued.

Should the Commission wish to convey leachate from site to a sewage treatment plant (STP) via a pipeline, as opposed to trucking it off-site as originally planned, this change will have to be registered under the EIA Regulation of the *Clean Environment Act*. In Addition, the Commission will be required to enter into a five year agreement with the operator of the STP and this Agreement will have to be approved by the Director of the Assessment and Approvals Branch-NBDOE.

The Commission must develop and implement a drinking water well baseline monitoring program that includes organic and inorganic compounds relative to the Canadian Water Quality Guidelines- Drinking Water. The program must be approved by the director of the Assessment and Approvals Branch- NBDOE prior to its implementation and the survey must be conducted prior to site construction.

The Commission shall develop an enhanced three tier ground water monitoring program. The specific location of the well nests shall be identified on site by staff of NBDOE, prior to construction of the facility. The monitoring frequency of the wells shall be determined in consultation with NBDOE and approved by the Director of the Assessment and Approvals Branch – NBDOE.

The Commission must establish a "Community Environmental Monitoring Committee", prior to the initiation of construction of the landfill. The membership and mandate of the Committee are to be determined in consultation with NBDOE.

The construction of the next and all subsequent disposal cells will be carried out under a new COA-C. The only other legislation anticipated to guide future landfill construction activities will be the requirement for work permits from DNRE during fire season.

2.2.2 Operations

The landfill is operated under the following permits/approvals and EIA conditions.

Certificate of Approval to Operate

The landfill is permitted to operate under a Certificate of Approval to Operate (COA-O) issued by NBDOE. The COA-O will, among other things, stipulate requirements with respect to: discharge of leachate, discharge from the sedimentation pond, application of daily and intermediate cover, acceptable and non-acceptable wastes, etc.

Operating Conditions Required and Met as Part of EIA Approval

In addition to the COA-O, several operating requirements were set out in the EIA process. The requirements were as follows:

Establishment of a visual buffer. A visual buffer has been established adjacent to Highway 7 for the length of the site and adjacent to Highway 177 extension/ Crane Mountain Road for the width of the site and to a height of six metres.

Prepare an environmental management plan. The initial review of the plan has been completed by NBDOE.

The Commission is to ensure that appropriate traffic access and highway signage is in place. The New Brunswick Department of Transportation has approved the interchange and appropriate signage is in place.

The Commission is to encourage and fund public access to and enjoyment of portions of the site not dedicated to waste management. The Commission has constructed an interpretive centre and is committed to developing recreation facilities and has undertaken forestry management projects.

The Commission will ensure any residents whose drinking water becomes contaminated as a direct result of landfill operations, will have a safe, uninterrupted and adequate water supply. The Commission will provide drinking water to any resident whose drinking water becomes contaminated as a direct result of landfill operations

3.0 INPLEMENTATION OF THE ENVIRONMENTAL MANAGEMENT PLAN

The Environmental Management Plan (EMP) is used to ensure that environmental protection measures and proactive policies, such as the requirement for employee environmental awareness training, are utilized throughout operations and the construction of subsequent cells at the landfill facility. The plan clearly identifies environmental policies and procedures for regulators and the public as well as staff.

For the plan to be properly implemented, the roles and responsibilities of the Commission, General Manager, Environmental Coordinator and staff must be clearly defined. Each participant must know what they are responsible for and must be provided with the resources necessary to complete the assigned tasks. In addition to defining roles and responsibilities, all staff must be provided with the appropriate training.

Finally successful implementation of the EMP relies on a proactive approach to communications, both internally and externally with the public and the regulators.

3.1 Roles and Responsibilities

The following sets out the roles and responsibilities for the Commission and its staff with respect to environmental management.

3.1.1 The Commission

With respect to Environmental management, the Commission is responsible for:

- establishing the EMP and facilitating its implementation
- having general knowledge of the EMP
- reviewing all environmental issues arising through operations on a regular basis
- ensuring there are sufficient resources to carry out all aspects of the EMP
- revising the environmental policy and EMP as required, and
- reviewing and approving as necessary suggested changes to the EMP

3.1.2 The General Manager

The General Manager is responsible for the overall operation of the site, including implementation of the EMP by ensuring:

- all employees are aware of the Commission's commitment to environmental protection
- the Commission is aware of environmental incidents and that environmental management issues are included as a regular agenda item at monthly Commission meetings.
- all employees and contract workers receive the appropriate level of environmental training
- adequate environmental training sessions are provided and documented, and
- suggested changes to the EMP are taken before the commission for review

3.13 The Environmental Coordinator

The environmental coordinator is responsible for:

- direct implementation of the EMP.
- obtaining environmental permits and updating them as required
- being the point of contact with the regulatory agencies
- ensuring all environmental commitments are met
- ensuring construction is carried out in accordance with the Environmental Protection Plan
- preparing environmental monitoring reports as required
- directing emergency response activities
- forwarding suggested revisions to the EMP to the General Manager for review, and
- and seeing that approved revisions are properly documented, communicated and distributed to all EMP holders

3.1.4 Staff

Staff are responsible for the implementation of the EMP through:

- acquiring the proper environmental training and updating the training as required
- being aware of and upholding the principals of environmental protection
- instituting corrective action, or notifying the General Manager, when environmental protection policies are not being followed, and
- making suggestions to improve environmental protection practices and the EMP as necessary.

3.2 Environmental Training Program

To be successfully implemented, site staff must be fully aware of the EMP and the Commissions commitment to environmental protection and the operation of an exemplary site. Therefore all employees and outside contractors and consultants will be required to fully understand the objectives of the environmental training program.

The objective of the training program is to ensure all staff and on-site workers have a:

- sound understanding of the Commissions commitment to high levels of environmental protection,
- general awareness of and sensitivity to the environment,
- appreciation of the impacts their actions have on the environment, and
- understanding of how to complete their specific job without negatively impacting the environment.

General operations training will be provided for all staff at the landfill site. Environmental training will be included as part of this initial orientation. On going training will be provided as part of regular "lunch box" meetings or those called for health and safety issues. Additional formalized training will be provided as required. Environmental training will address the following issues, however the additional topics will be incorporated into the training program as they arise.

- 1. General Environmental Awareness
- 2. Erosion/Sediment Control
- 3. Waste Inspection Procedures
- 4. Collection Vehicle Inspection
- 5. Emergency Response
- 6. Fire Fighting

All full-time and part-time staff will receive training related to these issues. Training will be provided by the Environmental Coordinator with assistance from the General Manager and any other experts deemed useful. Training will be provided before operations begin in both a classroom setting and on-site, although emphasis will be on "hands on" activities. Outside contractors will receive Environmental instruction before undertaking any work on projects at the site, including environmental awareness and environmental protection plan review.

3.2.1 Content

The following items are included in the environmental training program.

General Environmental Awareness

- history of the site and it's development
- local environmental concerns and issues
- Commission policies with respect to environmental protection
- overview of EMP
- presentation of the Environmental Monitoring Program
- on-site vehicle maintenance procedures

Erosion/Sediment Control

- operating procedures for the sedimentation pond
- control of sediment laden water

Waste Inspection Procedures

 description of non acceptable wastes as regulated by current and subsequent COA-O

- procedures for handling unacceptable wastes-at the scale and at the working face
- completion of monitoring log forms, reporting procedures and follow-up action

Collection Vehicle Inspection

- inspection procedures as outlined in monitoring program
- procedures for notification of non-compliance
- banning from the landfill

Emergency Response

• as outlined in EMP

Fire Fighting

- Emergency response protocol for fires
- Personal safety

3.2.2 Documentation of Training

The General Manager will be responsible for ensuring that personnel files for all staff are updated as directed by the Environmental Coordinator, as staff completes various training courses, environmental or otherwise.

3.3 Reporting

Proper and timely reporting of any environmental incidents or operation problems will facilitate the environmentally appropriate operation of the landfill site, by allowing corrective measures to be implemented as needed and will allow procedures to be revised to permit environmental protection goals to be achieved.

The Environmental coordinator will be responsible for establishing and maintaining the Environmental Monitoring Log, which will track various components of the environmental monitoring plan. The contents of the log are presented in Section 6.

In addition the Environmental Coordinator, with input from on-site staff, as required, will be responsible for compiling the environmental management data for presentation to the General Manager and included in the annual report as described in the Operating Manual.

3.4 Plan Revisions

As discussed in the introduction, the EMP will be revised in keeping with changes in the operation of the landfill. The EMP will be reviewed on an annual basis by the Environmental Coordinator to ensure all operational, procedural, project description changes and environmental protection plan revisions are properly reflected in the document. In addition, the environmental emergency response procedures will be reviewed, by the Environmental Coordinator and all staff after each incident to ensure they are practical and effective. If upon review, it is decided changes to the response are necessary, the EMP will be revised accordingly.

4.0 OUTLINE OF THE ENVIRONMENTAL PROTECTION PLAN

The Environmental Protection Plan (EPP) is a project specific plan that is the practical application of the mitigative measures in the EIA and the terms and conditions set out by the Lieutenant Governor in Council in the approval of the site. The purpose of the EPP is to serve as a ready, easy to understand and quick reference of environmental protection measures to be employed during the construction and operation or the Fundy Region Waste Management Facility.

The EPP is prepared under the broader framework of the Environmental Management Plan. The EPP will identify the environmental protection procedures for construction of subsequent disposal cells and any other future projects. Additional information with respect to applicable acts, regulations, guidelines, etc., reporting, training, contingency planning, and environmental monitoring etc. are provided in the EMP. Environmental protection procedures for operations are contained in both the Operations Manual, and the EMP in general terms and more specifically in the EPP.

The EPP – Construction - identifies future construction activities at the site, mitigation strategies, and specific construction methods to prevent significant environmental impacts. Environmental protection procedures for clearing, grubbing, excavation, and sediment control are included. The detailed EPP construction is contained in Appendix F. in practice, it will be kept under separate cover for ease of handling and practical use.

The EPP – Operations - presents protection measures to be employed during operation of the site and covers issues relating to monitoring of incoming waste, groundwater, leachate handling, aesthetics, operational environmental emergency response and training. The detailed EPP – Operations is contained in Appendix F. In practice, it will be kept under separate cover for ease of handling and practical use.

The requirements of the EPP will be referenced in all tender documents and all contractors on-site will be required to follow standard environmental procedures as well as the specified protection measures. All contractors will also be required to participate in an environmental orientation session.

5.0 ENVIRONMENTAL EMERGENCY RESPONSE PLANS

The implementation of the environmental training program and adherence to the EPP will decrease the likelihood of an accidental event. However, human error, extreme weather conditions or other situations can result in unplanned events. The Commission recognizes that a well developed response plan can decrease the impact of such an event on the environment. The Commission is committed to the implementation of such plans and providing resources for emergency response equipment and training. In addition, the environmental emergency response procedures have been reviewed by the City of Saint John Fire Department emergency response personnel.

The accidental or unplanned events that could have a significant detrimental impact on the environment are:

- petroleum spills
- chemical (including hazardous liquids and leachate) spills
- failure of the sedimentation pond
- forest fires

Section 13 of the Operations Manual contains Response Plans for the following Operational emergencies:

- Fires (13.5)
- Explosive Gas Accumulation (13.5.2)
- Lightening (13.5.3)
- Power Outages (13.5.4)
- Medical Emergencies (13.5.6)
- Vehicle Accidents (13.5.7)

The objective of an environmental emergency plan is to minimize: danger to persons, pollution to watercourse or groundwater, and the area affected. The purpose of these plans is to set out methods for preventing the emergency, action to be taken should an emergency occur and the reporting requirements after an emergency situation.

In addition to the information contained in this document, check-lists identifying emergency response procedures and contact numbers will be posted at the scale house, compost facility, operations building, administration building and household hazardous waste facility. A copy of all lists is provided in Appendix G.

5.1 Direction of Emergency Response Procedures

The Environmental Coordinator will direct all environmental emergency response procedures at the FRWMF. In addition, a second person will be designated to assist the Environmental Coordinator or to direct the response activities in the Environmental Coordinators absence. Both the Environmental Coordinator and the additional staff person will receive training relating to emergency response, WHMIS, and first aid training.

All other staff will assist in environmental emergency response under the direction of the Environmental Coordinator or his designate. All staff will be made aware of the appropriate response procedures as part of overall environmental training requirements. A copy of the Commissions contingency plan for dealing with emergencies is provided in Appendix G.

In instances where the Hazardous Materials Response Team of the Fire Department is called to the site they will assume command and direct the emergency response.

5.2 Petroleum Spills

5.2.1 Risks

Based on the types of operations at the FRWMF, petroleum spills or leaks may occur from any one of a number of sources including:

On- site petroleum product storage areas

Sufficient quantities of hydraulic and motor oil will be stored at the Operations Building, and Compost facility areas for the purpose of equipment maintenance.

On-site equipment

The on-site mobile equipment, trucks etc, potentially could spill some of the contents of a fuel tank. The mobile equipment that operates in the waste disposal cell will generally be left in the cell area or at the Operations Building parking compound when not in use. The on site mobile equipment that operates at the Compost Facility and the Commissions recycling trucks will be parked within the facilities buildings or in the parking compound when not in use.

During fuelling of on-site equipment

The on-sit mobile equipment will be fuelled by contracted fuel delivery. During fueling a spill may occur.

Discharge from a non-Commission operated vehicle

A fuel spill from a non-Commission operated vehicle could occur as a result of collision or other accident.

5.2.2 Prevention

Prevention of an emergency situation is a key component of the Environmental Emergency Response Plan. The following preventative measures will be undertaken to decrease the likelihood of a petroleum leak or spill:

- Weekly inspection of the petroleum product storage areas
- Record any petroleum staining surrounding storage areas and attempt to locate the source
- Weekly inspection of each fuel tank on the mobile equipment
- Fuel vehicles in a designated area away from on-site wells
- During fueling do not leave vehicles unattended
- Carry out immediate follow-up to any deficiencies noted during the inspection

5.2.3 Response Procedures

Initial Response

All spills of petroleum products, regardless of size must be reported immediately to the Environmental Coordinator.

The Environmental Coordinator must follow reporting requirements as directed by the current and subsequent COA-O.

The responder must be aware of the situation he is entering. Do not approach an unsafe scene!

After calling the Environmental Coordinator, the employee first observing a spill or leak will extinguish all sources of flames or sparks, and then shut off the source of the leak if the employee can do without risk of injury.

The Environmental Coordinator or his designate (the responder) will then attempt to secure the area to minimize environmental impact by containing the spilled product.

Surround the spilled product with absorbent material such as sand, straw, peat moss, synthetic absorbent boom or cloth.

Absorbent materials are stored at the Operations Building, Household Hazardous Waste Facility, Compost Facility and Scale House.

In the case of a vehicle accident resulting in spilled fuel call the Fire Department and place absorbent material around spill site to control the spilled product. Report the incident as directed by the current and subsequent COA-O. Proceed with clean-up as directed by the NBDOE.

A meeting of landfill employees responding to the emergency will be held after each event to determine the cause of the spill and whether or not the response procedures were adequate or need to be revised.

The Environmental Coordinator will be responsible for obtaining approval from the General Manager to revise the Emergency Response Procedures, as required, documenting any changes and ensuring all EMP holders receive the appropriate revisions.

5.3 Chemical Spills

5.3.1 Risks

Based on the type of operations at the FRWMF, a chemical spill or leak, including leachate may occur from a limited number of sources including:

On-site chemical product storage areas

Very small quantities of chemicals may be stored, from time to time in the bay area of the Operations Building, Compost Facility and flocculent will be stored in the Sedimentation Control Building. House hold hazardous waste materials generated by the residential segment within the Fundy region will be accepted and temporarily stored at the on-site facility. The design of the facility and the operating protocol found in the facilities Operation Manual minimize any chance of a spill impacted the environment.

On-site equipment

Tanker trucks will transport leachate from the site to the Lancaster Sewage Treatment Plant. There is a possibility that these vehicles could leak or spill contents on or off-site as the result of a vehicular accident or a failure of the tanker. Transfer of leachate from the disposal cell or surge pond will take place within a contained area, therefore, a spill of leachate during the transfer of leachate from the landfill holding area to the tanker is not a concern.

Discharge from a non-Commission operated vehicle

A chemical spill from a non-Commission operated vehicle could occur as a result of a collision or other accident.

5.3.2 Prevention

Prevention of an emergency situation is a key component of the Environmental Emergency Response Plan. The following preventative measures will be undertaken to decrease the likelihood of a chemical leak or spill:

- Weekly inspection of chemical storage areas
- Weekly inspection of the leachate transport vehicles, all connecting hoses, valves and the loading containment area.
- Posted procedures for the loading, transport and unloading of leachate
- Carry out immediate follow-up to any deficiencies noted in the inspection.

5.3.3 Response Procedures

Initial Response- Known or Unknown Chemical Spill or Leak

All chemical spills, regardless of size must be reported. If a chemical spill or leak is detected, prevent others from entering the spill area, remain upwind of the spill site and call the Environmental Coordinator or his designate.

The Environmental Coordinator or his designate will call initiate the call to the **HAZMAT RESPONSE TEAM**- Saint John Fire Department at **911** and **NBDOE** as detailed in the current and subsequent COA-O.

Excavation and earth moving equipment will be on standby and ready to work, if necessary, under the direction of the Hazmat Team. Ensure access to the spill area by emergency responders is unobstructed. Once the Hazmat Team arrives, brief them as to the situation and initiate further containment and clean-up under their direction. Details of the incident will be reported as required by the Current and subsequent COA-O.

Initial Response – Leachate Spill – On-site

All spills of leachate, regardless of size must be reported.

The employee first observing a spill or leak will shut off the source if he or she can do so without risking injury, then call the Environmental Coordinator, who will contact the NBDOE as required in the current and subsequent COA-O. The Environmental Coordinator or his designate (the responder) will then attempt to

secure the area to minimize environmental impact by containing the spill. Containment may require blocking sewers, ditches and culverts that lead off-site or to the sedimentation ponds. Leachate should be diverted to the disposal cell or a manhole attached to the leachate collection system. Clean-up of spills on-site will be directed by the Environmental Coordinator or his designate.

The incident will be reported as required in the current and subsequent COA –O.

Initial Response – Leachate Spill – Off-site

All spills of leachate, regardless of size must be reported.

The employee first observing a spill or leak (likely the leachate truck driver) will shut off the source if he or she can do so without risking injury, then call the Environmental Coordinator, who will contact the Hazmat Response Team as necessary and the NBDOE as required in the current and subsequent COA-O. The Environmental Coordinator will proceed to the site of the incident where he or his designate (the responder) will then attempt to secure the area to minimize environmental impact by containing the spill. Once the Hazmat team has arrived, they will be briefed as to the situation and further containment and clean-up will proceed under their direction.

The incident will be reported as required in the current and subsequent COA-O.

In the case of a vehicle accident:

- pump over cargo to an appropriate container prior to attempting to move the vehicle
- place absorbent material around the site for the collection of petroleum during the righting of the vehicle

Excavation of Contaminated Soil

Leachate contaminated soil should be excavated and deposited in the disposal cell. Where possible and practical, the site should be restored to a condition comparable to its original state.

Reporting and Evaluation

Once the emergency has passed and clean-up is well underway, an Emergency Response Report will be prepared while details and relative information is easily recalled. The reports will be completed as required in the current and subsequent COA-O.

A meeting of all landfill employees involved in the emergency will be held after each event to determine the cause of the spill and whether or not the response procedures were adequate or need to be revised.

The Environmental Coordinator will be responsible for obtaining approval from the General Manager to revise the Emergency response Procedures, as required,

documenting any changes and ensuring all EMP holders receive the appropriate revisions.

5.4 Forest Fires

5.4.1 Risks

Although burning at the landfill is not permitted and hot loads will be isolated from the active face, there is always a possibility a cinder could be blow into the forested area surrounding the landfill. It is also a possibility that a fire could be caused by lightning strike or possibly careless individuals in the forested area.

5.4.2 Prevention

Prevention of an emergency situation is a key component of the Environmental Emergency Response Plan. The following preventative measures will be undertaken to decrease the likelihood of a forest fire.

- following all operating procedures with respect to working with hot loads
- quickly containing and extinguishing any fires at the working face or elsewhere on site
- maintain the cleared area between the disposal cell and the adjacent wooded area
- prohibit workers and customers from smoking at the active face

5.4.3 Response Procedures

Initial Response

If a fire in the forested area adjacent to the site is observed, call 911, then the Environmental Coordinator.

The Environmental Coordinator shall notify staff with appropriate training to gather fire fighting equipment and proceed to the fire area.

Staff will ensure that access to the fire scene by emergency responders is kept clear of vehicles, site users or any other obstruction and keep site users away from the fire scene. Staff will assist the emergency responders as directed by the fire commander at the scene.

Initiate Clean-up

Once the fire is completely extinguished, bulldoze the site and prepare for planting.

Where practical ensure run-off from burned area is directed over vegetated areas and if possible, away from any near-by water course.

Reporting and Evaluation

Once the emergency has passed and clean-up is well underway, an Emergency Response Report will be prepared while details and relative information is easily recalled. The reports will be completed as required in the current and subsequent COA-O.

A meeting of all landfill employees involved in the emergency will be held after each event to determine the cause of the spill and whether or not the response procedures were adequate or need to be revised.

The Environmental Coordinator will be responsible for obtaining approval from the General Manager to revise the Emergency response Procedures, as required, documenting any changes and ensuring all EMP holders receive the appropriate revisions.

5.5 Failure of the Sedimentation Pond

5.5.1 Risks

The sedimentation control system at the site will be operated as a total retention pond. That is, a pond designed to accommodate flows arising from a 1 in100 year storm. Therefore, the pond will contain a minimal amount of water the majority of the time. The pond is not likely to fail when operated in this manner and if it does, the impact would be minimal due to the small volume of water in the pond.

5.5.2 Prevention

Prevention of an emergency situation is a key component of the Environmental Emergency Response Plan. With respect to failure of the sedimentation pond, preventative measures will include diligent operation and regular inspection of the pond, as outlined in the Operations Manual, to ensure water is maintained at the lowest possible level for the given circumstances. This will minimise the risk of failure and impact should a failure occur. In addition, minimizing the area exposed to precipitation will also decrease potential impacts.

5.5.3 Response Procedures

Initial Response

The pond failure should be reported to the Environmental Coordinator as soon as immediately.

The Environmental Coordinator must call NBDOE to relay information about the situation.

The Environmental Coordinator will assess the situation to determine the most practical method of repairing the pond.

All reasonable and practicable methods will be undertaken by landfill staff under the direction of the Environmental Coordinator; to prevent serious impacts on receiving streams due to high volumes of sediment laden water form exposed portions of the site.

Reporting and Evaluation

Once the emergency has passed and clean-up is well underway, an Emergency Response Report will be prepared while details and relative information is easily recalled. The reports will be completed as required in the current and subsequent COA-O.

A meeting of all landfill employees involved in the emergency will be held after each event to determine the cause of the spill and whether or not the response procedures were adequate or need to be revised.

The Environmental Coordinator will be responsible for obtaining approval from the General Manager to revise the Emergency response Procedures, as required, documenting any changes and ensuring all EMP holders receive the appropriate revisions.

6.0 THE ENVIRONMENTAL MONITORING PLAN

The Commission is committed to carrying out environmental monitoring as part of the overall environmental monitoring plan. That is, monitoring will be conducted by measuring quantitatively and qualitatively components in both the ecosphere and socioeconomic sphere before and during construction and operation of the landfill. Environmental monitoring will be conducted as part of the Commissions overall commitment to environment protection and as committed to in the EIA.

Monitoring will permit predictions in the EIA to be verified, it will also allow mitigative measures to be implemented, if necessary, in a timely fashion and will facilitate the minimization of environmental impacts. The monitoring program is designed to:

- provide for the collection of meaningful data that will allow mitigative measures to be implemented as required,
- fulfill all monitoring commitments made in the EIA,
- fulfill all monitoring required by the COA-O, and
- be flexible in scope and content such that the program can be easily adjusted to reflect real world conditions and ongoing monitoring

The monitoring program described herein is to be carried out in conjuncture with the routine inspection activities mandated in the Operations Manual. As part of the program, air quality, groundwater, surface water, leachate, noise, waste, visual buffers, assessment and land values, collection vehicles and traffic will be monitored during site operations, Groundwater and surface water monitoring will begin before construction and operational activities in order that meaningful baseline data is compiled. During the construction phase, groundwater and surface water, as well as dust, noise and traffic will be monitored as required by the current and subsequent COA-O.

The Environmental Coordinator, with assistance from the General Manager as required, will have overall responsibility for ensuring the Environmental monitoring plan is implemented, the required sampling stations established and the Environmental Monitoring Log is maintained as required in the COA-O.

Monitoring Components

- Air Quality
- Leachate
- Groundwater On-Site
- Groundwater Off-Site
- Surface Water
- Indiscriminate Dumping
- Waste Inspection
- Aesthetics
- Noise
- Property Assessments
- Collection Vehicles and Traffic

6.1 Air Quality

6.1.1 Monitoring Requirements

Non Methanagenic Compounds

Air quality monitoring will be conducted to confirm calculated emission rates from the landfill and off property for total suspended particulate (TSP), specifically air quality at a receptor 100 metres outside the peripheral road near the landfill. The sampling results will be monitored for a minimum of two years after which the sampling requirements will be determined by the current and subsequent COA-O. If quality does not meet the required levels, then mitigative measures will be under taken as required by the current and subsequent COA-O.

Landfill Gases

A monitoring schedule of methane concentrations will be established with the Commission's construction of the landfill gas collection system. The construction is expected to take place once the Commission has operated the landfill for at least five years and will coincide with the schedule for applying final cap to the initial landfill cells. The monitoring will be conducted according to the schedule, conditions and parameters detailed in the current and subsequent COA-O.

6.1.2 Remedial Measures

If TSP levels are higher than the regulated maximums the following remedial measures will be implemented during prolonged dry windy periods:

- treating the unpaved roads with water, or other dust control product, or method, approved by the current or subsequent COA-O,
- flushing and/or sweeping of paved roadways,
- treating areas where heavy equipment is operating with water or other chemical stabilizers approved by the current or subsequent COA-O,

If methane concentrations are above acceptable levels the collection system controls will be inspected adjusted as necessary and gas dissipated as required.

6.2 Leachate

6.2.1 Monitoring Requirements

Leachate collected from the waste disposal cells shall be sampled as required by the City of Saint John for BOD and other required parameters, and as required by current and subsequent COA-O.

6.2.2 Monitoring Responsibility

The Environmental Coordinator or his designate is responsible for engaging qualified sampling personnel, maintaining monitoring data, reporting monitoring results to the Commission as required and compiling data for the annual report. He or she is also responsible for forwarding monitoring data to the NBDOE as outlined in the current and subsequent COA-O. The General Manager is responsible for ensuring mitigative measures are undertaken as required.

6.2.3 Remedial Measures

Remedial measures will be undertaken as required.

6.3 Groundwater Monitoring Wells

6.3.1 Monitoring Requirements

The locations of groundwater monitoring sites are shown on Figure 6-1. Groundwater monitoring wells will be sampled place prior to acceptance of waste, and continue to be monitored for the parameters, and at the frequency outlined in the current, and subsequent COA-O.

6.3.2 Monitoring Responsibility

The Environmental Coordinate, or his or her designate, is responsible for engaging qualified groundwater sampling personnel, maintaining monitoring data, compiling data for the annual report and reporting monitoring results to the Commission as required. The Environmental Coordinator is also responsible for reporting the results to the NBDOE as required by the current and subsequent COA-O. The General Manager is responsible for taking mitigative measures as required.

6.3.3 Remedial Measures

From the analysis of the background water chemistry data, "trigger" concentrations will be established for key parameters. If these trigger concentration are exceeded, those wells will be sampled on a more frequent basis in accordance with the intent of ASTM PS 64-96. Should it become clear that these exceedances reflect a true change in water quality attributed to landfill presence, not statistical or seasonal variability, remedial measures will be implemented.

One or more of the following remedial measures will be considered:

• plume delineation and source identification by the construction and sampling of addition more closely spaced monitoring wells

- containment and remediation of affected groundwater by pump and treat
- containment of affected groundwater by slurry cut-off or reaction walls insitu groundwater remediation by biological and/or chemical means

6.4 Groundwater Domestic Wells

6.4.1 Monitoring Requirements

Two comprehensive rounds of domestic well groundwater sampling have been completed prior to placing waste at the site to establish a water quality baseline as required by the EIA. Future samples will be collected and analyzed for parameters established by the current and subsequent COA-O.

6.4.2 Monitoring Responsibility

The Environmental Coordinator or his or her designate is responsible for engaging qualified groundwater sampling personnel to maintaining monitoring data, reporting monitoring results to the NBDOE and Department of Health and Wellness as required by the current and subsequent COA-O. The General Manager is responsible for ensuring mitigative measures are undertaken as required.

6.4.3 Remedial Measures

From an analysis of the background water chemistry data, "trigger concentrations will be established for key parameters. If these trigger parameters are exceeded, those wells will be sampled and tested on a more frequent basis in accordance with the intent of ASTM PS 64-96. Should it become clear that these exceedances reflect a true change in water quality attributed to landfill presence, not statistical or seasonal variability, not other non-landfill source of contamination, remedial measures will be implemented. The Department of Environment and Health will be advised.

Should water quality deteriorate and become non potable as a direct result of the landfill operation, then one or more of the following remedial measures will be implemented so as to ensure that property owners have an acceptable water supply:

- Replacement of the domestic supply or supplies with an alternative supply
- Provision of in-line treatment using filtering processes

6.5 Surface Water

6.5.1 Monitoring Requirements

Surface water monitoring will be conducted at locations in the unnamed drainage basin, Henderson Brook and Mill Creek. Surface water sampling schedule and parameters are set out in the current and subsequent COA-O. In addition surface water that discharges from the sedimentation ponds shall be sampled as scheduled and for the parameters set out in the current and subsequent COA-O.

6.5.2 Monitoring Responsibility

The Environmental Coordinate or his/her designate is responsible for engaging qualified surface water sampling personnel, maintaining monitoring data, reporting results to the Commission as required and compiling data for the annual report. The

Environmental Coordinator is responsible for reporting results to NBDOE as required by the current and subsequent COA-O. The General Manager is responsible for ensuring mitigative measures are undertaken as required.

6.5.3 Remedial Measures

The discharge from the sedimentation pond shall have total suspended solids of 25 mg/L or less. If surface water contamination origination from the landfill is detected, one or more of the following remediation measures will be implemented

- Contamination source identification and restoration
- Adjust discharge practices (from the sedimentation pond)
- Containment and treatment
- Dilution and natural attenuation

6.6 Indiscriminate Dumping

6.6.1 Monitoring Requirements

All incidents of indiscriminate dumping at the gate will be recorded as observed in the Environmental Monitoring Log under the heading "Indiscriminate Dumping".

6.6.2 Monitoring Responsibility

All staff are responsible for reporting incidents of indiscriminate dumping as observed to the Environmental Coordinator or his/her designate who will record incidents in the Log. The Environmental Coordinator or his/her designate is responsible for ensuring the waste is removed and follow-up action taken as necessary.

6.6.3 Remedial Measures

Indiscriminately dumped waste will be removed and disposed of as appropriate in the landfill. All reasonable steps will be taken to determine the source of the waste and prosecution of alleged offenders will be undertaken.

6.7 Waste Inspection

6.7.1 Monitoring Requirement

On three randomly selected days each month, a random load of solid waste delivered to the facility, will be inspected in detail. The load will be discharged by the driver to an area within the landfill cell as directed by landfill staff. The load will be inspected for any regulated hazardous waste or other unacceptable wastes. If unacceptable wastes are suspected, landfill staff will contact the generator and/or hauling contractor or other parties responsible for shipping the waste to determine the actual contents of the waste.

6.7.2 Monitoring Responsibility

The Monitoring will be scheduled and conducted by the Environmental Coordinator or his/her designate. All observations made during the random inspections will be recorded in the Log.

6.7.3 Remedial Measures

If the waste is determined to be unacceptable the responsible party will be required to remove the waste at his or her own expense.

6.8 Aesthetics

6.8.1 Monitoring Requirement

The trees and plantings situated on the visual berm will be inspected seasonally to ensure maintenance of cover. Dead or dying will be noted in the Environmental Monitoring Log under "Aesthetics". Follow-up action will be taken as required

6.8.2 Monitoring Responsibility

The Monitoring will be scheduled and conducted by the Environmental Coordinator or his/her designate.

6.8.3 Remedial Measures

Trees and plantings will be replaced as required.

6.9 Noise

6.9.1 Monitoring Requirements

Noise levels will be monitored, if there are any complaints at locations near existing adjacent development. If found to be beyond acceptable levels, (55 dB) remedial measures such as equipment checks or construction of buffers or berms will be undertaken. All complaints are to be recorded in the Environmental Monitoring Log under the heading of "Noise".

6.9.2 Monitoring Responsibility

The Environmental Coordinate is responsible for engaging qualified personnel to conduct noise monitoring, as complaints arise. The Environmental Coordinate is also responsible for maintaining monitoring data for reporting as necessary and ensuring mitigative measures are taken as required.

6.9.3 Remedial Measures

Mitigating noise impacts will include equipment checks, maintenance of mufflered vehicles and ensuring construction and/or operations activities take place within normal operating hours.

6.10 Property Assessments

6.10.1 Monitoring Requirements

Property assessment and land values will be monitored to determine if any changes might be attributed to the landfill site.

6.10.2 Monitoring Responsibility

The regional provincial assessment branch will conduct the monitoring, and the General Manager will be responsible for maintaining liaison with the local assessors, and communicating with the Commission as required.

6.10.3 Remedial Measures

If property assessments are declining in a statistically significant manner, and because of landfill operations, remedial measures will be employed where possible. For example, if it is determined that assessments are declining due to noise, dust, odour or some other aesthetic parameter. The remedial measures identified for these occurrences will be implemented and monitored to ensure their effectiveness.

6.11 Collection Vehicle Maintenance

6.11.1 Monitoring Requirements

The hauling contractors will be monitored on a continual basis to ensure collection vehicles are properly equipped to contain garbage and prevent spillage or littering of the highways.

6.11.2 Monitoring Responsibility

The scale operator and disposal cell personnel will be responsible for continually visually monitoring incoming collection vehicles to ensure they are properly equipped to deliver waste. The Scale Operator will record all incidents of noncompliance and record them in the Environmental Monitoring Log under the heading of "Collection Vehicle Maintenance". The Scale Operator will report maintenance and safety issues and actions taken to the immediate supervisor on a regular basis.

6.11.3 Remedial Measures

For maintenance and safety issues the vehicle in question will not be allowed to deliver waste to the landfill until the necessary maintenance is completed.

6.12 Traffic

6.12.1 Monitoring Requirements

Monitoring of traffic is conducted on a continuous basis by both the City and the NBDOT. This will ensure any decrease in the level of service is rectified as identified.

6.12.2 Monitoring Responsibility

City of Saint John and NBDOT will monitor traffic.

6.12.3 Remedial Measures

Remedial measures will be undertaken by the City of Saint John and the NBDOT as required.

7.0 COMMUNICATION

The Commission has been and is committed to public consultation, providing accurate information about the project to the region as a whole and the local community near the

site in a timely fashion and ensuring mechanisms which allow for public input are in place and easily accessible.

Over the years the Commission have used and continue to use a variety of communication methods including:

- Publication of brochures, pamphlets and a news letter, strategic public displays, press releases, open houses, public meetings and articles in the local newspaper;
- Open monthly Commission meetings at which the public may attend and observe, if desired interested parties can have an opportunity to give presentations to the Commission, please see our web site for details;
- Support of the Fundy Future Environment Benefits Council, currently actively functioning as Crane Mountain Enhancement Inc., which is an independent community based advisory group monitoring all aspects of the landfill.
- A free telephone line (506-738-1212) staffed during normal operating hours; and
- A web site www.FundyRecycles.com and an e-mail address hotline@fundyrecycles.com

At present concerned citizens with questions about the Commission or the landfill facility itself may contact the Commission directly or the Crane Mountain Enhancement Inc.

The Commission employs a Recycling and Waste Diversion Supervisor and Public Education Personnel who act as a resource to the residents and businesses of the Region with respect to waste diversion and waste management issues. The Recycling & Waste Diversion Supervisor and Public Education Officer are available by contacting the Commission office.

In 1998 the on-site Administrative Building was constructed. This building has a permanent interpretative centre providing information about responsible solid waste management in the region. The Commission will also be preparing an annual report summarizing all activities at the landfill for each calendar year. The annual report will contain environmental monitoring data, a summary of waste throughput and other activities at the site.

The Commission will continue to utilize these consultation options as well as others, throughout the operating life of the landfill and welcomes all comments and questions.

APPENDIX A ENVIRONMENTAL PROTECTION PLAN

TABLE OF CONTENTS

1.0 INTRODUCTION

- 1.1 Background
- 1.2 Objective of the Environmental Protection Plan
- 1.3 Accompanying Documentation

2.0 LANDFILL FACILILTY

- 2.1 Landfill Design
- 2.2 Future Construction Activity

3.0 ENVIRONMENTAL PROTECTION PLAN - Operations

4.0 ENVIRONMENTAL PROTECTION

- 4.1 Site Access
- 4.2 Collection Vehicles
- 4.3 Incoming Waste Acceptable and Non-Acceptable Waste 4.3.1 Asbestos
- 4.4 Liner Protection
- 4.5 Cover
- 4.6 Nuisance Control
- 4.7 Indiscriminate Dumping
- 4.8 Burning
- 4.9 Leachate Management
- 4.10 Ongoing Monitoring- Operations
- 4.11 Landfill Gas
- 4.12 Ongoing Monitoring Environmental
- 4.13 Emergency Response
- 4.14 Staff Preparedness
- 4.15 Complaint Response

3.0 INTRODUCTION

1.1 Background

The Fundy Region Solid Waste Commission (FRSWC) opened their modern sanitary landfill in November 1997. The design and construction of the facility was completed in accordance with the requirements of the Minister of the Environment under the Clean Environment Act.

Design and construction of the landfill incorporated a number of features to minimize potential environmental risks with the project. Although many of the environmental concerns were with the initial project construction, there will be ongoing work which will require management of environmental risks. This Environmental Protection Plan (EPP) provides supplementary information to ensure future construction activities are carried out in an environmentally sensitive manner. The plan outlines the specific activities which have potential environmental consequences, generally related to erosion and sedimentation control during construction, and identifies those measures which can be taken to minimize the risk to the environment.

1.2 Objective of the Environmental Protection Plan

Specifically the objectives of this environmental protection plan are to:

- document potential environmental concerns related to future landfill construction activities;
- to identify the appropriate environmental protection measures that can be implemented;
- to provide documentation to operations staff to ensure environmental issues are identified and addressed accordingly; and
- to ensure environmental mitigation techniques are consistent with the ongoing site operations

1.3 Accompanying Documentation

This environmental management plan should be read in conjunction with the following documentation:

- Crane Mountain Landfill Management Plan
- Crane Mountain Landfill Preliminary Design Report
- Crane Mountain Landfill Operations Manual

These documents provide additional information to that included in the EPP and operations staff should be familiar with each.

Also available to the FRSWC landfill staff are individual construction contracts showing details and specific application of environmental mitigating techniques discussed in the EMP.

3.0 LANDFILL FACILITY

Environmental protection has been paramount in the design and construction of the Crane Mountain landfill. A significant portion of the cost of the facility is related to the construction of both permanent and temporary facilities to minimize the potential for erosion on site, and escape of sediment laden runoff from the site.

The most significant potential for erosion and sedimentation was during the construction of the initial cell, perimeter road, site ditching, ancillary buildings and temporary facilities. All contracts included requirements for environmental protection, including temporary sedimentation ponds, ditching, sedimentation fencing, erosion control structures, and slope stabilization, as the works were completed the temporary structures were removed

In addition to temporary features, permanent facilities, including a sedimentation control pond and interceptor and perimeter ditching have become part of the landfill operation. These facilities have been designed to accommodate activities related to ongoing landfill operations, however, it will be necessary to supplement these with further temporary works as the landfill progression occurs.

This section provides a summary of the design rational related to sedimentation and erosion control, and as well, describes the significant construction activities with potential environmental risks over the life of the site.

2.1 Landfill Design

Preparation of a stormwater management plan is a critical component of landfill design, and is the prime tool in minimizing potential negative environmental impacts associated with construction. The primary objectives of such a plan are to:

- minimize the amount of overland runoff that becomes contaminated with sediment;
- minimize erosion potential by stabilizing soil and reducing flow velocities;
- convey uncontaminated runoff to a natural watercourse at rates and quantities that will not aggravate erosion; and
- collect and treat sediment laden runoff prior to discharge to the receiving watercourse.

Stormwater management features such as drainage ditches were designed to accommodate precipitation design events defined by a 100 year return event. Culvert design was based on a 100 year return event.

Sediment laden runoff from disposal and support areas will be drained to the sedimentation pond for an on-site settlement/ treatment to lower the suspended solids (SS) concentrations to the acceptable limits established by the New Brunswick Department of Environment for this location prior to discharging into receiving waters.

To permit construction of the facilities designed as part of the StormWater Management Plan, and to supplement these facilities during ongoing construction activities, a construction erosion and sedimentation control plan was prepared. This was incorporated into construction documents during initial construction, and will be required for future construction activities.

2.2 Future Construction Activity

Most of the ancillary facilities associated with the landfill, including buildings and roadways, have been completed. There will be, however, ongoing construction activities throughout the life span of the landfill. Major construction activities are noted as follows.

New Cell Construction

The initial cell was constructed in the northeast corner of the landfill footprint. Cell 2 was constructed immediately west of the first cell, with the following cell progressing southerly. Activities associated with new cell construction include grubbing, excavation, temporary ditching, berming, construction of soil composite liner and temporary access ramps.

Completion of Perimeter Road

Under the initial construction, the perimeter road was completed from the site entrance, along the west side of the landfill cell footprint and continuing around the footprint to the Operations/Maintenance Building. There remains a 700 m stretch to complete the perimeter road loop. Construction of the perimeter road may proceed in short sections as the cell progresses, or in one contract. This will be determined at a later date by the Commission.

Ditches and Trenches

As part of the cell construction, temporary perimeter ditches will be constructed. The purpose of these ditches is to prevent overland flow away from entering the construction area from the landfill cell construction by directing flows to adjacent roadway ditches. Sediment laden water from the construction area will be directed to the sediment control ponds.

As well, if required to improve the drainage of the existing soils, interceptor ditches will be constructed to help drain the future cell subgrade. Again these ditches would be directed toward the landfill perimeter ditching.

Temporary Access Roads

Temporary access roads will be constructed as required for construction purposes.

Excavation of daily cover

Options for provision of daily cover for the site include excavation of on-site materials as well as importation of borrow material. Because of the cost benefit associated with obtaining the material on-site, and the potential for merging this requirement with excavation for future cells, there will be on-going grading activities on adjacent future cell sections. Material would be stripped cleared, grubbed and stockpiled for future use.

3.0 ENVIRONMENTAL PROTECTION PLAN - Operations

The Environmental Protection Plan (EPP) is a project specific plan that is the practical application of the mitigative measures in the EIA and the terms and conditions set out by the Lieutenant Governor in Council in the approval of the site. The purpose of the EPP is to serve as a ready, easy to understand and quick reference of environmental protection measures to be employed during the construction and operation or the Fundy Region Waste Management Facility.

The EPP is prepared under the broader framework of the Environmental Management Plan. For this facility, two separate plans have been prepared, one plan will deal specifically with construction related issues, the other with operations.

The EPP – Construction identifies future construction activities at the site, mitigation strategies, and specific construction methods to prevent significant environmental impacts. Environmental procedures for clearing, grubbing, excavation, and sediment control are included.

The EPP – Operations - presents protection measures to be employed during operation of the site and covers issues relating to monitoring of incoming waste, groundwater, leachate handling, aesthetics, operational environmental emergency response and training.

The following document presents the EPP – Operations for the Fundy Region Solid Waste Management Facility. It is developed in accordance with Commissions Commitment to operating an exemplary facility, ensuring all environmental obligations are met or exceeded and no unacceptable environmental impacts are incurred.

4.0 ENVIRONMENTAL PROTECTION

Environmental protection for the operations phase at the Fundy Region Waste Management Facility is achieved through the consistent and continual application of procedures outlined in the Operations Manual and the Environmental Management Plan.

Operations procedures have been planned with due regard for environmental protection, operations staff at the site have been trained in environmental protection procedures and will carry out their operations functions accordingly, ands finally, operations at the site will be continually monitored to ensure environmental protection is provided.

The following sections highlight the specific procedures to be undertaken for environmental protection during the operations phase at the landfill.

4.1 Site Access

In order to control waste entering the site and to ensure that it is "acceptable", physical access to the site will be restricted by the use of an entrance gate as well as other natural barriers and fences at various locations of the site. The entrance gate will be locked outside of normal operating hours. All gates and entrances will be inspected regularly in accordance with the schedule outlined in the Operations Manual. In addition a key log will be maintained to control access.

Reference 2.1.1, 2.1.2, 11.0 Operations Manual

4.2 Collection Vehicles

The hauling contractors will be monitored on a continual basis to ensure collection vehicles are properly equipped to contain garbage and prevent spillage or littering of the highways. The scale operator and disposal cell personnel will be responsible for continually visually monitoring incoming collection vehicles to ensure they are properly equipped to deliver waste. The Scale Operator will record all incidents of non-compliance and record them in the Environmental Monitoring Log under the heading of "Collection Vehicle Maintenance". The Scale Operator will report maintenance and safety issues and actions taken to the immediate supervisor on a regular basis.

Reference: 6.11 Environmental Management Plan

4.3 Incoming Waste – Acceptable and Non – Acceptable Wastes

All incoming waste will be monitored to ensure that only acceptable wastes are received at the site. An initial inspection will be carried out by the Scale house operator where possible, inspection for prohibited wastes will also be conducted at the working face by Landfill Spotters and Equipment Operators. In addition, detailed random load inspections will be carried out three times per month by the Environmental Coordinator or his designate.

Reference: 6.1.1, 6.1.2, 6.2.3, 6.2.4, 6.3 Operations Manual

4.3.1 Asbestos

Asbestos generated within the Fundy Region will be accepted for disposal at the facility in accordance to strict conditions and procedures outlined in the Operations Manual and the current and subsequent COA-O.

Reference: 6.2, 3.6 Operations Manual

4.4 Liner Protection

The liner under the disposal cell will be protected during the initial placement of waste. The waste placed in this initial lift will be inspected to ensure that no large, bulky or long items could potentially harm the liner system. Wastes of concern include rebar, pipes, and large pieces of demolition rubble. Preferred waste to deposit closer to the liner includes non- bulky residential waste, in addition a bulldozer will be used for primary spreading and compacting during initial waste placement activities, as opposed to a compactor.

Reference: 6.7 Operations Manual

4.5 Cover

Daily, intermediate and final cover will be placed on waste deposited ion the cell to minimize wind blown litter, leachate, vectors, and odors. A minimum of 150 millimetres of cover is required on a daily basis, and an additional 150 millimetres is required on areas that will not receive wastes for more than 30 days (intermediate cover). When filling, in a particular area, reaches design elevation, final cover will be applied. Design details are located in the Current and subsequent COA - C, and COA - C.

Reference: 6.3.3, 6.4, 6.5 Operations Manual

4.6 Nuisance Control

Litter

Litter will be controlled by the use of daily cover, 4.0 metre high portable litter fences, and stationary litter fencing placed strategically around the disposal cell to capture wind blown litter. In addition, the length of the working face will be minimized to facilitate cover and litter control. Litter encountered at the site will be collected as required and deposited at the working face.

Reference: 6.3.3, 7.1, 11.0 Operations Manual

6.11 Environmental Management Plan

Odour

Odour will be controlled by the use of daily cover, immediately covering unusually odorous loads, elimination of localized surface water ponding or drainage problems.

Reference: 7.2, 11.0 Operations Manual

Dust

Dust will be controlled as required by treating unpaved roads with water, sweeping of paved roads, treating areas where heavy equipment is operating, and $\,$ as required by the current and subsequent COA - O.

Reference: 7.3.2 Operations Manual

6.1 Environmental Management Plan

Noise

Noise will be controlled by the use of mufflers and regular inspection and maintenance of all on-site equipment. Noise will also be minimized by the existing vegetation at the site and the man-made berms. Procedures for monitoring noise are presented in the EMP.

Reference: 7.5 Operations Manual

6.9 Environmental Management Plan

4.7 Indiscriminate Dumping

Any indiscriminately dumped waste will be removed immediately and deposited in the transfer container or at the working face. All reasonable steps will be taken to determine the source of the waste and prosecution of the alleged offenders will be undertaken whenever possible.

Reference: 7.7 Operations Manual

6.6 Environmental Management Plan

4.8 Burning

Open burning of waste at the site is not permitted. Hot loads will be placed in a secure area until cool then they will be placed in the cell. Procedures for dealing with on-site fires are presented in the Emergency Response section of the Operations Manual

Reference: 7.6, 13.5.1 Operations Manual

4.9 Leachate Management

The proper collection and disposal of leachate is what sets modern containment landfill; apart from disposal sites of the past. The following has been incorporated as leachate management methods to ensure environmental protection.

The leachate collection system is situated on top of the lining system. A series of perforated pipes collect the leachate from the waste layer and direct it, via gravity, to collection sumps located on the southern side of the disposal cell. To prevent the storing of leachate in the disposal cell and as a control measure during extreme precipitation events leachate can be pumped to a constructed leachate surge lagoon where it is pumped into tanker trucks and transported to the Lancaster Sewage Treatment Facility for treatment. A back up power system is in place to provide continued operation of the leachate collection system during power interruptions. The current and subsequent Certificates of Approval to Operate will detail the operating conditions and requirements of the leachate collection system. A Copy of the Commission 2005 Leachate management plan is found in appendix C.

Also as part of operations environmental protection procedures, leachate will be monitored as outlined in Section 6.4 of the EMP.

Reference: 10.0 Operations Manual

6.4 Environmental Management Plan

4.10 Ongoing Monitoring – Operations

As part of normal operations, monitoring of virtually all components of landfill operations will be conducted on an on-going basis. Active areas of the site will be inspected daily by the Operations Supervisor and inactive areas will be inspected on a weekly basis. The inspections will be recorded in a log. The following components of the landfill operations will be monitored:

- site access and gates and entrances
- site visitors
- incoming waste deliveries and general sources
- litter control litter fences, buffer zones, etc.
- odours, dust
- erosion and sediment control measures
- leachate collection and handling equipment
- landfill gas
- noise
- equipment
- buildings
- landscape and berms
- incoming collection vehicles

Reference: 11.0 Operations Manual

4.11 Landfill Gas

A monitoring schedule of methane concentrations will be established when the Commission constructs the landfill gas collection system. The construction is expected to take place once the Commission has operated the landfill for at least five years and will coincide with the schedule for applying final cap to the initial landfill cells. The monitoring will be conducted according to the schedule, conditions and parameters detailed in the current and subsequent COA-O.

Reference: 9.0 Operations Manual

6.1 Environmental Management Plan

4.12 On- Going Monitoring – Environmental

Monitoring of surface water, leachate, groundwater, discharge fro the sedimentation pond, domestic wells in the vicinity of the site, air quality, and site aesthetics will be monitored as required by the current and Subsequent COA–O. The purpose of monitoring is to, among other things allow for remedial measures to be implemented, if necessary, in a timely fashion and to minimize any potential negative environmental impacts. Environmental monitoring will be carried out under the direction of the Environmental Coordinator.

Reference: 6.1, 6.2, 6.3, 6.4, 6.5, 6.8 Environmental Management Plan

4.13 Emergency Response

Both environmental and operational response plans for incidents at the landfill facility have been prepared. Response Plans for the following environmental emergencies have been prepared and are included in the Environmental Management Plan:

- Petroleum Spills Section 5.2
- Chemical Spill Section 5.3
- Forest Fires Section 5.4
- Sedimentation Pond Failures Section 5.5

Environmental emergency response is directed by the Environmental Coordinator with assistance from outside experts as required. A Contingency Plan has been developed to detail roles and responsibilities during an emergency response situation. See appendix B

Emergency response plans for the following operational situations have been prepared, and are included in the Operations Manual:

- Evacuation Section 13.4
- Fires Section 13.5.1
- Accumulation of Explosive Gas Section 13.5.2
- Lightning Section 13.5.4
- Power Outages Section 13.5.5

- Medical Emergencies Section 13.5.6
- Vehicular Accidents Section 13.5.7

Response procedures for operational emergencies will be directed by the Operations Supervisor.

Reference: 13.0 – Operations Manual 5.0 – Environmental Management Plan

4.14 Staff Preparedness

All staff will be trained to perform his or her job in a safe, efficient and environmentally responsible manner. All staff will be required to undergo training before being permitted to work at the site. This training will ensure all workers have a:

- Sound understanding of the Commission's commitment to environmental protection
- General awareness of the environment
- Appreciation of the impacts their actions have on the environment and,
- Understanding of how to complete their specific job without negatively impacting the environment while protecting their safety and the health and safety of others.

The Environment Coordinator is responsible for conducting training and documenting participation for personnel files.

Reference: 2.2.2 Operations Manual

3.2 Environmental Management Plan

4.15 Complaint Response

From time to time, complaints regarding landfill operations may be received. To ensure good community relations are maintained and any potential negative environmental impacts are minimized, responses to complaints will be prompt and courteous.

Any complaint will be referred to the General Manager or his/her designate for an appropriate, timely response and follow-up as may be required.

Reference: 12.2 Operations Manual

APPENDIX B

EMERGENCY RESPONSE CONTACT LIST AND RESPONSE PROCEDURES

13.0 Emergency Response Contingency Plan

13.1 Contact List

In the case of emergency, FRSWC employees will follow the procedure outlined in section 11.2. Contact information for FRSWC contacts, emergency services and regulatory officials is included in the table below.

Table 1. Emergency Contact List

Agency	Contact Person	Telephone Number
Note: for fire, medical, police and emerger	ncy calls dial 911 for 24 h	our emergency service
Fundy Region Soli	d Waste Commission C	ontacts
General Manager	Current Manager	(506) 738-1213 (W)
		(506) 650-1720 (C)
Environmental Coordinator	Current Environ.	(506) 738 1203 (W)
	Coordinator	(506) 647-4270 (C)
Operations Officer	Current Supervisor	(506)738-1204 (W)
	·	(506) 333-7146 (C)
Alternate Officer	Current Supervisor	(506) 738-1257(W)
	·	(506) 333-4573
Regional	Emergency Services	
RCMP (Grand Bay - Westfield)		(506) 757-1020
Fire (Grand Bay - Westfield)		(506) 757-8343
Hospital (Saint John Regional)		(506)648-6000
Reg	ulatory Contacts	
NBDELG SJ Office(during business		(506) 658-2558
hours)		
Canadian Coast Guard (after hours)		1-800-565-1633
	tors for Emergency Res	
W& S General Contractors	William Shannon	(506) 635-8735
Simpson Contractors	Andrew Simpson	(506)635-8711

13.2 Organization

The organizational structure and individual roles and responsibilities during the implementation of the ERCP are as follows;

Response Team Organization and Duties

General Manager Phone # Office 738-1213

Cell 650-1720

Environmental Coordinator Phone # Office 738-1203

Cell 647-4270 Cell 651-5567

Operations Officer Phone # Office 738-1204

(First Alternate) Cell 333-4573

Alternate Officer Phone # Office 738-1257

(Second Alternate) Cell 333-4573

13.3 General Manager Duties

Overall corporate responsibility for the plan including:

- Provide necessary resources to fund the plan
- Liaison with regulatory authorities and others
- Formulate the release information for the Environmental Coordinators Approval
- Monitors information flow for accuracy
- Provides advice to the Environmental Coordinator based upon evaluation and research
- Anticipates future actions based on potential scenarios

13.4 Environmental Coordinator Duties:

Gather and evaluate information:

- Analyze the situation
- Establish objectives
- Develop a plan of action

Organize personnel and material resources:

- Develop the organizational structure for the situation
- Requisition the necessary equipment

Direct Resources:

- Delegate functions
- Brief Staff
- Approve request for additional resources
- Approve requests to release resources

Coordination:

- Command
- Operations
- Tasks

Communications:

- With staff regarding operations logistics, and planning
- Ensure plans are appropriate
- Demand continuous feedback
- Authorize release of information

Evaluate:

- Effectiveness of the action
- Compare to established objectives

3.5 Operations Officer

- Manages the team dealing directly with the problem
- Puts action plans into effect
- Coordinates multi-agency responses
- Advises the Environmental Coordinator
- Charged with providing requested equipment and manpower
- Responsible for directing the team working to contain and reduce immediate environmental damage
- Responsible to direct the team working on site cleanup once emergency is over.

13.6 Alternate Officer

Will assist the response team as directed by the Environmental Coordinator

13.7 Initial Response

Spill or other Emergency:

- Ensure no danger to yourself or others in the immediate vicinity
- Use appropriate personal protective equipment (PPE) as required
- Contain spill and/or control emergency scene
- Contain spills by blocking ditches, culverts, etc, if necessary
- Immediately contact your supervisor to report the incident, initiate emergency response and actions required by the Commission's Current Certificate of Approval to Operate.

13.8 Internal Reporting Procedure

An incident would be reported by landfill staff by contacting the proper personnel. It is expected that if the person named cannot be contacted his/her designated alternative(s) will be contacted. Do not give up until someone on the list has been contacted. The following pages contain contact information for all Commission managers, staff, and employees.

13.9 External Reporting Procedure

External alerting will take place any time the situation grows beyond the ability of personnel to respond, if there is any threat to public safety and as directed by the Commission's current Certificate of Approval to Operate.

13.10 Action Plan

Upon notification of an incident, the Environmental Coordinator or his/her designate shall immediately dispatch a staff member to the site with the appropriate PPE and equipment to supervise the initial response and report on the situation. The Environmental Coordinator or his/her designate will convene a meeting with appropriate staff to initiate an operational response to the situation.

This Group will determine the following:

- Risk to public and environment (present and potential)
- Ability of on site resources to handle the situation
- Do outside agencies need to be informed?
- Does the response team need to be activated?
- Is there a need for outside expertise?

Having answered these questions, an operational action plan will be developed and initiated immediately.

APENDIX C

LEACHATE MANAGEMENT PLAN

LEACHATE MANAGEMENT PLAN FUNDY REGION SOLID WASTE COMMISSION SAINT JOHN, NEW BRUNSWICK

TABLE OF CONTENTS

		<u>Page</u>
TA	ABLE OF CONTENTS	i
1.	BACKGROUND	1
2.	CURRENT LEACHATE SITUATION AT CRANE MOUNTAIN	5
3.	FUTURE LEACHATE MANAGEMENT INITIATIVES	7
4.	CONCLUSION	. 8
APl	PENDIX A ASSESSMENT OF LEACHATE MANAGEMENT OPTIONS AUGUST 2003	

1.0 BACKGROUND

The Fundy Region Solid Waste Commission Started Operations on November 10^{th,} 1997. During the design phase of the project the Commission reviewed various options for the treatment of leachate generated at the landfill. Ultimately the decision was made to treat leachate with the Zenon, Zenogem/Reverse Osmosis process. The treatment Facility was designed to treat the generated leachate to Fresh Water Aquatic Levels which would allow the discharge of treated leachate on site.

During the first year the landfill operated all the leachate that was generated was trucked to the City of Saint John and treated at the Lancaster Waste Water Treatment Facility. The City of Saint John bylaw requires that wastewater received for treatment is 400 mg/l or less when a BOD5 sample is analyzed. When leachate sampling indicated that the BOD exceeded 400mg/l the landfill was required to pre-treat its leachate prior to trucking the leachate for disposal at the Saint John wastewater facility. This was accomplished by diluting the leachate with water to lower the BOD result to 400mg/l or less.

By the fall of 1998 the construction of the Water Treatment Facility (WTF) at Crane Mountain Landfill was completed. The commissioning of the WTF was expected to be complete by the end of December, 1998, unfortunately numerous process complications delayed the completion of this process for close to 2 years and approval to discharge on site was not approved until 2002.

The unique situation that was being dealt with was the fact that the proposed WPF was the first of its kind in the world. Although Zenon operated several plants in Europe, none were required to meet the conditions set for the Crane Mountain site, which was to treat leachate from residential and ICI waste. At that time the Commission members understood that the desire to develop the landfill as an exemplary facility with high environmental standards would require more significant capital investment and annual operational costs than other more conventional methods of treatment. It was only after the plant went into operation that the extent of the operating cost was known. As it turned out, these costs exceeded the Zenon estimate by a wide margin.

Although by the end of 2002 the exterior side slopes of cell 1 and the larger portion of the exterior side slopes of cell 2 were already capped there was a general consensus that the WTF was unable to treat all of the leachate being generated within the landfill. The practice of trucking leachate to the Lancaster Waste Water Treatment Facility for treatment and storing leachate within the containment cell had become a very significant component in managing leachate.

The Zenon facility was only able to treat and discharge on site an average of 68m3/day compared to the design of 87m3/day due to seasonal conditions and operational planned and unplanned maintenance. More significantly, less than half of the total leachate flow

from the landfill was being processed by the WTF. In addition to capacity and high cost issues, commission staff needed to deal with large surge flows of leachate during heavy rainfall events.

In February of 2003 the Fundy Region Solid Waste Commission formed a sub-committee to review leachate management issues at the Crane Mountain Landfill. The sub-committee included representation from Commission executive and staff as well as representatives of the local communities, the Department of the Environment and Local Government and the City of Saint John. Although the Department of Environment and Local Government representative did not attend many of the working group meetings, he received printed reports and was kept updated on a regular basis on the direction the sub-committee was heading.

The major issues needing to be addressed were the assessment of the current containment, treatment and disposal methods of leachate at the landfill. The primary issues being, Cell holding capacity and its designed intent, as well as the Zenon facilities capability to deal with the leachate that is currently being generated. The focus of the sub committee was to investigate options within the existing system and the goal being to establish a treatment system that can meet current and future requirements.

The following were some of the areas of consideration;

- Need for sufficient surge capacity to handle storm and seasonal conditions
- Need to determine what maximum volume of surge capacity will be required
- Need to determine at what point during the life of the landfill the maximum surges are most likely to occur
- Need for a system that can effectively process 100% of the leachate generated on a vearly basis
- Need to determine what the maximum yearly volumes will be and when this peak will likely occur
- Need to look at our existing system and determine whether an expansion is possible or cost effective
- Need to investigate other available options and the financial costs associated with them.
- Need to take into consideration and consult with representatives of the local communities and other parties with vested interest.
- Need to proceed toward solutions that are environmentally acceptable

In August 2003 the sub committee concluded its work and submitted a recommendation and a consultant report prepared by Gemtec Ltd. based on sub-committee input to the Commission. The focus of the sub-committee was to investigate possible options for leachate treatment and disposal and the associated costs. There were five options found to be worth serious consideration, those being, the expansion of the Zenon facility, to pretreat at Crane Mountain and then pipe to Grand Bay-Westfield, to pipe or truck untreated leachate to the Lancaster sewage plant down highway 7 or to pipe untreated leachate to the Lancaster sewage plant via the Westfield Rd. A review of the options indicated that the expansion of the Zenon facility was not viable given that its lifecycle costs were 55 to 60

million higher than the other options. The committee thus concluded by making three recommendations; 1) to design and obtain regulatory approval for a surge pond to be constructed in 2004, 2) to proceed to the next phase of studying pipeline options to Saint John (directly or via the Westfield Rd.), and 3) to make a decision on the timing of shutting down the Zenon facility. Consequently although the tanks have been used to store leachate when required the WTF ceased processing leachate in January 2005.

Based on estimates and numbers provided by the Commissions consultant Gemtec Limited as found in the August, 2003 *Assessment of Leachate Management Options* (Appendix A) document, the following can be predicted. The average daily flow during the period of maximum uncapped area is estimated at 213 cubic meters / day and when the uncapped area is reduced to six hectares, the average flow is reduced to an average of 160 cubic meters / day. These volumes included leachate that would be generated with the construction and operation of Cell 4.

The Fundy Region Solid Waste Commission awarded a contract to Gemtec Ltd. to site, design and obtain regulatory approval for a leachate surge pond at the Crane Mountain Landfill, the preparation of tenders for construction and managing the project through to completion. The purpose of this pond is to act, as a short term holding pond for leachate during extreme storm events when leachate volumes generated may be greater than the Cells holding capacity. The leachate would need to be pumped from the surge pond into tanker trucks for off site disposal in the days following a storm event. This project received approval and the construction of the Surge Pond and related pumping and control system has been completed.

The issue of landfill cells holding or storing leachate was one of the issues recognized by the Commission when the sub-committee to review leachate management issues at the Crane Mountain Landfill was formed and subsequently the August, 2003 Assessment of Leachate Management Options report was produced. In January 2005 the Commission made the decision to close the on site WTF and proceed with trucking all of the leachate generated at the landfill to the Lancaster facility for treatment and disposal. This decision was made only after continuing communications with the City of Saint John management staff and with the understanding that the City of Saint John would and could accept all of the commission's leachate without pre-treatment. This agreement required that the City of Saint John receive all the leachate generated at the Crane Mountain Landfill. Consultants for the City of Saint John have concluded that the city's treatment facility can effectively handle and treat all of the present and future leachate that is and will be generated at the Crane Mountain landfill. The Commission and the City of Saint John and its consultants are currently in the process of finalizing an agreement. (See correspondence The new agreement will permit all the leachate generated at the Crane in Appendix B). Mountain Landfill to be treated at the City of Saint John, Lancaster Wastewater Treatment Facility. This agreement will set a disposal charge per cubic meter for all leachate with a BOD of 400 mg/l or less. The agreement will include

a surcharge formula for any leachate that exceeds the 400 mg/l BOD level. The City of Saint John has agreed to currently receive all of the landfills leachate without the requirement of pretreatment as a finalized agreement is imminent.

The leachate management plan presented here represents a number of management options the Commission has to consider for controlling leachate in a cost effective manner as the landfill continues to develop landfill infrastructure and implement additional environmental controls. The current landfill area is depicted in Figure 1.

2.0 CURRENT LEACHATE SITUATION AT CRANE MOUNTAIN

The current leachate management system at the Crane Mountain Landfill includes a number of systems and facilities for the collection, containment, transportation and treatment of leachate. The basic concept of the Leachate Management system as it is currently being applied can be described as a cell with an engineered composite liner system of clay and HDPE geomembrane material, a series of collector pipes which direct leachate to a sump where the leachate can be pumped out for disposal, or during severe weather events, re-directed to the surge lagoon for temporary storage. The leachate is trucked to the City of Saint John, via Commission owned trucks with tanker trailers for treatment at the Lancaster Waste Water Treatment Facility. The Commission has a standby trucking contract with independent contractors should it be necessary to truck additional leachate volumes during a severe weather event. The existing three tanks at the WTF are available for storage of leachate if required. These tanks have the combined capacity of storing up to 500,000 gallons of leachate.

The Commission purchased two new trucks in December 2005 for transporting leachate to the Lancaster Waste Water Treatment Facility for disposal. These new trucks will provide dependable and reliable service for the Commission for several years. The commission now has two full time truck drivers whose primary job is to truck leachate. Additionally in the fall of 2005, the Commission created a part time position for an additional truck driver as well as continuing to utilizing other qualified drivers on a casual basis.

Significant rainfall events occurred in the fall and early winter of 2005. At this time the lower half of Cell 4 was operational, Cell 3 was uncapped, Cell 2 had one side caped and Cell 1 had two sides capped. The leachate generated was effectively controlled using the current management options. The leachate was directed to the surge pond and the leachate levels in the cells were brought to low levels within a few days by trucking leachate using Commission and standby trucks.

According to information gathered through Environment Canada's reports, the Saint John Region and the Province of New Brunswick experienced several severe weather events in 2005. Heavy rain in March through April, combined with melting snow, brought flood waters in the Saint John River just ½ metre below the level of the 1973 flood, considered to be a once in 200 year occurrence. The fall brought significant rainfall much of it as a

result of the effects of an unusually severe hurricane season. The Saint John region received 246 millimeters in the month of October just shy of a record rainfall amount.

Utilizing all the leachate management options currently in place has allowed the commission to manage its current leachate flows and effectively lower the volume of leachate stored in the containment cells.

3.0 FUTURE LEACHATE MANAGEMENT INITIATIVES

The Commission intends to continue to research and investigate the pipeline options brought forth in the August 2003 Gemtec Ltd. report, *Assessment of Leachate Management Options*. The option of a pipeline to transport leachate to the Lancaster Waste Water Treatment Facility for disposal whether via Highway 7 or the Westfield Road will require significant time to research, approve, fund and construct. The project would require the involvement and participation of the public and municipal, provincial and federal levels of government, various shareholders, regulatory authorities and others.

The Commission intends for the time being to manage its leachate flow using the current options available. At the same time projects which have direct impacts on leachate generation as well as projects which need construction to be timed and coordinated with our leachate management plan will be undertaken in 2006.

In 2005 the Commission actively pursued the development of a gas management plan for the Crane Mountain Landfill. CH2M Hill was retained by Gemtec Ltd. to assess the landfill gas potential of the Crane Mountain Landfill and to develop a landfill gas management plan for the site that would specifically address control of odors generated by waste placed at the facility. In November 2005, the report titled, *Crane Mountain Landfill Site Landfill Gas Management Study*, by Gemtec Ltd. and CH2M Hill, was submitted to the New Brunswick Department of the Environment and Local Government. The report included an assessment of landfill gas generation rates, evaluation of options available for landfill gas management, conceptual design details, as well as capital and operational cost estimates.

The Commission has budgeted to purchase a generator system in 2006. This generator system will be capable of supplying the electrical power necessary to operate the all the leachate pumping requirements on site and will allow for uninterrupted control and management of our leachate system.

The Commission has budgeted to install final capping to some of the presently uncapped area within the landfill containment cells in 2006. The timing and coordination of capping construction and landfill gas collection infrastructure construction will be a cost effective approach to the completion of these projects in 2006 and following years.

4.0 CONCLUSION

The leachate management techniques and infrastructure currently in place at the Crane Mountain Landfill have demonstrated the ability to deal with leachate flows experienced under normal and extreme conditions.

The surge pond was first used in October 2005 and has added a very significant measure of control and comfort in leachate management. With the implementation of additional capping in 2006, leachate volumes will be further reduced from current levels. Current leachate volumes and the volumes expected to be generated in the foreseeable future can be effectively managed with the techniques currently used and with the implementation of timely final capping construction.

Well Driller's Report

Date printed 4/17/2023

Drilled by

Well Use Work Type Drill Method Work Completed Drinking Water, Domestic New Well Rotary 04/25/2016

Casing Informa	ation Cas	Casing above ground		Drive Shoe Used?
Well Log Casing	Type Diameter	From	End	Slotted?
30315 Steel	15.24cm	0m	6.10m	

Aquifer Tes	t/Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	7.62m	4.55 lpm	1hr	22.86m	4.55 lpm	No	0 lpm
	(BTC - Below to	n of casina)					

Well Grouting

There is no Grout information.

Drilling Fluids Used
None

Disinfectant
Bleach (Javex)
Submersible
Intake Setting (BTC)

Qty 0L 67.06m

Driller's	Log				
Well Log	From	End	Colour	Rock Type	
30315	0m	3.66m	Brown	Fill	
30315	3.66m	73.15m	Red and grey	Sandstone	

Overall Well Depth 73.15m Bedrock Level 3.66m

Water Bearing Fracture Zone					
Well Log	Depth	Rate			
30315	67.06m	4.55 lpm			

Setbacks	•		
Well Log	Distance	Setback From	
30315	21.34m	Septic Tank	
30315	39.62m	Septic Tank	
30315	28.96m	Leach Field	
30315	47.24m	Leach Field	
30315	21.34m	Center of road	

Report Number 37197

Well Driller's Report

Date printed 4/17/2023

Drilled by

Well Use Work Type Drill Method Work Completed Drinking Water, Domestic New Well Rotary 11/08/2018

37197	Steel	15.24cm	0m	21.34m	
Well Log	Casing Type	Diameter	From	End	Slotted?
Casing	Information	Casing above o	ground		Drive Shoe Used?

Aquifer Tes	t/Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	12.19m	136.5 lpm	1hr	12.19m	136.5 lpm	No	0 lpm
	(BTC - Below to	ס of casina)					

Well Grouting

There is no Grout information.

Drilling Fluids Used
None

Disinfectant
Chlorine pellets
Submersible
Intake Setting (BTC)

Qty 0L 24.38m

Driller's	Log			
Well Log	From	End	Colour	Rock Type
37197	0m	5.49m	Grey	Sandstone
37197	5.49m	19.81m	Brown	Clay
37197	19.81m	36.58m	Grey	Sandstone
37197	36.58m	42.67m	Brown	Clay

vvaler be	earing Fract	ure Zone	
Well Log	Depth	Rate	
37197	36.58m	136.5 lpm	

Setbacks	3	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Casing Information	Casing above ground		Drive Shoe Used?	
Well Log Casing Type	Diameter	From	End	Slotted?
37197 Steel	15.24cm	0m	21.34m	

Aquifer Test/	Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	12.19m	136.5 lpm	1hr	12.19m	136.5 lpm	No	0 lpm

Well Grouting	Drilling Fluids Used	Disinfectant	Pump Installed
There is no Grout information.	None	Chlorine pellets	Submersible Intake Setting (BTC)
		Qty 0L	24.38m

Driller'	s Log			
Well Log	g From	End	Colour	Rock Type
37197	0m	5.49m	Grey	Sandstone
37197	5.49m	19.81m	Brown	Clay
37197	19.81m	36.58m	Grey	Sandstone
37197	36.58m	42.67m	Brown	Clay

37197	36.58m	136.5 lpm		
Well Log Depth Rate				
Water Bearing Fracture Zone				

Setbacks	i	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Casing Information	Casing above ground		Drive Shoe Used?	
Well Log Casing Type	Diameter	From	End	Slotted?
37197 Steel	15.24cm	0m	21.34m	

Aquifer Test/	Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	12.19m	136.5 lpm	1hr	12.19m	136.5 lpm	No	0 lpm

Well Grouting	Drilling Fluids Used	Disinfectant	Pump Installed
There is no Grout information.	None	Chlorine pellets	Submersible Intake Setting (BTC)
		Qty 0L	24.38m

Driller'	s Log			
Well Log	g From	End	Colour	Rock Type
37197	0m	5.49m	Grey	Sandstone
37197	5.49m	19.81m	Brown	Clay
37197	19.81m	36.58m	Grey	Sandstone
37197	36.58m	42.67m	Brown	Clay

37197	36.58m	136.5 lpm		
Well Log Depth Rate				
Water Bearing Fracture Zone				

Setbacks	i	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Casing Information	Casing above ground		Drive Shoe Used?	
Well Log Casing Type	Diameter	From	End	Slotted?
37197 Steel	15.24cm	0m	21.34m	

Aquifer Test/	Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	12.19m	136.5 lpm	1hr	12.19m	136.5 lpm	No	0 lpm

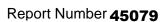
Well Grouting	Drilling Fluids Used	Disinfectant	Pump Installed
There is no Grout information.	None	Chlorine pellets	Submersible Intake Setting (BTC)
		Qty 0L	24.38m

Driller'	s Log			
Well Log	g From	End	Colour	Rock Type
37197	0m	5.49m	Grey	Sandstone
37197	5.49m	19.81m	Brown	Clay
37197	19.81m	36.58m	Grey	Sandstone
37197	36.58m	42.67m	Brown	Clay

37197	36.58m	136.5 lpm		
Well Log Depth Rate				
Water Bearing Fracture Zone				

Setbacks	i	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Casing Information	Casing above ground		Drive Shoe Used?	
Well Log Casing Type	Diameter	From	End	Slotted?
37197 Steel	15.24cm	0m	21.34m	


Aquifer Test/	Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	12.19m	136.5 lpm	1hr	12.19m	136.5 lpm	No	0 lpm

Well Grouting	Drilling Fluids Used	Disinfectant	Pump Installed
There is no Grout information.	None	Chlorine pellets	Submersible Intake Setting (BTC)
		Qty 0L	24.38m

Driller'	s Log			
Well Log	g From	End	Colour	Rock Type
37197	0m	5.49m	Grey	Sandstone
37197	5.49m	19.81m	Brown	Clay
37197	19.81m	36.58m	Grey	Sandstone
37197	36.58m	42.67m	Brown	Clay

37197	36.58m	136.5 lpm		
Well Log Depth Rate				
Water Bearing Fracture Zone				

Setbacks	i	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Well Driller's Report

Date printed 4/17/2023

Drilled by

Well Use Work Type Drill Method Work Completed Drinking Water, Domestic New Well 05/04/2021

Well Log C	Casing Type	Diameter	From End Slotted?		Slotted?
Casing In	nformation	Casing above ground			Orive Shoe Used?

Aquifer Tes	st/Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	121.92m	22.75 lpm	1hr 01min	6.40m	22.75 lpm	No	0 lpm
	(BTC - Below to	op of casina)					

Well Grouting	Drilling Fluids Used	Disinfectant	Pump Installed
There is no Grout information.	None	Bleach (Javex)	Submersible Intake Setting (BTC)
		04. 01	3(-)

Qty 0L 109.73m

Driller's	Log			
Well Log	From	End	Colour	Rock Type
45079	0m	3.05m	Brown	Clay
45079	3.05m	4.57m	Grey	Sand and Gravel
45079	4.57m	121.92m	Grey	Granite

Overall Well Depth 121.92m Bedrock Level 4.57m

Water Bearing Fracture Zone						
Well Log	Depth	Rate				
45079	71.63m	2.28 lpm				
45079	115.82m	20.48 lpm				

Distance	Setback From
21.34m	Septic Tank
27.13m	Leach Field
30.48m	Septic Tank
30.48m	Leach Field
40.23m	Center of road
	21.34m 27.13m 30.48m 30.48m

Report Number 91078500

Well Driller's Report

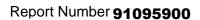
4/17/2023 Date printed

Drilled by

Well Use Work Type **Drill Method** Work Completed New Well (NEW WELL) 10/30/1997 Rotary (ROTARY) Drinking Water, Municipal

Casing Information	Casing ab	ove ground	Drive Shoe Used?		
Well Log Casing Type	Diameter	From	End	Slotted?	
91078500 Steel	15.24cm	0m	7.32m		

Aquifer Test	/Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
	0m	0 lpm	0hr	0m	4.55 lpm	No	0 lpm
	(BTC - Below to	n of casina)					


Well Grouting Disinfectant Pump Installed Drilling Fluids Used None N/A N/A There is no Grout information. Intake Setting (BTC) Qty

0L 0m

Driller's	Log				Overall Well Depth
Well Log	From	End	Colour	Rock Type	76.81m
91078500	0m	5.49m	Brown	Clay and Mud	Bedrock Level
91078500	5 49m	76.81m	Grev	Granite	1
01070000	0. 10111	70.01111	<u> aloy</u>	Granito	√ 5.49m

Water Be	earing Frac	cture Zone	Setbacks
Well Log	Depth	Rate	There is no Setback info
91078500	48.77m	8.19 lpm	
91078500	70.10m	4.55 lpm	

Setbacks	
	There is no Setback information.

Well Driller's Report

4/17/2023 Date printed

Drilled by

Well Use Work Type **Drill Method** Work Completed New Well (NEW WELL) 12/17/1997 Rotary (ROTARY) Drinking Water, Municipal

Casing Information	Casing ab	ove ground	Drive Shoe Used?		
Well Log Casing Type	Diameter	From	End	Slotted?	
91095900 Steel	15.24cm	0m	24.69m		

Aquifer Test	t/Yield		Estimated				
	Initial Water	Pumping		Final Water	Safe Yield	Flowing	
Method	Level (BTC)	Rate	Duration	Level (BTC)		Well?	Rate
Air	0m	0 lpm	0hr	0m	31.85 lpm	No	0 lpm
(BTC - Below top of casina)							

Well Grouting Disinfectant Pump Installed Drilling Fluids Used None N/A N/A There is no Grout information. Intake Setting (BTC) Qty

13.65L 0m

Driller's Log	Overall Well Depth			
Well Log From	End	Colour	Rock Type	91.44m
91095900 0m	21.34m	Brown	Mud and Till	Bedrock Level
91095900 21.34m	51.82m	Black	Slate	21.34m
91095900 51.82m	91.44m	Grey	Granite	21.04111

Water Bearing Fracture Zone					
Well Log	Depth	Rate			
91095900	53.34m	1.36 lpm			
91095900	60.96m	2.28 lpm			
91095900	76.20m	4.55 lpm			
91095900	86.87m	24.12 lpm			

Setbacks	
	There is no Setback information.

Report Number 91127400

Well Driller's Report

4/17/2023 Date printed

Drilled by

Well Use Work Type **Drill Method** Work Completed New Well (NEW WELL) 07/03/1998 Rotary (ROTARY) Non-Drinking Water, Industrial

Casing Information	Casing ab	ove ground		Drive Shoe Used?		
Well Log Casing Type	Diameter	From	End	Slotted?		
91127400 Steel	15.24cm	0m	7.62m			

Aquifer Test	:/Yield				Estimated		
	Initial Water	Pumping		Final Water	Safe Yield	Flowing	
Method	Level (BTC)	Rate	Duration	Level (BTC)		Well?	Rate
Air	0m	0 lpm	0hr	6.10m	9.1 lpm	No	0 lpm
	(BTC - Below top of casing)						

	Drilling Fluids Used	Disinfe		Pump Installed
There is no Grout information.	None	N/A		N/A Intake Setting (BTC)
		Qtv	0L	0m

Driller's Log				
Well Log From	End	Colour	Rock Type	
91127400 0m	3.66m	Brown	Mud and Rock	
91127400 3.66m	5.49m	Brown	Clay and Rock	
91127400 5.49m	91.44m	Grey	Rock	
		-		


Overall Well Depth 91.44m Bedrock Level 5.49m

Water Bearing Fracture Zone

There is no water bearing fracture zone information.

Setbacks	
	There is no Setback information.

Well Driller's Report

4/17/2023 Date printed

Drilled by

Well Use Work Completed Work Type **Drill Method** New Well (NEW 12/04/1998 Rotary (ROTARY) Drinking Water, Domestic

WELL)

Casing Information	Casing ab	ove ground		Drive Shoe Used?		
Well Log Casing Type	Diameter	From	End	Slotted?		
91322100 Steel	15.24cm	0m	6.10m			

Aquifer Test	t/Yield			Estimated				
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate	
Air	0m	0 lpm	0hr	3.05m	22.75 lpm	No	0 lpm	
	(BTC - Below top of casina)							

Well Grouting Disinfectant Pump Installed Drilling Fluids Used None N/A N/A There is no Grout information. Intake Setting (BTC) Qty 0L 0m

Driller's Log				Overall
Well Log From	End	Colour	Rock Type	67.06m
91322100 3.66m	67.06m	Red	Granite and Rock	Bedroc
91322100 0m	3.66m	Brown	Mud and Rock	3.66m

II Well Depth ck Level

Water Bearing Fracture Zone

There is no water bearing fracture zone information.

Setbacks	
	There is no Setback information.

Report Number 91330600

Well Driller's Report

4/17/2023 Date printed

Drilled by

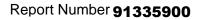
Well Use Work Completed Work Type **Drill Method** Deepened (DEEPENED) 09/16/1998 Drinking Water, Domestic

Drive Shoe Used? Casing Information Casing above ground

There is no casing information.

Aquifer Test/Yield Estimated Flowing **Pumping** Final Water Initial Water Safe Yield Level (BTC) Well? Rate Method Level (BTC) Rate Duration Air 0m 0 lpm 0hr 0m 6.82 lpm No 0 lpm (BTC - Below top of casina)

Well Grouting Disinfectant Pump Installed **Drilling Fluids Used**


None N/A N/A There is no Grout information. Intake Setting (BTC)

> 0L Qty

0m

Driller's Log Overall Well Depth Well Log From End Rock Type Colour 115.82m 91330600 59.44m 115.82m Red **Granite and Conglomerate** Bedrock Level 59.44m

Water Bearing Fracture Zone Setbacks Well Log Depth Rate There is no Setback information. 91330600 115.82m 6.82 lpm

Well Driller's Report

Date printed 4/17/2023

Drilled by

Well Use Work Type **Drill Method** Work Completed New Well (NEW WELL) 06/30/1999 Drinking Water, Domestic Rotary (ROTARY)

Casing Information	Casing abo	ove ground		Drive Shoe Used?		
Well Log Casing Type	Diameter	From	End	Slotted?		
91335900 Steel	15.24cm	0m	6.10m			

Aquifer Test/Yield Est							
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	0m	0 lpm	0hr	0m	0 lpm	No	0 lpm
	(BTC - Below top of casina)						

	Drilling Fluids Used	Disinfe		Pump Installed
There is no Grout information.	None	N/A		N/A Intake Setting (BTC)
		Qtv	0L	0m

Driller's	Log				Overall Well Depth
Well Log	From	End	Colour	Rock Type	91.44m
91335900	0m	3.05m	Brown	Mud and Gravel	Bedrock Level
91335900	3.05m	91.44m	EMPTY VALUE	Clay and boulders	3.05m
					0.00

water Be	earing Frac	ture Zone	
Well Log	Depth	Rate	
91335900	60.96m	1.36 lpm	
91335900	68.58m	6.82 lpm	
91335900	82.30m	4.55 lpm	
91335900	88.39m	4.55 lpm	

Setbacks	
	There is no Setback information.

Report Number 92207800

Well Driller's Report

Date printed 4/17/2023

Drilled by

92207800 9.14m

Well Use Work Type Drill Method Work Completed Non-Drinking Water, Industrial New Well Cable Tool 07/18/2001

Casing Information Casing above ground Drive Shoe Used?

There is no casing information.

Aquife	r Test/Yield				Estimated		
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate
Air	0m (BTC - Below to	0 lpm	0hr	0m	182 lpm	No	0 lpm
	.2.0 20.011.10						

Granite

Well Grouting

There is no Grout information.

Drilling Fluids Used
None

Disinfectant
N/A

Submersible
Intake Setting (BTC)

Qty 0L

1.83m

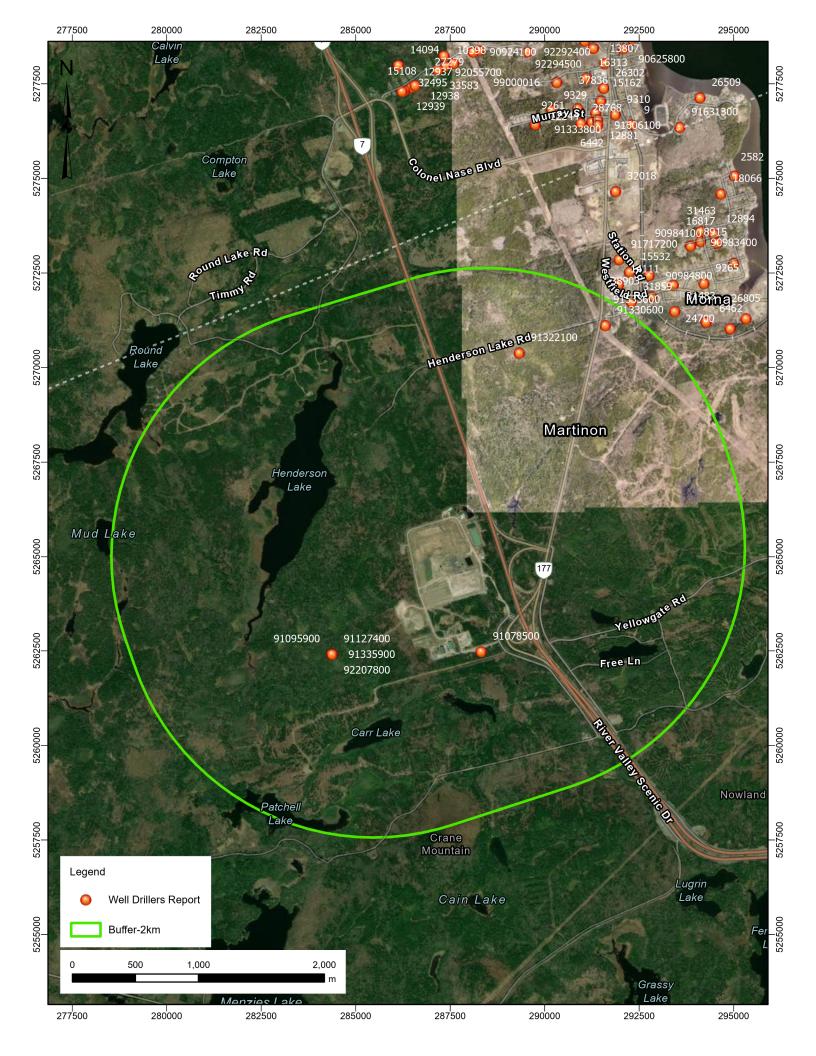
 Driller's Log

 Well Log
 From
 End
 Colour
 Rock Type

 92207800
 0m
 5.49m
 Brown
 Gravel and Rock

 92207800
 5.49m
 9.14m
 Brown
 Clay and Sand

Overall Well Depth 121.92m Bedrock Level 9.14m


Water Be	earing Frac	cture Zone
Well Log	Depth	Rate
92207800	80.77m	22.75 lpm
92207800	67.06m	9.1 lpm
92207800	85.34m	104.65 lpm

121.92m Red

Setbacks	
	There is no Setback information.

Sam	ple Information																											
ALK T(mg/L)	Al(mg/L)	As(ug/L)	B(mg/L)	Ba(mg/L)	Br(mg/L)	COND(uSIF/cm)	Ca(mg/L)	Cd(ug/L)	Cl(mg/L)	Cr(ug/L)	Cu(ug/L)	F(mg/L)	Fe(mg/L)	HARD(mg/L as	K(mg/L)	Ma(ma/L)	Mn(mg/L)	NO2(mg/L as N)	NO3(mg/L as N)	NOX(mg/L as N)	Na(mg/L)	Ph(ug/L)	SQ4(mg/L)	Sh(ug/L)	Se(ug/L)	TURB(NTU)	Tl(ug/L)	

ALK_T(mg/L	AI(mg/L)	As(µg/L)	B(mg/L)	Ba(mg/L)	Br(mg/L)	COND(µSIE/cm)	Ca(mg/L)	Cd(µg/L)	CI(mg/L)	Cr(µg/L)	Cu(µg/L)	F(mg/L)	Fe(mg/L)	HARD(mg/L as	K(mg/L)	Mg(mg/L)	Mn(mg/L)	NO2(mg/L as N)	NO3(mg/L as N)	NOX(mg/L as N)	Na(mg/L)	Pb(μg/L)	SO4(mg/L)	Sb(µg/L)	Se(µg/L)	TURB(NTU)	TI(μg/L)	Zn(µg/L)	pH(pH)	E.coli P/A(P/A)	TC-P/A(P/A)	U(μg/L)	Þ =COND(μSIE/cm)	Þ=TDS(mg/L)	Þ @B(no units)	Þ @C(no units)	Þ AN(Epm)	Þ CAT(Epm)	Þ CO3(mg/L)	Þ DIFB(%)	Þ DIFC(%)	Þ DIFTDS(%)	Þ HCO3(mg/L)	Þ OH(mg/L)	Þ SIN(no units)
61.90	< 0.0250	47.40	< 0.20	< 0.01	< 0.10	196	17.10	< 0.50	12.10	< 10	< 10	0.2850	0.2740	53.40	0.3370	2.60	< 0.01	< 0.05	0	< 0.05	20.70	1.10	15.80	1.50	< 1	1.50	< 1	< 10	8.31																
																														Ab	Ab														
119	< 0.0250	3.06	< 0.01	0.0180	< 0.10	241	39.50	< 0.50	4.31	< 10	23	0.1010	* 0.6050	106	0.3650	1.90	0.7420	< 0.05	< 0.05	< 0.05	11.60	< 1	5.10	<1	< 1.50	* 2.35	< 1	< 5	7.73	Ab	Ab	4.62	217.7680	126.8490	2.38	1.8030	2.6170	2.2670	0	7.16	5.0640	-100	119	0	-0.1430
69.40	< 0.0250	< 1.50	< 0.20	0.0130	< 0.10	192	19.10	< 0.50	8.60	< 10	123	0.2280	< 0.05	51.40	0.30	0.90	< 0.0050	< 0.05	0.01	0.06	15.40	<1	11.10	<1	< 1.50	0.10	< 1	106	8.09																
																														Ab	Ab														_
60.90	< 0.0250	< 1.50	< 0.01	< 0.01	< 0.10	177	23.90	< 0.50	4.55	< 10	< 10	< 0.10	< 0.01	67.40	0.2830	1.90	< 0.0050	< 0.05	< 0.05	< 0.05	8.67	<1	16.20	< 1	< 1.50	0.40	< 1	< 5	8.22	Ab	Ab	1.38	168.1970	92.4210	-0.33	0.8460	1.6940	1.7370	0	-1.26	2.55	-100	60.90	0	-0.0790

DATA REPORT 7616: Crane Mountain Landfill, NB

Prepared 3 March 2023 by J. Pender, Conservation Data Analyst

CONTENTS OF REPORT

1.0 Preface

- 1.1 Data List
- 1.2 Restrictions
- 1.3 Additional Information

Map 1: Buffered Study Area

2.0 Rare and Endangered Species

- 2.1 Flora
- 2.2 Fauna

Map 2: Flora and Fauna

3.0 Special Areas

- 3.1 Managed Areas
- 3.2 Significant Areas
- Map 3: Special Areas

4.0 Rare Species Lists

- 4.1 Fauna
- 4.2 Flora
- 4.3 Location Sensitive Species
- 4.4 Source Bibliography

5.0 Rare Species within 100 km

5.1 Source Bibliography

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (ACCDC) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The ACCDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the ACCDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees. For more information please see www.ACCDC.com.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Included datasets:

<u>Filename</u>	Contents
CraneMtLandfNB_7616ob.xls	Rare or legally-protected Flora and Fauna in your study area
CraneMtLandfNB_7616ob100km.xls	A list of Rare and legally protected Flora and Fauna within 100 km of your study area
CraneMtLandfNB_7616msa.xls	Managed and Biologically Significant Areas in your study area
CraneMtLandfNB_7616ff_py.xls	Rare Freshwater Fish in your study area (DFO database)

1.2 RESTRICTIONS

The ACCDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting ACCDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The ACCDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) ACCDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see the Data Dictionary for details.
- f) ACCDC data holdings are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an ACCDC database.

1.3 ADDITIONAL INFORMATION

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries	Sean Blaney	Senior Scientist / Executive Director	(506) 364-2658	sean.blaney@accdc.ca
Animals (Fauna)	John Klymko	Zoologist	(506) 364-2660	john.klymko@accdc.ca
Data Management, GIS	James Churchill	Conservation Data Analyst / Field Biologist		james.churchill@accdc.ca
Billing	Jean Breau	Financial Manager / Executive Assistant	(506) 364-2657	jean.breau@accdc.ca

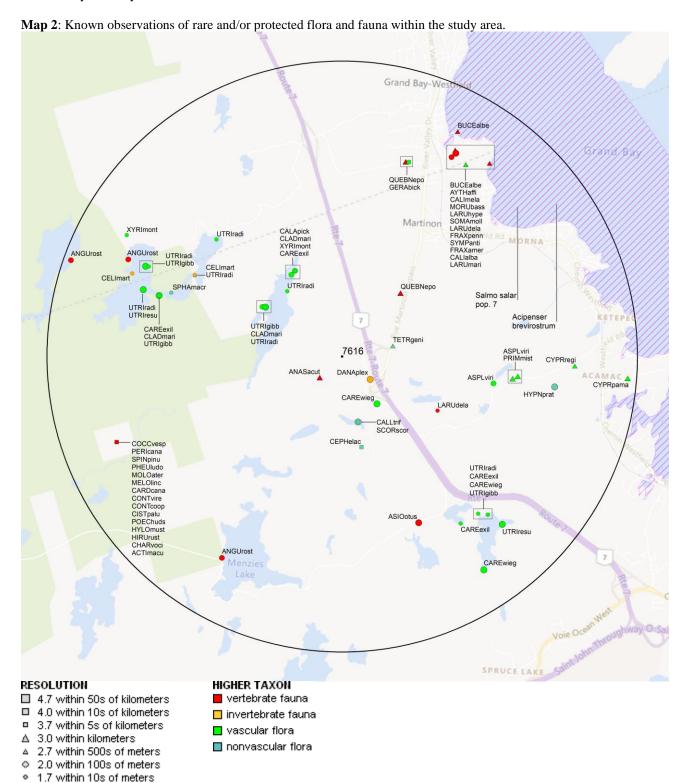
Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

New Brunswick. For information about rare taxa, protected areas, game animals, deer yards, old growth forests, archeological sites, fish habitat etc., or to determine if location-sensitive species (section 4.3) occur near your study site, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

Nova Scotia. For information about Species at Risk or general questions about Nova Scotia location-sensitive species please contact the Biodiversity Program at biodiversity@novascotia.ca. For questions about protected areas, game animals, deer yards, old growth forests, archeological sites, fish habitat etc., or to determine if location-sensitive species (section 4.3) occur near your study site please contact a Regional Biologist:

DIGB, ANNA, KING	Emma Vost	(902) 670-8187	Emma.Vost@novascotia.ca
SHEL, YARM	Sian Wilson	(902) 930-2978	Sian.Wilson@novascotia.ca
QUEE, LUNE	Peter Kydd	(902) 523-0969	Peter.Kydd@novascotia.ca
HALI, HANT	Shavonne Meyer	(902) 893-0816	Shavonne.Meyer@novascotia.ca
Central Region	Jolene Laverty	(902) 324-8953	Jolene.Laverty@novascotia.ca
COLC, CUMB	Kimberly George	(902) 890-1046	Kimberly.George@novascotia.ca
ANTI, GUYS	Harrison Moore	(902) 497-4119	Harrison.Moore@novascotia.ca
INVE, VICT	Maureen Cameron-MacMillan	(902) 295-2554	Maureen.Cameron-MacMillan@novascotia.ca
CAPE, RICH, PICT	Elizabeth Walsh	(902) 563-3370	Elizabeth.Walsh@novascotia.ca

Prince Edward Island. For information about rare taxa, protected areas, game animals, fish habitat etc., please contact Garry Gregory, PEI Department of Environment, Energy and Climate Action: (902) 569-7595.

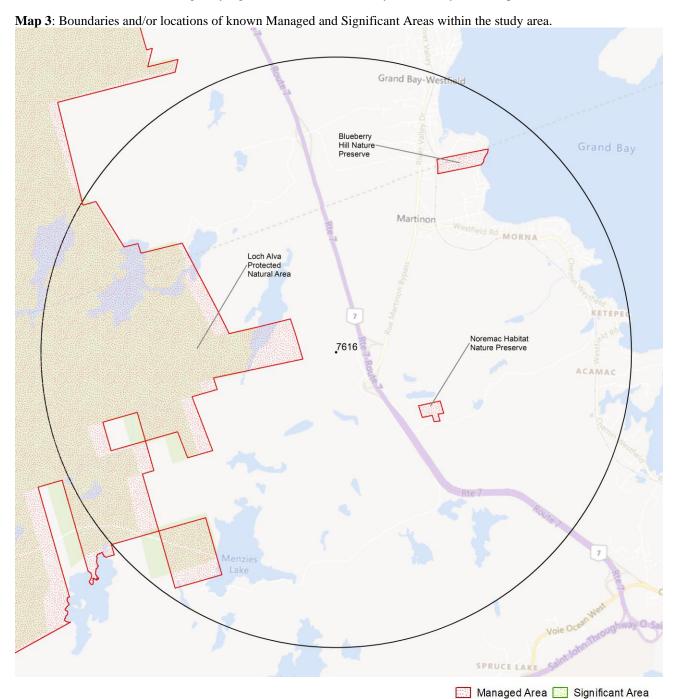

2.0 RARE AND ENDANGERED SPECIES

2.1 FLORA

The study area contains 36 records of 16 vascular and 6 records of 6 nonvascular flora (Map 2 and attached: *ob.xls), excluding 'location-sensitive' species.

2.2 FAUNA

The study area contains 38 records of 28 vertebrate and 4 records of 2 invertebrate fauna (Map 2 and attached data files see 1.1 Data List), excluding 'location-sensitive' species. Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.


3.0 SPECIAL AREAS

3.1 MANAGED AREAS

The GIS scan identified 3 managed areas in the vicinity of the study area (Map 3 and attached file: *msa.xls).

3.2 SIGNIFICANT AREAS

The GIS scan identified no biologically significant sites in the vicinity of the study area (Map 3).

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Ν	Sphagnum macrophyllum	Sphagnum				S1	1	3.1 ± 0.0
Ν	Pseudocalliergon trifarium	Three-ranked Spear Moss				S1?	1	1.1 ± 0.0
Ν	Cephaloziella elachista	Spurred Threadwort				S1S3	1	1.6 ± 5.0
Ν	Hypnum pratense	Meadow Plait Moss				S2	1	3.6 ± 0.0
Ν	Scorpidium scorpioides	Hooked Scorpion Moss				S2S3	1	1.1 ± 0.0
Ν	Tetraphis geniculata	Geniculate Four-tooth Moss				S3S4	1	0.9 ± 0.0
Р	Symphyotrichum anticostense	Anticosti Aster	Special Concern	Special Concern	Endangered	S3	1	3.9 ± 0.0
Р	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	1	4.9 ± 1.0
Р	Geranium bicknellii	Bicknell's Crane's-bill				S3	1	3.5 ± 5.0
Р	Utricularia resupinata	Inverted Bladderwort				S3	2	3.6 ± 0.0
Ρ	Fraxinus pennsylvanica	Red Ash				S3	1	3.9 ± 0.0
Ρ	Primula mistassinica	Mistassini Primrose				S3	1	2.9 ± 1.0
Ρ	Cypripedium reginae	Showy Lady's-Slipper				S3	1	3.9 ± 0.0
Ρ	Utricularia radiata	Little Floating Bladderwort				S3S4	7	1.4 ± 0.0
Ρ	Utricularia gibba	Humped Bladderwort				S3S4	4	1.6 ± 0.0
Ρ	Fraxinus americana	White Ash				S3S4	1	3.9 ± 0.0
Ρ	Carex exilis	Coastal Sedge				S3S4	5	1.7 ± 0.0
Ρ	Carex wiegandii	Wiegand's Sedge				S3S4	3	1.0 ± 0.0
Ρ	Cladium mariscoides	Smooth Twigrush				S3S4	3	1.5 ± 0.0
Ρ	Calamagrostis pickeringii	Pickering's Reed Grass				S3S4	1	1.6 ± 0.0
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3S4	2	1.7 ± 0.0
Р	Asplenium viride	Green Spleenwort				S3S4	2	2.6 ± 0.0

4.2 FAUNA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	1	4.1 ± 7.0
Α	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	3	4.0 ± 0.0
Α	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	1	4.1 ± 7.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	1	4.1 ± 7.0
Α	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	1	4.1 ± 7.0
Α	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	1	4.1 ± 7.0
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	1	4.1 ± 7.0
Α	Desmognathus fuscus pop. 2	Northern Dusky Salamander - Quebec / New Brunswick population	Not At Risk			S3	2	1.5 ± 1.0
Α	Aythya affinis	Lesser Scaup				S1B,S4M	1	3.9 ± 0.0
Α	Calidris alba	Sanderling				S1N,S3S4M	1	4.1 ± 0.0
Α	Cistothorus palustris	Marsh Wren				S2B	1	4.1 ± 7.0
Α	Larus hyperboreus	Glaucous Gull				S2N	1	4.1 ± 0.0
Α	Asio otus	Long-eared Owl				S2S3	1	3.1 ± 0.0
Α	Somateria mollissima	Common Eider				S2S3B,S2S3N,S4M	1	4.1 ± 0.0
Α	Larus delawarensis	Ring-billed Gull				S2S3B,S4N,S5M	2	1.9 ± 0.0
Α	Larus marinus	Great Black-backed Gull				S3	1	4.1 ± 0.0
Α	Spinus pinus	Pine Siskin				S3	1	4.1 ± 7.0
Α	Charadrius vociferus	Killdeer				S3B	1	4.1 ± 7.0
Α	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	1	4.1 ± 7.0

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Molothrus ater	Brown-headed Cowbird				S3B	1	4.1 ± 7.0
Α	Anas acuta	Northern Pintail				S3B,S5M	1	0.5 ± 1.0
Α	Calidris melanotos	Pectoral Sandpiper				S3M	1	3.8 ± 0.0
Α	Bucephala albeola	Bufflehead				S3N	6	3.9 ± 0.0
Α	Perisoreus canadensis	Canada Jay				S3S4	1	4.1 ± 7.0
Α	Poecile hudsonicus	Boreal Chickadee				S3S4	1	4.1 ± 7.0
Α	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	2	4.1 ± 7.0
Α	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	1	4.1 ± 7.0
Α	Morus bassanus	Northern Gannet				SHB	1	4.1 ± 0.0
- 1	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	1	0.6 ± 0.0
- 1	Celithemis martha	Martha's Pennant				S3	3	2.9 ± 0.0

4.3 LOCATION SENSITIVE SPECIES

The New Brunswick and Nova Scotia Provincial Governments consider some species "location sensitive" because of concern about their exploitation. Precise locations of these species are only released upon authorization by the Provincial Government and use of the data is subject to strict conditions:

New Brunswick

Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle	Special Concern		YES
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	YES
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.		Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat Hibernaculum or bat species occurr	rence	[Endangered] ¹	[Endangered]1	YES

¹ Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

recs CITATION

- Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
- 2 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 8 eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- 7 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 5 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 4 Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- 3 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 3 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 2 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 2 Nature Trust of New Brunswick (NTNB), 2020. Nature Preserves and Conservation Easements (Received: 18 September, 2020). NTNB.
- Bateman, M.C. 2000, Waterfowl Brood Surveys Database, 1990-2000, Canadian Wildlife Service, Sackville, unpublished data, 149 recs.
- 1 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
 - Brunelle, P.-M. (compiler), 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- Canadian Wildlife Service. 2019. Canadian Protected and Conserved Areas Database (CPCAD). December 2019. ECCC.https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html.
- 1 Clayden, S.R. 2007, NBM Science Collections databases; vascular plants, New Brunswick Museum, Saint John NB, download Mar, 2007, 6914 recs.
- 1 Dept of Fisheries & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- 1 Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
- 1 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
- McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 1 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.

Tavonomic

5.0 RARE SPECIES WITHIN 100 KM

A 100 km buffer around the study area contains 48883 records of 161 vertebrate and 1750 records of 76 invertebrate fauna; 9541 records of 349 vascular and 2307 records of 224 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Α	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	169	3.9 ± 1.0	NB
Α	Myotis septentrionalis	Northern Myotis	Endangered	Endangered	Endangered	S1	39	6.4 ± 0.0	NB
Α	Perimyotis subflavus	Tricolored Bat	Endangered	Endangered	Endangered	S1	40	6.4 ± 0.0	NB
Α	Eubalaena glacialis	North Atlantic Right Whale	Endangered	Endangered	Endangered	S1	8	55.0 ± 0.0	NB
		Rainbow Smelt - Lake							NB
Α	Osmerus mordax pop. 2	Utopia Large-bodied	Endangered	Threatened	Threatened	S1	2	46.2 ± 10.0	
		population							
Α	Charadrius melodus	Piping Plover melodus	Endangered	Endangered	Endangered	S1B	26	8.6 ± 0.0	NB
	melodus	subspecies	· ·	· ·	ū	_			
Α	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1B	3	52.7 ± 0.0	NB
Α	Dermochelys coriacea pop.	Leatherback Sea Turtle -	Endangered	Endangered	Endangered	S1S2N	5	11.4 ± 0.0	NB
, ,	2	Atlantic population	Lindarigorod	Lindangorod	Lindarigoroa	010211	Ü	11.120.0	
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay	Endangered	Endangered	Endangered	S2	55	27.7 ± 0.0	NB
, ,	camio caiar pop. 1	of Fundy population	Lindarigorod	Lindangorod	Lilaarigoroa	02	00	27.7 2 0.0	
Α	Salmo salar pop. 7	Atlantic Salmon - Outer Bay	Endangered		Endangered	SNR	358	8.3 ± 1.0	NB
, ,	camio caiar pop. 1	of Fundy population	Lindarigorod		Lilaarigoroa	Ontic	000	0.0 1 1.0	
Α	Rangifer tarandus pop. 2	Caribou - Atlantic-	Endangered	Endangered	Extirpated	SX	4	27.1 ± 5.0	NB
		Gasp -sie population	· ·	· ·	=/iii.patou				
Α	Lanius Iudovicianus	Loggerhead Shrike	Endangered	Endangered		SXB	1	83.9 ± 1.0	NB
A	Sturnella magna	Eastern Meadowlark	Threatened	Threatened	Threatened	S1B	44	30.4 ± 7.0	NB
A	Asio flammeus	Short-eared Owl	Threatened	Special Concern	Special Concern	S1S2B	17	36.9 ± 7.0	NB
A	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	34	12.9 ± 0.0	NB
A	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	192	4.1 ± 7.0	NB
A	Hydrobates leucorhous	Leach's Storm-Petrel	Threatened			S1S2B	130	41.4 ± 32.0	NB
A	Catharus bicknelli	Bicknell's Thrush	Threatened	Threatened	Threatened	S2B	24	8.8 ± 1.0	NB
A	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	1200	6.5 ± 7.0	NB
A	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	1742	3.0 ± 10.0	NB
A	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	1036	9.1 ± 7.0	NB
A	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened		Threatened	S3B,S3N	2	35.2 ± 0.0	NB
A	Tringa flavipes	Lesser Yellowlegs	Threatened			S3M	672	7.3 ± 0.0	NB
A	Limosa haemastica	Hudsonian Godwit	Threatened		T	S3M	95	8.4 ± 0.0	NB
Α	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	137	4.0 ± 0.0	NB
Α	Coturnicops noveboracensis	Yellow Rail	Special	Special Concern	Special Concern	S1?B,SUM	3	58.6 ± 7.0	NB
	Histrianiana histrianiana non	Harleguin Duck - Eastern	Concern Special	·	•				NB
Α	Histrionicus histrionicus pop.		Concern	Special Concern	Endangered	S1B,S1S2N,S2M	164	23.8 ± 17.0	IND
	1	population	Special						NB
Α	Antrostomus vociferus	Eastern Whip-Poor-Will	•	Threatened	Threatened	S2B	86	6.0 ± 7.0	IND
			Concern Special						NB
Α	Hirundo rustica	Barn Swallow	Concern	Threatened	Threatened	S2B	1618	4.1 ± 7.0	IND
			Special						NB
Α	Balaenoptera physalus	Fin Whale	•	Special Concern		S2S3	19	13.4 ± 1.0	IND
			Concern Special						NB
Α	Euphagus carolinus	Rusty Blackbird		Special Concern	Special Concern	S2S3B,S3M	145	8.7 ± 2.0	IND
	-		Concern Special						NB
Α	Bucephala islandica	Barrow's Goldeneye	Concern	Special Concern	Special Concern	S2S3N,S3M	60	9.4 ± 0.0	IND
			Concern						

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	12	5.7 ± 10.0	NB
A	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	116	28.5 ± 0.0	NB
A	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	937	4.1 ± 7.0	NB
А	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	396	4.1 ± 7.0	NB
A	Dolichonyx oryzivorus	Bobolink	Special Concern	Threatened	Threatened	S3B	1660	6.5 ± 7.0	NB
A	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	316	4.1 ± 7.0	NB
A	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	390	6.5 ± 7.0	NB
A	Phalaropus lobatus	Red-necked Phalarope	Special Concern	Special Concern		S3M	223	8.6 ± 0.0	NB
A	Podiceps auritus	Horned Grebe	Special Concern	Special Concern	Special Concern	S3N	271	8.4 ± 1.0	NB
A	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	1387	4.1 ± 7.0	NB
A	Phocoena phocoena	Harbour Porpoise	Special Concern		Spec.Concern	S4	244	12.7 ± 0.0	NB
Α	Chrysemys picta picta	Eastern Painted Turtle	Special Concern	Special Concern		S4	113	1.7 ± 1.0	NB
А	Anarhichas lupus	Atlantic Wolffish	Special Concern	Special Concern	Special Concern	SNR	1	71.9 ± 0.0	NB
A A	Hemidactylium scutatum Fulica americana	Four-toed Salamander American Coot	Not At Risk Not At Risk			S1? S1B	12 15	83.0 ± 0.0 8.4 ± 0.0	NS NB
A	Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius	Not At Risk	Special Concern	Endangered	S1B,S3M	659	6.5 ± 7.0	NB
A	Falco peregrinus	Peregrine Falcon	Not At Risk	Special Concern		S1B,S3M	1	75.5 ± 0.0	NB
A	Bubo scandiacus	Snowy Owl	Not At Risk			S1N,S2S3M	33	10.0 ± 6.0	NB
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B	23	38.8 ± 7.0	NB
А	Buteo lineatus	Red-shouldered Hawk	Not At Risk			S1S2B	53	10.7 ± 0.0	NB
A	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B,SUM	5	37.1 ± 7.0	NB
Ą	Sorex dispar	Long-tailed Shrew	Not At Risk			S2	2	25.4 ± 1.0	NB
A	Chlidonias niger	Black Tern	Not At Risk			S2B	345	31.2 ± 7.0	NB
4	Podiceps grisegena	Red-necked Grebe	Not At Risk			S2N,S3M	727	8.8 ± 1.0	NB
Ä	Globicephala melas	Long-finned Pilot Whale	Not At Risk			S2S3	3	15.5 ± 1.0	NB
	•	Northern Dusky Salamander					-		NB
Α	Desmognathus fuscus pop. 2	- Quebec / New Brunswick population	Not At Risk			S3	61	1.5 ± 1.0	
A	Megaptera novaeangliae	Humpback Whale	Not At Risk			S3	29	53.2 ± 0.0	NB
A A	Sterna hirundo	Common Tern	Not At Risk			S3B.SUM	363	7.4 ± 10.0	NB
A A	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4	2	15.5 ± 1.0	NB
A	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	1711	4.1 ± 0.0	NB
A	Lynx canadensis	Canada Lynx	Not At Risk		Endangered	S4	17	28.5 ± 1.0	NB
A	Canis lupus	Grey Wolf	Not At Risk		Extirpated	SX	4	6.3 ± 1.0	NB
Ā	Puma concolor pop. 1	Cougar - Eastern population	Data Deficient		Endangered	SU	76	15.8 ± 1.0	NB
	Calidris canutus rufa	Red Knot rufa subspecies	E,SC	Endongorod		S2M	405	7.9 ± 0.0	NB
A A	Morone saxatilis	Striped Bass Atlantic Walrus - Nova	E,SC E,SC	Endangered	Endangered	S3S4B,S3S4N	13	7.9 ± 0.0 9.5 ± 0.0	NB NS
A	Odobenus rosmarus pop. 5	Scotia - Newfoundland - Gulf of St Lawrence population	Χ			SX	1	79.1 ± 5.0	INO
Α	Thryothorus Iudovicianus	Carolina Wren				S1	35	9.1 ± 7.0	NB
A	Salvelinus alpinus	Arctic Char				S1	3	79.1 ± 0.0	NB
A	Vireo flavifrons	Yellow-throated Vireo				S1?B	16	9.1 ± 7.0	NB
	Tringa melanoleuca	Greater Yellowlegs				S1?B,S4S5M	1349	7.3 ± 0.0	NB

A Plincola enucleator Pine Grospeak M A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N,\$4N A Melanitta deglandi White-winged Scoter \$2N,\$4N A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Icterus galbula Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,\$ A Pluvialis dominica American Golden-Plover \$2S3M,\$ A Calcarius lapponicus Lapland Longspur \$2S3N,\$	rity Rank #re	recs Dis	stance (km)	Prov
A Grus canádensis Sandhill Crane \$18 A Bartarmia Inorigicauda Upland Sandpiper \$18 A Phalaropus tricolor Wilson's Phalarope \$18 A Rissa tridactyla Black-leaged Kittiwake \$18 A Historia adage Common Murre \$18 A A Lot orda Razorbill \$18 A Fratercula arctica Atlantic Puffin \$18 A Progne subis Puple Martin \$18 A Progne subis Puple Martin \$18 A Halfetionicus histrionicus \$18,518 A Aythya marila Greater Scaup \$18,518 A Aythya affinis Lesser Scaup \$18,528 A Oxyura jamalcensis Ruddy Duck \$18,528 A Ermpolpila alpestris Horned Lark \$18,528 A Ermpolpila alpestris Horned Lark \$18,528 A Branta bernicla \$18,528 A Branta bernicla \$18,528<		8 9.1	1 ± 7.0	NB
A Grus canadensis Sandhill Crane \$18 A Batramia Inorigicade Upland Sandpiper \$18 A Phalaropus tricolor Wilson's Phalarope \$18 A Rissa tridactyla Black-legged Kittiwake \$18 A Rissa tridactyla Black-legged Kittiwake \$18 A Arica torda Razorbill \$18 A Fratercula arctica Atlantic Puffin \$18 A Fratercula arctica Atlantic Puffin \$18 A Progre subis Purple Martin \$18 A Histrionicus histrionicus \$18 \$18 A Aythya marila Greater Scaup \$18,518 A Oxyura jamaicensis Ruddy Duck \$18,528 A Zythya affinis Lesser Scaup \$18,528 A Zythya affinis Lesser Scaup \$18,528 A Zythya affinis Lesser Scaup \$18,528 A Zithidisa berricila \$18,528 A Zithidisa	3/	35 12.	0.0 ± 0.0	NB
A Bartramia longicauda Upland Sandpiper \$1B A Phalaropus taricolle Laucyphaeus atricile Lauphing Gull \$1B A Rissa tridactyla Black-legged Kittiwake \$1B A Uria aalge Common Murre \$1B A Aka torda \$1B A Progne subis \$1B A Progne subis Purple Martin \$1B A Progne subis Hafequin Duck \$1B, \$1B A Pythya marile Greater Scaup \$1B, \$24 A Aythya affinis Lesser Scaup \$1B, \$24 A A zythya affinis Lesser Scaup \$1B, \$24 A Stema paradisaee Arctic Tem \$1B, \$24 A Chriococephalus riditundus Black-headed Gull \$11, \$25 A Branta berricial Brant berricial \$11, \$25 A Butorides virescens Green Heron \$152B A Dutorides virescens Bracterium Heron \$152B A <t< td=""><td></td><td></td><td>$.7 \pm 0.0$</td><td>NB</td></t<>			$.7 \pm 0.0$	NB
A Phalaropus tricolor Wilson's Phalarope \$1B A Leucopheaus atricilae \$1B A Rissa tridacty/a Black-legged Kittiwake \$1B A Uria aalge Common Mure \$1B A Alca torda Razorbill \$1B A Fratercula arctica Atlantic Puffin \$1B A Progne subis Purple Martin \$1B A Histinonicus histrionicus \$1B, \$1S A Histinonicus histrionicus \$1B, \$2A A Aythya marila Greater Scaup \$1B, \$2A A Oryura jamaicensis Ruddy Duck \$1B, \$2A A Oryura jamaicensis Lesser Scaup \$1B, \$2A A Oryura jamaicensis Lesser Scaup \$1B, \$2A A Permpohila alpestris Lesser Scaup \$1B, \$2A A Chroicocephalus ridibudus Bark-headed Gull \$1B, \$2A A Chroicocephalus ridibudus Bark-headed Gull \$1B, \$2A A Chroicocephalus ridib			$.3 \pm 0.0$	NB
A Rissa tridacylar Black-legged Kittiwake \$1B A Rissa tridacylar Black-legged Kittiwake \$1B A Uria aalge Common Murre \$1B A Alca torda Razorbill \$1B A Progne subis Purple Martin \$1B A Progres subis Purple Martin \$1B A Progne subis Purple Martin \$1B A Pristincia Sistrionicus Halrequin Duck \$1B, \$1B, \$1B, \$1B, \$1B, \$2M A Ayrlyna arfilinis Lesser Scaup \$1B, \$2B, \$2B, \$2B, \$2B, \$2B, \$2B, \$2B, \$2			5 ± 7.0	NB
A Rissa Indactyla Black-legged Kittiwake \$1B A Liria aalige Common Murre \$1B A Alca torda Razorbill \$1B A Fratercula arctica Alantic Puffin \$1B A Progne subis Puple Martin \$1B A Histrionicus histrionicus \$1B, \$1S A Histrionicus histrionicus \$1B, \$1S A Histrionicus histrionicus \$1B, \$1S A Aythya marila Greater Scaup \$1B, \$2S A Oxyura jamaicensis Ruddy Duck \$1B, \$2S A Oxyura jamaicensis Lesser Scaup \$1B, \$2S A Aythya affinis Lesser Scaup \$1B, \$2S A Chrococephalus ridibundus Istanta Dermicia \$1B, \$2S A Eremophila alpestris Longe durit \$1B, \$2S A Caliris alba Anderling \$1B, \$2S A Caliris albain durit \$1B, \$2S A Caliris bair virescens S1B, \$2B	_		3 ± 1.0	NB
A Uria aaige ' Common Murre \$18 A Alca torda Razorbill \$18 A Fratercula arctica Allantic Puffin \$18 A Progne subis Purple Martin \$18 A Prognes subis Purple Martin \$18 A Pristronicus histrionicus Harlequin Duck \$18,528 A Aythya affinis Creater Scaup \$18,528 A Aythya affinis Lesser Scaup \$18,528 A Eremophila alpestris Homed Lark \$18,528 A Eremophila alpestris Homed Lark \$18,524 A Eremophila alpestris Homed Lark \$18,524 A Eremophila alpestris Homed Lark \$18,528 A Eremophila alpestris Homed Lark \$18,528 A Eremophila alpestris Homed Lark \$18,528 A Brant Brant \$18,528 A Brant \$18,528 A Brant \$18,528 <td></td> <td></td> <td>.7 ± 0.0</td> <td>NB</td>			.7 ± 0.0	NB
A Alca torda Razorbill \$1B A Fratercula arctica Atlantic Puffin \$1B A Progne subis Purple Martin \$1B A Histrionicus histrionicus \$1B, \$2D A Aythya marila Greater Scaup \$1B, \$2D A Aythya affina \$1B, \$2D A Attempophila alpestris Homed Lark \$1B, \$2D A Stema paradisaea Arctic Tem \$1B, \$2D A Chroicocephalus ridibundus Black-headed Gull \$1B, \$2D A Branta bernicla \$1B, \$2D A Butorides virescens Green Heron \$1B, \$2D A Butorides virescens Green Heron \$15, \$2B A Elejidopteryx serripennis Milescheror \$15, \$2B<			.9 ± 15.0	NB
A Fratercula arctica Atlantic Puffin \$1B A Progne subis Purple Martin \$1B A Histrionicus histrionicus Harlequin Duck \$1B, \$1S A Ayrlym amina Greater Scaup \$1B, \$2S A Ozyura jamaicensis Ruddy Duck \$1B, \$2S A Ayrlya affinis Lesser Scaup \$1B, \$2S A Ayrlya affinis Lesser Scaup \$1B, \$2S A Ermaphila alpestris Homed Lark \$1B, \$2S A Ermaphila alpestris Homed Lark \$1B, \$2S A Chroicocephalus ridibundus \$1B, \$2S A Chroicocephalus ridibundus \$1B, \$2S A Chroicocephalus ridibundus \$1B, \$2S A Brant bernicla \$1B, \$2S A Brant bernicla \$1B, \$2S A Bradicis Saindi \$1B, \$2S A Butorides virescens Green Heron \$15, \$2B A Projectorax seridi Willow Flyctorene \$15, \$2B			5 ± 0.0	NB
A Progne subis Purple Martin \$18 A Histrionicus histrionicus Greater Scaup \$18,528 A Oxyura jamaicensis Ruddy Duck \$18,528 A Aythya affinis Lesser Scaup \$18,528 A Eremophila alpestris Homed Lark \$18,524 A Sterna paradisaea Arctic Tean \$18,524 A Chroicocophalus ridibundus Black-headed Gull \$118,524 A Branta bernicla \$118,524 A Branta bernicla \$118,524 A Branta bernicla \$118,521 A Branta bernicla \$118,521 A Branta bernicla \$118,521 A Branta bernicla \$118,528 A Butorides virescens Green Heron \$15,228 A Butorides virescens Green Heron \$15,228 A Etglidopteryx serripennis \$15,228 A Stelgidopteryx serripennis \$15,228 A Stelgidopteryx serripennis <td< td=""><td></td><td></td><td></td><td></td></td<>				
A Hisfinonicus histinonicus Harlequin Duck \$1B,S1S A Aythya marila Greater Scaup \$1B,S2S A Oxyura jamaicensis Ruddy Duck \$1B,S4S A Aythya affinis Lesser Scaup \$1B,S4N A Eremophila alpestris Horned Lark \$1B,S4N A Stema paradisaea Arctic Tem \$1B,S4N A Chroicocephalus ridibundus Black-headed Gull \$1B,S4N A Brant bernicla Brant \$1B,S2S A Brant bernicla S1N,S2S A Butorides virescens Green Heron \$18,22B A Nycticorax nycticorax Black-crowned Night-heron \$15,22B A Mycticorax nycticorax Black-crowned Night-heron \$15,22B A Tiolonax scarbe			.9 ± 15.0	NB
A Aythya marila Greater Scaup \$18,528 A Oxyura jamiacensis Ruddy Duck \$18,528 A Aythya affinis Lesser Scaup \$18,544 A Eremophilia alpestris Horned Lark \$18,544 A Stema paradisaea Arctic Tem \$18,540 A Chroicocephalus ridibundus Brant bernicla \$18,528 A Branta bernicla Brant \$18,528 A Calidris alba Sanderling \$18,288 A Butorides virescens Green Heron \$18,288 A Butorides virescens Green Heron \$18,288 A Puticiorax, nycticorax Black-crowned Night-heron \$15,28 A Empidonax trailli Willow Fycatcher \$15,28 A Stelgidopteryx serripennis Northern Rough-winged \$15,28 A Troglodytes aedon House Wren \$15,28 A Troglodytes aedon House Wren \$15,28 A Troglodytes aedon House Wren <td< td=""><td></td><td></td><td>1 ± 7.0</td><td>NB</td></td<>			1 ± 7.0	NB
A Öxyura jamaicensis Ruddy Duck A Aythya affinis Lesser Scaup \$1B,54M A Eremophila alpestris Homed Lark \$1B,54M A Stema paradisases Homed Lark \$1B,54M A Chroicocephalus ridibundus Black-headed Gull \$1B,52M A Brant bernicla Brant \$1N,528 A Caldrid sa iba Sanderling \$1N,538 A Butorides virescens Green Heron \$1528 A Mycticorax nycticorax Black-crowned Night-heron \$1528 A Stelgidopteryx serripennis \$4152B A Stelgidopteryx serripennis \$4152B Swallow \$152B A Troglocytes aedon<			$.4 \pm 0.0$	NB
A Ayinya affinis Lessér Scaup \$18,54M A Eremophila alpestris Homed Lark \$18,54M A Stema paradisaea Arctic Term \$18,5UM A Chroicocephalus ridibundus Black-headed Gull \$118,5UM A Branta bernicla Brant \$118,52M A Brant bernicla \$18,5UM A Butorides virescens Green Heron \$15,22B A Butorides virescens Green Heron \$15,22B A Mycticorax nycticorax Black-crowned Night-heron \$15,22B A Empidonax traillii Willow Flycatcher \$15,22B A Stelgidopteryx serripennis Northern Rough-winged \$15,22B A Troglodytes aedon House Wren \$15,22B A Troglodytes aedon House Wren \$15,22B A Troglodytes aedon House Wren \$15,22B A Petrochelidon pyrhonota Cliff Swallow \$15,22B A Petrochelidon pyrhonota Cliff Swallow <t< td=""><td></td><td></td><td>3 ± 0.0</td><td>NB</td></t<>			3 ± 0.0	NB
A Eremophila alpestris Horned Lark \$1B, SUM A Sterna paradisaea Arctic Tem \$1B, SUM A Chroicocephalus ridibundus Black-headed Gull \$1N, S2R A Branta bernicla \$1N, S2R A Branta bernicla \$1N, S2R A Butorides virescens Green Heron \$152B A Nycticorax nycticorax Black-crowned Night-heron \$152B A Mycticorax nycticorax Black-crowned Night-heron \$152B A Empidonax traillii Willow Flycatcher \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Stelgidopteryx serripennis Northern Bough-winged \$152B A Caldidris bairdii Baird Sandpiper \$152B A Perochelidon pyrrhonota Cliff Swallow \$2B A Petrochelidon pyrrhonota <td></td> <td></td> <td>4 ± 1.0</td> <td>NB</td>			4 ± 1.0	NB
A Sterne paradisaea Arctic Tem \$18,SUN A Chriococephalus ridibundus Black-headed Gull \$11,S2R A Branta bernicla Brant \$11,S2R A Calidris alba Sanderling \$11,S3S A Butorides virescens Green Heron \$152B A Nycticorax rycticorax Black-crowned Night-heron \$152B A Zitelgidopteryx serripennis Willow Flycatcher \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Troglodytes aedon House Wren \$152B A Troglodytes aedon House Wren \$152B A Petrochelidon pyrnhonta Cliff Swallow \$152B A Petrochelidon pyrnhonta Cliff Swallow \$22B A Mimus polyglottos	Λ 20	208 3.9	9 ± 0.0	NB
A Chroicocephalus ridibundus Black-headed Gull \$1N,\$2X A Branta bernicla Brant \$1N,\$2X A Calidris alba Sanderling \$1N,\$2X A Butorides virescens Green Heron \$18,22B A Mycticorax rycticorax Black-crowned Night-heron \$18,22B A Empidonax trailli Willow Flycatcher \$18,22B A Stelgidopteryx serripennis Northern Rough-winged A Troglodytes aedon House Wren \$18,22B A Calidris bairdii Baird's Sandpiper \$18,22M A Melanitta americana American Scoter \$18,22M,5 A Petrochelidon pyrrhonota Clif Swallow \$2B A Cistothorus palustris Marsh Wren \$2B A Poecetes gramineus Vesper Sparrow \$2B A Princola enucleator Pine Grosbeak M A Pinicola enucleator Pine Grosbeak \$2N A Pinicola enucleator Pine Grosbeak	1,S5M 3:	32 8.4	4 ± 1.0	NB
A Branta bernicla Brant \$1N,\$2S A Calidris alba Sanderling \$1N,\$3S A Butorides virescens Green Heron \$152B A Nycticorax nycticorax Black-crowned Night-heron \$152B A Empidonax trallii Willow Flycather \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Troglodytes aedon House Wren \$152B A Calidris bairdii Baird's Sandpiper \$152B A Calidris bairdii Baird's Sandpiper \$152M A Petrochelidon pyrrhonota Cliff Swallow \$2B A Pitroclas atrapera Gadwall \$2B A Poocectes gramineus Vesper Sparrow <td>M 12</td> <td>127 28.</td> <td>.2 ± 16.0</td> <td>NB</td>	M 12	127 28.	.2 ± 16.0	NB
A Branta berincia Brant \$1N,\$28 A Calidris alba Sanderling \$1N,\$38 A Butorides virescens Green Heron \$182B A Nycticorax nycticorax Black-crowned Night-heron \$182B A Empidonax trallii Willow Flycather \$182B A Stelgidopteryx serripennis Northern Rough-winged \$182B A Troglodytes aedon House Wren \$182B A Calidris bairdii Baird's Sandpiper \$182B A Calidris bairdii Baird's Sandpiper \$182B A Melanitia americana American Scoter \$182M A Petrochelidon pyrhonota Cliff Swallow \$2B A Cistothorus palustris Morthern Mockingbird \$2B A Mimus polyglottos Northern Mockingbird \$2B A Pooecetes gramineus Vesper Sparrow \$2B A Princical enucleator Pine Grosbeak \$2B,\$45 A Princical enucleator Pine Gr	۸ 4 ²	42 8.8	3 ± 1.0	NB
A Calidris alba Sanderling \$11, \$35 A Butorides virescens Green Heron \$152B A Nycticorax nycticorax Black-crowned Night-heron \$152B A Empidonax traillii Willow Flycatcher \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Troglodytes aedon House Wren \$152B A Calidris bairdii Baird's Sandpiper \$152M A Melanitta americana American Scoter \$152M A Petrochelidon pyrrhonota Cliff Swallow \$2B A Cistothorus palustris Marsh Wren \$2B A Procectes gramineus Vesper Sparrow \$2B A Procectes gramineus Vesper Sparrow \$2B A Pinicola enucleator Pine Grosbeak M A Pinicola enucleator Pine Grosbeak M A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider	33M 54	544 8.4	4 ± 1.0	NB
A Butorides virescens Green Heron \$1528 A Nycticorax nycticorax Black-crowned Night-heron \$1528 A Empidonax trailiii Willow Flycatcher \$1528 A Stelgidopteryx serripennis Northern Rough-winged \$1528 A Calidris bairdii Baird's Sandpiper \$1528 A Calidris bairdii Baird's Sandpiper \$1528 A Melanitta americana American Scoter \$1528 A Melanitta americana American Scoter \$1528 A Petrochelidon pyrrhonota Cliff Swallow \$28 A Proceceles gramineus Vesper Sparrow \$28 A Proceceles gram			1 ± 0.0	NB
A Nycticorax nycticorax Empidonax traillii Black-crowned Night-heron \$152B S152B S152B A Stelgidopteryx serripennis Swallow \$152B S152B A Troglodytes aedon House Wren \$152B S12B S12B S12B S12B S12B S12B S12B S1			.1 ± 7.0	NB
A Empidonax trailli Willow Flycatcher \$152B A Stelgidopteryx serripennis Northern Rough-winged \$152B A Troglodytes aedon House Wren \$152B A Calidris bairdii Baird's Sandpiper \$152M A Melanitta americana American Scoter \$152M A Melanitta americana American Scoter \$152M A Petrochelidon pyrrhonota Cliff Swallow \$2B A Cistothorus palustris Marsh Wren \$2B A Mimus polyglottos Northern Mockingbird \$2B A Poecetes gramineus Vesper Sparrow \$2B A Poecetes gramineus Vesper Sparrow \$2B A Princola enucleator Pine Grosbeak Melanita perspera A Pinicola enucleator Pine Grosbeak Melanita perspeciabilis Melanita perspeciabilis King Eider \$2N A Phalacrocorax carbo Great Cormorant \$2N \$2N A Melanitta deglandi White			5 ± 7.0	NB
A Stelgidopteryx serripennis Northern Rough-winged Swallow \$1528 A Troglodytes aedon House Wren \$1528 A Calidris bairdii Baird's Sandpiper \$152M A Melanitta americana American Scoter \$152N,S A Petrochelidon pyrrhonota Clilf Swallow \$2B A Cistothorus palustris Marsh Wren \$2B A Mimus polyglottos Northern Mockingbird \$2B A Poocectes gramineus Vesper Sparrow \$2B A Poocectes gramineus Vesper Sparrow \$2B A Mareca strepera Gadwall \$2B,S4S A Tringa solitaria Solitary Sandpiper \$2B,S4S A Pinicola enucleator Pine Grosbeak \$2B,S4S A Phalacrocorax carbo Grea			5 ± 7.0 5 ± 7.0	NB
A Steligidopterlyx Serriperinis Swallow \$152B A Troglodytes aedon House Wren \$152B A Calidris bairdii Baird's Sandpiper \$152M A Melanitta americana American Scoter \$152M A Petrochelidon pyrrhonota Cliff Swallow \$2B A Petrochelidon pyrrhonota Cliff Swallow \$2B A Petrochelidon pyrrhonota \$2B A Cistothorus palustris Marsh Wren \$2B A Pocecetes gramineus Vesper Sparrow \$2B A Pocecetes gramineus Vesper Sparrow \$2B A Pocecetes gramineus Vesper Sparrow \$2B A Marea strepera Gadwall \$2B A Princola enucleator Pine Grosbeak \$2B, S4M A Pinicola enucleator Pine Grosbeak \$2B, S4M A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N	13	130 0.3	0 ± 1.0	
A Calidris bairdii Baird's Sandpiper \$152M A Melanitta americana American Scoter \$152N,5 A Petrochelidon pyrrhonota Cliff Swallow \$28 A Cistothorus palustris Marsh Wren \$28 A Mimus polyglottos Northern Mockingbird \$28 A Pooecetes gramineus Yesper Sparrow \$28 A Mareca strepera Gadwall \$28,53M A Mareca strepera Gadwall \$28,53M A Tringa solitaria Solitary Sandpiper \$28,53M A Pinicola enucleator Pine Grosbeak \$28,53M A Pinicola enucleator Pine Grosbeak \$28,54S A Phalacrocorax carbo Great Cormorant \$28,54S A Phalacrocorax carbo Great Cormorant \$28 A Phalacrocorax carbo Great Cormorant \$28 A Melanitta perspicillata Surf Scoter \$28 A Melanitta deglandi White-winged Scoter	25	25 10.	$.6 \pm 7.0$	NB
A Melanitta americana American Scoter S1S2N,S A Petrochelidon pyrrhonota Cliff Swallow S2B A Cistothorus palustris Marsh Wren S2B A Minus polyglottos Northern Mockingbird S2B A Pooecetes gramineus Vesper Sparrow S2B A Mareca strepera Gadwall S2B,S3M A Tringa solitaria Solitary Sandpiper S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Pinicola enucleator Pine Grosbeak S2N A Somateria spectabilis King Eider S2N A Larus hyperboreus Glaucous Gull S2N A Melanitta perspicillata Surf Scoter S2N,S4M A Melanitta deglandi White-winged Scoter S2N,S4M A Molanitta deglandi White-winged Scoter S2N,S4M A Sio otus Long-eared Owl S2S3 A Picoides dorsalis Moodpecker S2S3B,S A Toxostoma rufum Brown Thrasher S2S3B,S A Somateria mollissima Common Eider M A Larus delawarensis Ring-billed Gull S2S3B,S A Pluvialis dominica American Golden-Plover S2S3N,S	3:	33 6.5	5 ± 7.0	NB
A Melanitta americana American Scoter S1S2N,S A Petrochelidon pyrrhonota Cliff Swallow S2B A Cistothorus palustris Marsh Wren S2B A Mimus polyglottos Northern Mockingbird S2B A Pocecetes gramineus Vesper Sparrow S2B A Mareca strepera Gadwall S2B,S3M A Tringa solitaria Solitary Sandpiper S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Pinicola enucleator Pine Grosbeak S2N A Somateria spectabilis King Eider S2N A Larus hyperboreus Glaucous Gull S2N A Melanitta perspicillata Surf Scoter S2N,S4M A Melanitta deglandi White-winged Scoter S2N,S4M A Molanitta deglandi White-winged Scoter S2N,S4M A Melanitta deglandi White-winged Scoter S2N,S4M A Melanitta deglandi White-winged Scoter S2N,S4M A Sio otus Long-eared Owl S2S3 A Picoides dorsalis Moodpecker S2S3B,S3M A Calcarius delawarensis Ring-billed Gull S2S3B,S3M,S4M A Larus delawarensis Ring-billed Gull S2S3B,S3M,S4M A Pluvialis dominica American Golden-Plover S2S3N,S5M,S4M, Calcarius lapponicus Lapland Longspur	13	138 7.9	9 ± 0.0	NB
A Petrochelidon pyrrhonota Cliff Swallow S2B A Cistothorus palustris Marsh Wren S2B A Mimus polyglottos Northern Mockingbird S2B S2B A Pooecetes gramineus Vesper Sparrow S2B A Pooecetes gramineus Vesper Sparrow S2B A Mareca strepera Gadwall S2B,S4S A Tringa solitaria Solitary Sandpiper S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Somateria spectabilis King Eider S2N S2N A Somateria spectabilis King Eider S2N Melanitta perspicillata Surf Scoter S2N,S4N Melanitta deglandi White-winged Scoter S2N,S4N A Melanitta deglandi White-winged Scoter S2N,S4N A A sio otus Long-eared Owl S2S3 A Picoides dorsalis American Three-toed Woodpecker S2S3B A Icterus galbula Baltimore Oriole S2S3B,S A Somateria mollissima Common Eider Merican Golden-Plover S2S3B,S A Pluvialis dominica American Golden-Plover S2S3N,S	33M 82	323 8.4	4 ± 0.0	NB
A Cistothorus palustris Marsh Wren \$2B A Mimus polyglottos Northern Mockingbird \$2B A Pooecetes gramineus Vesper Sparrow \$2B A Mareca strepera Gadwall \$2B, \$3M A Tringa solitaria Solitary Sandpiper \$2B, \$4S A Pinicola enucleator Pine Grosbeak \$2B, \$4S A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N, \$4M A Melanitta deglandi White-winged Scoter \$2N, \$4M A A sio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Picoides dorsalis Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B A Somateria mollissima Common Eider			5 ± 7.0	NB
A Mimus polyglottos Northern Mockingbird \$2B A Pooecetes gramineus Vesper Sparrow \$2B A Mareca strepera Gadwall \$2B,S3M A Tringa solitaria \$0litary Sandpiper \$2B,S4S A Pinicola enucleator Pine Grosbeak \$2B,S4S A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N,S4M A Melanitta deglandi White-winged Scoter \$2N,S4M A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Picoides dorsalis Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,S A Pluvialis dominica American Golden-Plover			1 ± 7.0	NB
A Pooecetes gramineus Vesper Sparrow \$2B A Mareca strepera Gadwall \$2B,53M A Tringa solitaria Solitary Sandpiper \$2B,54S A Pinicola enucleator Pine Grosbeak \$2B,54S A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N, \$4M A Melanitta deglandi White-winged Scoter \$2N, \$4M A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed Woodpecker \$2S3 A Icterus galbula Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B, \$4M A Pluvialis dominica American Golden-Plover \$2S3M A Pluvialis dominica American Golden-P			5 ± 7.0	NB
A Mareca strepera Gadwall S2B,S3M A Tringa solitaria Solitary Sandpiper S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Phalacrocorax carbo Great Cormorant S2N A Somateria spectabilis King Eider S2N A Larus hyperboreus Glaucous Gull S2N A Melanitta perspicillata Surf Scoter S2N,S4M A Melanitta deglandi White-winged Scoter S2N,S4M A Asio otus Long-eared Owl S2S3 A Picoides dorsalis American Three-toed Woodpecker S2N,S4M A Icterus galbula Baltimore Oriole S2S3B, SAM A Pluvialis dominica American Golden-Plover A Pluvialis dominica American Golden-Plover S2S3M, SAM A Pluvialis dominica American Golden-Plover S2S3N,S4M A Calcarius lapponicus Lapland Longspur S2S3N,S			0.5 ± 0.0	NB
A Tringa solitaria Solitary Sandpiper S2B,S4S A Pinicola enucleator Pine Grosbeak S2B,S4S A Phalacrocorax carbo Great Cormorant S2N A Somateria spectabilis King Eider S2N A Larus hyperboreus Glaucous Gull S2N A Melanitta perspicillata Surf Scoter S2N,S4N A Melanitta deglandi White-winged Scoter S2N,S4N A Asio otus Long-eared Owl S2S3 A Picoides dorsalis American Three-toed Woodpecker A I Toxostoma rufum Brown Thrasher S2S3B, S4N A I Carus delawarensis Ring-billed Gull A Larus delawarensis Ring-billed Gull A Pluvialis dominica American Golden-Plover S2S3N,S			1 ± 6.0	NB NB
A Pinicola enucleator Pine Grosbeak S2B,S4S A Phalacrocorax carbo Great Cormorant S2N A Somateria spectabilis King Eider S2N A Larus hyperboreus Glaucous Gull S2N,S4N A Melanitta perspicillata Surf Scoter S2N,S4N A Melanitta deglandi White-winged Scoter S2N,S4N A Asio otus Long-eared Owl S2S3 A Picoides dorsalis American Three-toed S2S3 A Picoides dorsalis American Three-toed S2S3 A Picoides dorsalis Brown Thrasher S2S3B A Icterus galbula Baltimore Oriole S2S3B A Icterus galbula Baltimore Oriole S2S3B,S A Samateria mollissima Common Eider S2S3B,S A Pluvialis dominica American Golden-Plover S2S3M,S A Calcarius lapponicus Lapland Longspur S2S3N,S				NB NB
A Princola enucleator Prine Grosbeak M A Phalacrocorax carbo Great Cormorant \$2N A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N,\$4N A Melanitta deglandi White-winged Scoter \$2N,\$4N A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Icterus galbula Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,\$ A Pluvialis dominica American Golden-Plover \$2S3M A Calcarius lapponicus Lapland Longspur \$2S3N,\$	S5N 9495		4 ± 1.0	NB NB
A Somateria spectabilis King Eider \$2N A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N,\$4N A Melanitta deglandi White-winged Scoter \$2N,\$4N A Asio otus Long-eared Owl \$2S,\$4N A Picoides dorsalis American Three-toed Woodpecker \$2S3 A Toxostoma rufum Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B,\$ A Somateria mollissima Common Eider \$2S3B,\$ A Pluvialis dominica American Golden-Plover \$2S3M A Calcarius lapponicus Lapland Longspur \$2S3N,\$	40		.7 ± 7.0	
A Larus hyperboreus Glaucous Gull \$2N A Melanitta perspicillata Surf Scoter \$2N, S4N A Melanitta deglandi White-winged Scoter \$2N, S4N A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed Woodpecker \$2S3 A Toxostoma rufum Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,S A Pluvialis dominica American Golden-Plover \$2S3M,S A Calcarius lapponicus Lapland Longspur \$2S3N,S			3 ± 3.0	NB
A Melanitta perspicillata Surf Scoter \$2N,\$4N A Melanitta deglandi White-winged Scoter \$2N,\$4N A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed \$2S3 A Toxostoma rufum Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,S A Larus delawarensis Ring-billed Gull \$2S3B,S A Pluvialis dominica American Golden-Plover \$2S3M A Calcarius lapponicus Lapland Longspur \$2S3N,\$.1 ± 32.0	NB
A Melanitta deglandi White-winged Scoter \$2N,\$4N A Asio otus Long-eared Owl \$2S3 A Picoides dorsalis American Three-toed Woodpecker \$2S3 A Toxostoma rufum Brown Thrasher \$2S3B A Icterus galbula Baltimore Oriole \$2S3B A Somateria mollissima Common Eider \$2S3B,S A Larus delawarensis Ring-billed Gull \$2S3B,S A Pluvialis dominica American Golden-Plover \$2S3M A Calcarius lapponicus Lapland Longspur \$2S3N,S			1 ± 0.0	NB
A Asio otus Long-eared Owl \$2\$3 A Picoides dorsalis American Three-toed Woodpecker \$2\$3 A Toxostoma rufum Brown Thrasher \$2\$3B A Icterus galbula Baltimore Oriole \$2\$3B A Somateria mollissima Common Eider \$2\$3B,S A Larus delawarensis Ring-billed Gull \$2\$3B,S A Pluvialis dominica American Golden-Plover \$2\$3M A Calcarius lapponicus Lapland Longspur \$2\$3N,S			3 ± 8.0	NB
A Picoides dorsalis American Three-toed Woodpecker \$2\$3 A Toxostoma rufum Brown Thrasher \$2\$3B A Icterus galbula Baltimore Oriole \$2\$3B A Somateria mollissima Common Eider M A Larus delawarensis Ring-billed Gull \$2\$3B,S A Pluvialis dominica American Golden-Plover \$2\$3M A Calcarius lapponicus Lapland Longspur \$2\$3N,S			.5 ± 17.0	NB
A Picoides dorsails Woodpecker A Toxostoma rufum Brown Thrasher \$2\$3B A Icterus galbula Baltimore Oriole \$2\$3B A Somateria mollissima Common Eider M A Larus delawarensis Ring-billed Gull \$2\$3B,S A Pluvialis dominica American Golden-Plover \$2\$3M A Calcarius lapponicus Lapland Longspur \$2\$3N,S	2	21 3.1	1 ± 0.0	NB
A Toxostoma rufum Brown Thrasher \$2\$3B A Icterus galbula Baltimore Oriole \$2\$3B A Somateria mollissima Common Eider \$2\$3B,S A Larus delawarensis Ring-billed Gull \$2\$3B,S A Pluvialis dominica American Golden-Plover \$2\$3M,S A Calcarius lapponicus Lapland Longspur \$2\$3N,S	1	11 44.	.0 ± 7.0	NB
A Icterus galbula Baltimore Oriole S2S3B, A Somateria mollissima Common Eider S2S3B, S M A Larus delawarensis Ring-billed Gull S2S3B, S A Pluvialis dominica American Golden-Plover S2S3M, A Calcarius Iapponicus Lapland Longspur S2S3N, S	10	101 6.5	5 ± 7.0	NB
A Somateria mollissima Common Eider A Larus delawarensis Ring-billed Gull S2S3B,S A Pluvialis dominica American Golden-Plover S2S3M,S Calcarius Iapponicus Lapland Longspur S2S3N,S			3 ± 7.0 3 ± 2.0	NB NB
A Larus delawarensis Ring-billed Gull S2S3B,S A Pluvialis dominica American Golden-Plover S2S3M,S Calcarius Iapponicus Lapland Longspur S2S3N,S		220 0.3	5 ± 2.0	NB NB
A Pluvialis dominica American Golden-Plover S2S3M A Calcarius Iapponicus Lapland Longspur S2S3N,S	204		1 ± 0.0	
A Calcarius Iapponicus Lapland Longspur S2S3N,S	34N,S5M 33	338 1.9	9 ± 0.0	NB
	29	291 7.9	9 ± 0.0	NB
	3UM 3	38 7.7	7 ± 1.0	NB
A Larus marinus Great Black-backed Gull \$3			1 ± 0.0	NB
A Picoides arcticus Black-backed Woodpecker S3			0.0 ± 7.0	NB
A Loxia curvirostra Red Crossbill S3			5 ± 7.0	NB
A Spinus pinus Pine Siskin S3			1 ± 7.0	NB
, ,			.5 ± 0.0	NB
			.5 ± 0.0 1 ± 0.0	NB NB
A Sorex maritimensis Maritime Shrew S3	2	2 83.	$.2 \pm 0.0$	NS

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Spatula clypeata	Northern Shoveler				S3B	154	6.5 ± 7.0	NB
A	Charadrius vociferus	Killdeer				S3B	905	4.1 ± 7.0	NB
A	Tringa semipalmata	Willet				S3B	203	8.6 ± 0.0	NB
A	Cepphus grylle	Black Guillemot				S3B	824	8.4 ± 1.0	NB
A	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	211	6.5 ± 7.0	NB
A	Myiarchus crinitus	Great Crested Flycatcher				S3B	378	8.7 ± 4.0	NB
A	Piranga olivacea	Scarlet Tanager				S3B	140	9.1 ± 7.0	NB
Α	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	863	4.1 ± 7.0	NB
Α	Passerina cyanea	Indiao Buntina				S3B	124	11.2 ± 7.0	NB
Α	Molothrus ater	Brown-headed Cowbird				S3B	311	4.1 ± 7.0	NB
A	Setophaga tigrina	Cape May Warbler				S3B,S4S5M	163	10.4 ± 7.0	NB
A	Mergus serrator	Red-breasted Merganser				S3B,S4S5N,S5M	408	6.3 ± 8.0	NB
A	Anas acuta	Northern Pintail				S3B,S5M	60	0.5 ± 1.0	NB
A	Anser caerulescens	Snow Goose				S3M	7	8.4 ± 1.0	NB
	Numenius phaeopus								NB
A	hudsonicus .	Whimbrel				S3M	456	8.4 ± 1.0	
A	Arenaria interpres	Ruddy Turnstone				S3M	749	8.4 ± 1.0	NB
A	Calidris pusilla	Semipalmated Sandpiper				S3M	2626	7.1 ± 3.0	NB
A	Calidris melanotos	Pectoral Sandpiper				S3M	351	3.8 ± 0.0	NB
A	Limnodromus griseus	Short-billed Dowitcher				S3M	871	7.9 ± 0.0	NB
A	Phalaropus fulicarius	Red Phalarope				S3M	120	41.4 ± 32.0	NB
A	Bucephala albeola	Bufflehead				S3N	1146	3.9 ± 0.0	NB
A	Calidris maritima	Purple Sandpiper				S3N	262	8.6 ± 0.0	NB
Α	Uria Iomvia	Thick-billed Murre				S3N,S3M	67	19.9 ± 8.0	NB
Α	Perisoreus canadensis	Canada Jay				S3S4	352	4.1 ± 7.0	NB
Α	Poecile hudsonicus	Boreal Chickadee				S3S4	278	4.1 ± 7.0	NB
A	Eptesicus fuscus	Big Brown Bat				S3S4	51	7.2 ± 1.0	NB
A	Synaptomys cooperi	Southern Bog Lemming				S3S4	79	29.3 ± 1.0	NB
A	Tyrannus tyrannus	Eastern Kingbird				S3S4B	686	8.7 ± 2.0	NB
A	Vireo gilvus	Warbling Vireo				S3S4B	276	10.4 ± 7.0	NB
A	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	1164	4.1 ± 7.0	NB
A	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	363	4.1 ± 7.0 4.1 ± 7.0	NB
A	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	1011	8.6 ± 0.0	NB
A		Blackpoll Warbler				S3S4B,S5M	106	7.3 ± 0.0	NB
A	Setophaga striata	Black-bellied Plover							NB
	Pluvialis squatarola					S3S4M	1161	7.3 ± 0.0	NB NB
A	Morus bassanus	Northern Gannet				SHB	844	4.1 ± 0.0	
_	Quercus macrocarpa - Acer	Bur Oak - Red Maple /				0.0			NB
С	rubrum / Onoclea sensibilis -	Sensitive Fern - Northern				S2	1	67.6 ± 0.0	
	Carex arcta Forest	Clustered Sedge Forest							
	Acer saccharinum / Onoclea	Silver Maple / Sensitive Fern							NB
С	sensibilis - Lysimachia	 Swamp Yellow Loosestrife 				S3	1	53.4 ± 0.0	
	terrestris Forest	Forest							
	Acer saccharum - Fraxinus	Sugar Maple - White Ash /							NB
С	americana / Polystichum	Christmas Fern Forest				S3S4	1	33.3 ± 0.0	
	acrostichoides Forest	Chilstinas Fem Forest							
I	Bombus bohemicus	Ashton Cuckoo Bumble Bee	Endangered	Endangered		S1	16	11.4 ± 5.0	NB
I	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	302	0.6 ± 0.0	NB
I	Bombus affinis	Rusty-patched Bumble Bee	Endangered	Endangered	•	SH	1	84.1 ± 5.0	NB
	5 / // :	Suckley's Cuckoo Bumble		· ·		011		00.4 5.0	NB
l	Bombus suckleyi	Bee	Threatened			SH	1	20.4 ± 5.0	
I	Gomphurus ventricosus	Skillet Clubtail	Special Concern	Endangered	Endangered	S2	95	55.9 ± 0.0	NB
	Cicindolo morgininonnio	Cobblectors Tiger Poetle	Special	Endongorod	Endangered	S2S3	185	65.6 ± 0.0	NB
1	Cicindela marginipennis	Cobblestone Tiger Beetle	Concern	Endangered	Endangered	0200	100	00.0 ± 0.0	
	Ophiogomphus howei	Pygmy Snaketail	Special	Special Concern	Special Concern	S2S3	15	46.3 ± 0.0	NB
I	Opinogomphus nower	r ygiriy Orlanotan	Concern						
l	Alasmidonta varicosa	Brook Floater	Concern Special	Special Concern	Special Concern	S3	1	84.0 ± 0.0	NB

Taxonomic	
I axononio	

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
I	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S3	101	32.6 ± 1.0	NB
1	Bombus terricola	Yellow-banded Bumble Bee	Special Concern	Special Concern		S4	142	10.7 ± 5.0	NB
1	Coccinella transversoguttata richardsoni	Transverse Lady Beetle	Special Concern			SH	17	6.3 ± 0.0	NB
I	Appalachina sayana sayana	Spike-lip Crater Snail	Not At Risk			S3?	1	16.9 ± 1.0	NB
I	Conotrachelus juglandis	Butternut Curculio				S1	3	79.6 ± 0.0	NB
I	Haematopota rara	Shy Cleg				S1	1	82.4 ± 1.0	NB
1	Tharsalea dorcas	Dorcas Copper				S1	1	67.2 ± 0.0	NB
1	Erora laeta	Early Hairstreak				S1	6	77.4 ± 2.0	NS
i	Somatochlora septentrionalis	Muskeg Emerald				S1	1	99.5 ± 1.0	NB
i	Polites origenes	Crossline Skipper				S1?	8	50.0 ± 0.0	NB
i	Icaricia saepiolus	Greenish Blue				S1S2	5	43.9 ± 0.0	NB
i	•	Blue Dasher				S1S2	3	30.9 ± 0.0	NB
'	Pachydiplax longipennis					3132	3	30.9 ± 0.0	NB
I	Encyclops caeruleus	Cerulean Long-horned				S2	1	83.9 ± 0.0	IND
	• •	Beetle				0.0	_		
I	Scaphinotus viduus	Bereft Snail-eating Beetle				S2	2	38.8 ± 0.0	NB
1	Brachyleptura circumdata	Dark-shouldered Long-				S2	6	69.7 ± 0.0	NB
•		horned Beetle							
ı	Satyrium calanus	Banded Hairstreak				S2	25	15.3 ± 0.0	NB
I	Satyrium calanus falacer	Falacer Hairstreak				S2	1	81.8 ± 1.0	NB
I	Strymon melinus	Gray Hairstreak				S2	7	12.1 ± 0.0	NB
1	Tabanus vivax	Vivacious Horse Fly				S2S3	1	92.1 ± 0.0	NB
1	Ophiogomphus colubrinus	Boreal Snaketail				S2S3	40	24.1 ± 1.0	NB
i	Sphaeroderus nitidicollis	Polished Snail-eating Beetle				S3	1	69.7 ± 0.0	NB
·	Lepturopsis biforis	Two-spotted Long-horned				S3	1	13.6 ± 1.0	NB
	0-11	Beetle				00	0	70.0 . 5.0	ND
!	Orthosoma brunneum	Moist Long-horned Beetle				S3	3	70.2 ± 5.0	NB
!	Elaphrus americanus	Boreal Elaphrus Beetle				S3	1	71.9 ± 0.0	NB
l	Semanotus terminatus	Light Long-horned Beetle				S3	1	75.2 ± 0.0	NB
ı	Desmocerus palliatus	Elderberry Borer				S3	9	13.6 ± 1.0	NB
1	Agonum excavatum	Excavated Harp Ground Beetle				S3	1	71.9 ± 0.0	NB
1	Clivina americana	America Pedunculate Ground Beetle				S3	1	71.9 ± 0.0	NB
1	Olisthopus parmatus	Tawny-bordered Harp Ground Beetle				S3	1	69.7 ± 0.0	NB
		Handsome Riverbank							NB
I	Tachys scitulus	Ground Beetle				S3	1	71.9 ± 0.0	110
1	Carabus maeander	Meander Ground Beetle				S3	1	82.5 ± 0.0	NB
i	Carabus serratus	Serrated Ground Beetle				S3	1	87.3 ± 0.0	NB
	Coccinella hieroglyphica								NB
1	kirbyi	a Ladybird Beetle				S3	1	13.6 ± 1.0	
l	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	5	13.6 ± 1.0	NB
I	Stenocorus vittiger	Shrub Long-horned Beetle				S3	1	71.9 ± 0.0	NB
1	Gnathacmaeops pratensis	Meadow Flower Longhorn Beetle				S3	5	13.6 ± 1.0	NB
1	Pogonocherus mixtus	Mixed-spotted Flatface Sawyer				S3	1	13.6 ± 1.0	NB
1	Badister neopulchellus	Red-black Spotted Beetle				S3	1	71.9 ± 0.0	NB
1	Calathus gregarius	Gregarious Harp Ground Beetle				S3	1	99.3 ± 1.0	NB
1	Gonotropis dorsalis	Birch Fungus Weevil				S3	1	75.1 ± 0.0	NB
1	Naemia seriata	Seaside Lady Beetle				S3	6	12.8 ± 0.0	NB
i	Beckerus appressus	Compressed Click Beetle				S3	1	94.7 ± 0.0	NB
	• •	Red-edged Long-horned							NB
I	Saperda lateralis	Beetle				S3	2	8.5 ± 0.0	

 axc	۱n	nr	nı	^
	,,,	v		·

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
1	Epargyreus clarus	Silver-spotted Skipper				S3	23	6.2 ± 0.0	NB
1	Hesperia sassacus	Indian Skipper				S3	19	49.9 ± 1.0	NB
1	Euphyes bimacula	Two-spotted Skipper				S3	20	9.7 ± 0.0	NB
1	Satyrium acadica	Acadian Hairstreak				S3	20	13.6 ± 5.0	NB
1	Plebejus idas	Northern Blue				S3	2	26.8 ± 0.0	NB
i	Plebejus idas empetri	Crowberry Blue				S3	26	6.8 ± 2.0	NB
i	Argynnis aphrodite	Aphrodite Fritillary				S3	28	11.1 ± 2.0	NB
i	Boloria bellona	Meadow Fritillary				S3	62	41.0 ± 0.0	NB
i	Nymphalis I-album	Compton Tortoiseshell				S3	36	11.1 ± 2.0	NB
;	Gomphurus vastus	Compton Tortoisesneii Cobra Clubtail				S3	123	38.5 ± 0.0	NB
!									
!	Celithemis martha	Martha's Pennant				S3	9	2.9 ± 0.0	NB
!	Ladona exusta	White Corporal				S3	13	34.7 ± 0.0	NB
!	Enallagma pictum	Scarlet Bluet				S3	10	15.6 ± 0.0	NB
1	Ischnura kellicotti	Lilypad Forktail				S3	19	24.4 ± 0.0	NB
	Arigomphus furcifer	Lilypad Clubtail				S3	25	62.1 ± 0.0	NB
I	Alasmidonta undulata	Triangle Floater				S3	40	11.5 ± 1.0	NB
I	Atlanticoncha ochracea	Tidewater Mucket				S3	154	7.4 ± 1.0	NB
1	Striatura ferrea	Black Striate Snail				S3	1	81.9 ± 1.0	NB
1	Neohelix albolabris	Whitelip Snail				S3	2	61.5 ± 0.0	NB
1	Spurwinkia salsa	Saltmarsh Hydrobe				S3	34	5.3 ± 0.0	NB
1	Pantala hymenaea	Spot-Winged Glider				S3B	12	10.8 ± 1.0	NB
i	Bombus griseocollis	Brown-belted Bumble Bee				S3S4	3	73.3 ± 5.0	NB
i	Lanthus vernalis	Southern Pygmy Clubtail				S3S4	1	99.8 ± 0.0	NB
i	Somatochlora forcipata	Forcipate Emerald				S3S4	21	68.1 ± 1.0	NB
i	Somatochlora tenebrosa	Clamp-Tipped Emerald				S3S4	12	75.9 ± 0.0	NB
N	Erioderma mollissimum	Graceful Felt Lichen	Fadanasad	Fadangarad	Fadanasad	SH	1	95.6 ± 1.0	NB
IN			Endangered	Endangered	Endangered	эп	'	93.0 ± 1.0	NB
N	Erioderma pedicellatum	Boreal Felt Lichen - Atlantic	Endangered	Endangered	Endangered	SH	1	70.7 ± 1.0	NB
	(Atlantic pop.)	pop.	· ·	· ·	Ü	0.10			
N	Pannaria lurida	Wrinkled Shingle Lichen	Threatened	Threatened		S1?	165	50.9 ± 0.0	NB
N	Heterodermia squamulosa	Scaly Fringe Lichen	Threatened			S1?	15	8.9 ± 0.0	NB
N	Anzia colpodes	Black-foam Lichen	Threatened	Threatened		S1S2	20	77.5 ± 1.0	NB
N	Fuscopannaria leucosticta	White-rimmed Shingle	Threatened			S2	170	43.3 ± 0.0	NB
i N	i uscopannana leucosticia	Lichen	Tilleaterieu				170	40.0 ± 0.0	
N	Peltigera hydrothyria	Eastern Waterfan	Threatened	Threatened		S2S3	333	90.9 ± 0.0	NB
NI.	De etenie alumbe e	Diver Felt Lieber	Special	0	0	04	440	40.0 . 0.0	NB
N	Pectenia plumbea	Blue Felt Lichen	Concern	Special Concern	Special Concern	S1	419	42.2 ± 0.0	
	Sclerophora peronella	Frosted Glass-whiskers	Special			<u>.</u> .	_		NS
N	(Atlantic pop.)	(Atlantic population)	Concern	Special Concern		S1	8	88.4 ± 0.0	
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S2S3	22	19.3 ± 0.0	NB
N	Imbribryum muehlenbeckii	Muehlenbeck's Bryum Moss	NOUALINISK			S1	1	7.9 ± 1.0	NB
i N		Miderile ribeck 3 brydin Moss				_	'	7.3 ± 1.0	NB
N	Didymodon rigidulus var.	a moss				S1	1	98.5 ± 1.0	IND
	gracilis	0.1				0.4		0.4.00	NID
N	Sphagnum macrophyllum	Sphagnum				S1	4	3.1 ± 0.0	NB
N	Coscinodon cribrosus	Sieve-Toothed Moss				S1	1	10.8 ± 0.0	NB
N	Syntrichia ruralis	a Moss				S1	1	76.8 ± 0.0	NB
N	Sticta fuliginosa	Peppered Moon Lichen				S1	2	94.3 ± 0.0	NS
N	Leptogium hirsutum	Jellyskin Lichen				S1	26	92.6 ± 0.0	NB
N	Cladonia straminea	Reptilian Pixie-cup Lichen				S1	4	92.5 ± 1.0	NB
N	Coccocarpia palmicola	Salted Shell Lichen				S1	6	49.8 ± 0.0	NB
N	Peltigera collina	Tree Pelt Lichen				S1	3	79.4 ± 10.0	NB
N	Peltigera malacea	Veinless Pelt Lichen				S1	2	87.8 ± 0.0	NS
N	Bryoria bicolor	Electrified Horsehair Lichen				S1	1	95.0 ± 1.0	NB
N	Cladonia krogiana	Krog's Pixie Lichen				S1	1	28.0 ± 0.0	NB
N	Hygrobiella laxifolia	Lax Notchwort				S1?	1	92.6 ± 1.0	NB
						S1? S1?	-		NS NS
N	Atrichum angustatum	Lesser Smoothcap Moss					1	89.6 ± 3.0	
N	Bartramia ithyphylla	Straight-leaved Apple Moss				S1?	1	92.6 ± 0.0	NB
N	Pseudocalliergon trifarium	Three-ranked Spear Moss				S1?	1	1.1 ± 0.0	NB
N	Dichelyma falcatum	a Moss				S1?	2	21.6 ± 1.0	NB

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Dicranum bonjeanii	Bonjean's Broom Moss		-		S1?	1	83.0 ± 1.0	NB
N	Oxyrrhynchium hians	Light Beaked Moss				S1?	4	74.2 ± 0.0	NB
N	Plagiothecium latebricola	Alder Silk Moss				S1?	2	10.4 ± 0.0	NB
N	Niphotrichum ericoides	Dense Rock Moss				S1?	1	76.8 ± 3.0	NB
N	Rhytidium rugosum	Wrinkle-leaved Moss				S1?	2	76.3 ± 0.0	NB
N	Splachnum pensylvanicum	Southern Dung Moss				S1?	2	85.4 ± 1.0	NB
N	Platylomella lescurii	a Moss				S1?	1	68.4 ± 1.0	NB
N	Enchylium tenax	Soil Tarpaper Lichen				S1?	1	94.7 ± 0.0	NS
N	Ephebe hispidula	Dryside Rockshag Lichen				S1?	1	88.5 ± 0.0	NS
N	Ephebe perspinulosa	Thread Lichen				S1?	i	92.3 ± 0.0	NS
N	Euopsis granatina	Lesser Rockbud Lichen				S1?	1	85.4 ± 1.0	NS
N	Pertusaria propinqua	a Lichen				S1?	2	95.0 ± 1.0	NB
		New England Matchstick				_			NB
N	Pilophorus fibula	Lichen				S1?	1	34.0 ± 0.0	ND
N	Rhizocarpon umbilicatum	a Lichen				S1?	1	91.9 ± 1.0	NB
N	Spilonema revertens	Rock Hairball Lichen				S1?	4	84.9 ± 0.0	NS
N	Peltigera venosa	Fan Pelt Lichen				S1?	2	35.6 ± 0.0	NB
	Cladonia oricola	Cladonia Lichen				S1? S1?		35.6 ± 0.0 16.2 ± 0.0	NB NB
N N						\$1? \$1\$2	2 1	98.5 ± 1.0	NB
	Odontoschisma francisci	Holt's Notchwort					-		
N	Harpanthus flotovianus	Great Mountain Flapwort				S1S2	1	94.4 ± 1.0	NB
N	Pallavicinia lyellii	Lyell's Ribbonwort				S1S2	3	25.3 ± 1.0	NB
N	Reboulia hemisphaerica	Purple-margined Liverwort				S1S2	2	74.0 ± 1.0	NB
N	Solenostoma obovatum	Egg Flapwort				S1S2	1	21.0 ± 0.0	NB
N	Brachythecium acuminatum	Acuminate Ragged Moss				S1S2	5	65.3 ± 100.0	NB
N	Ptychostomum salinum	Saltmarsh Bryum				S1S2	2	29.3 ± 1.0	NB
N	Pseudocampylium radicale	Long-stalked Fine Wet Moss				S1S2	1	84.6 ± 1.0	NB
N	Tortula obtusifolia	a Moss				S1S2	1	54.9 ± 0.0	NB
N	Distichium inclinatum	Inclined Iris Moss				S1S2	5	98.4 ± 0.0	NB
N	Ditrichum pallidum	Pale Cow-hair Moss				S1S2	3	76.3 ± 3.0	NS
N	Drummondia prorepens	a Moss				S1S2	1	90.7 ± 0.0	NS
N	Sphagnum platyphyllum	Flat-leaved Peat Moss				S1S2	3	90.9 ± 1.0	NB
N	Timmia norvegica	a moss				S1S2	3	62.2 ± 0.0	NB
	Timmia norvegica var.					0400		00.4.00	NB
N	excurrens	a moss				S1S2	1	98.4 ± 0.0	
N	Tomentypnum falcifolium	Sickle-leaved Golden Moss				S1S2	1	21.2 ± 1.0	NB
N	Tortella humilis	Small Crisp Moss				S1S2	4	93.3 ± 0.0	NB
	Pseudotaxiphyllum	•					-		NB
N	distichaceum	a Moss				S1S2	3	29.3 ± 1.0	110
N	Hamatocaulis vernicosus	a Moss				S1S2	3	35.3 ± 100.0	NB
		Tiny-leaved Haplocladium							NS
N	Haplocladium microphyllum	Moss				S1S2	1	76.3 ± 3.0	110
N	Umbilicaria vellea	Grizzled Rocktripe Lichen				S1S2	1	98.6 ± 1.0	NB
N	Pilophorus cereolus	Powdered Matchstick Lichen				S1S2 S1S2	2	34.0 ± 0.0	NB
N	Calypogeia neesiana	Nees' Pouchwort				S1S2 S1S3	1	34.0 ± 0.0 32.7 ± 1.0	NB
IN		nees Fouchwort				3133		32.7 ± 1.0	NB
N	Fuscocephaloziopsis	Forcipated Pincerwort				S1S3	1	21.8 ± 0.0	IND
N.I.	connivens	Spurred Threadwort				S1S3	1	10.50	NB
N	Cephaloziella elachista							1.6 ± 5.0	
N	Porella pinnata	Pinnate Scalewort				S1S3	2	38.6 ± 1.0	NB
N	Amphidium mougeotii	a Moss				S2	10	20.5 ± 1.0	NB
N	Anomodon viticulosus	a Moss				S2	7	7.5 ± 0.0	NB
N	Cirriphyllum piliferum	Hair-pointed Moss				S2	1	79.0 ± 0.0	NB
N	Cynodontium strumiferum	Strumose Dogtooth Moss				S2	1	73.6 ± 8.0	NB
N	Dicranella palustris	Drooping-Leaved Fork Moss				S2	8	54.8 ± 100.0	NB
N	Didymodon ferrugineus	Rusty Beard Moss				S2	2	31.6 ± 1.0	NB
N	Ditrichum flexicaule	Flexible Cow-hair Moss				S2	1	20.5 ± 1.0	NB
N	Anomodon tristis	a Moss				S2	2	74.8 ± 1.0	NB
N	Hygrohypnum bestii	Best's Brook Moss				S2	5	83.8 ± 0.0	NB

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Isothecium myosuroides	Slender Mouse-tail Moss			-	S2	11	20.5 ± 1.0	NB
N	Meesia triquetra	Three-ranked Cold Moss				S2	2	65.3 ± 100.0	NB
N	Physcomitrium immersum	a Moss				S2	7	38.6 ± 1.0	NB
N	Platydictya jungermannioides	False Willow Moss				S2	4	30.9 ± 0.0	NB
N	Pohlia elongata	Long-necked Nodding Moss				S2	7	93.3 ± 0.0	NB
N	Seligeria calcarea	Chalk Brittle Moss				S2	1	20.5 ± 1.0	NB
N	Sphagnum lindbergii	Lindberg's Peat Moss				S2 S2	8	7.6 ± 1.0	NB
	Tavloria serrata					S2 S2	5	43.0 ± 1.0	NB
N		Serrate Trumpet Moss							
N	Tetrodontium brownianum	Little Georgia				S2	3	97.9 ± 1.0	NB
N	Tetraplodon mnioides	Entire-leaved Nitrogen Moss				S2	3	22.7 ± 0.0	NB
N	Thamnobryum alleghaniense	a Moss				S2	9	62.1 ± 0.0	NB
N	Tortula mucronifolia	Mucronate Screw Moss				S2	1	10.0 ± 0.0	NB
N	Ulota phyllantha	a Moss				S2	7	29.3 ± 1.0	NB
N	Anomobryum julaceum	Slender Silver Moss				S2	5	61.5 ± 0.0	NB
N	Usnea ceratina	Warty Beard Lichen				S2	1	48.7 ± 0.0	NB
N	Cladonia incrassata	Powder-foot British Soldiers				S2	1	21.0 ± 0.0	NB
IN	Ciadoriia iricrassata	Lichen					'	21.0 ± 0.0	
N	Leptogium corticola	Blistered Jellyskin Lichen				S2	32	80.1 ± 0.0	NB
N	Leptogium milligranum	Stretched Jellyskin Lichen				S2	8	79.8 ± 0.0	NB
N	Nephroma laevigatum	Mustard Kidney Lichen				S2	12	74.7 ± 0.0	NB
N	Peltigera lepidophora	Scaly Pelt Lichen				S2	4	35.6 ± 0.0	NB
N	Andreaea rothii	Dusky Rock Moss				S2?	2	31.1 ± 0.0	NB
N	Ptychostomum pallescens	Tall Clustered Bryum				S2?	2	10.2 ± 1.0	NB
N	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	2	94.8 ± 2.0	NB
N	Dicranum spurium	Spurred Broom Moss				S2?	4	16.4 ± 0.0	NB
N	Hygrohypnum montanum	a Moss				S2?	1	75.9 ± 1.0	NB
N	Schistostega pennata	Luminous Moss				S2?	3	54.8 ± 100.0	NB
N	Seligeria diversifolia	a Moss				S2?	2	61.5 ± 0.0	NB
N							2	19.4 ± 10.0	NB
	Sphagnum angermanicum	a Peatmoss				S2?	6		NB NB
N	Plagiomnium rostratum	Long-beaked Leafy Moss				S2?		62.1 ± 0.0	
N	Collema leptaleum	Crumpled Bat's Wing Lichen				S2?	2	79.6 ± 0.0	NB
N	Imshaugia placorodia	Eyed Starburst Lichen				S2?	1	88.3 ± 0.0	NS
N	Nephroma arcticum	Arctic Kidney Lichen				S2?	1	95.7 ± 1.0	NB
N	Ptychostomum cernuum	Swamp Bryum				S2S3	3	33.1 ± 4.0	NB
N	Buxbaumia aphylla	Brown Shield Moss				S2S3	2	72.1 ± 15.0	NB
N	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	14	10.4 ± 1.0	NB
N	Drepanocladus polygamus	Polygamous Hook Moss				S2S3	1	96.0 ± 0.0	NB
N	Palustriella falcata	Curled Hook Moss				S2S3	3	20.5 ± 1.0	NB
N	Didymodon rigidulus	Rigid Screw Moss				S2S3	10	7.5 ± 0.0	NB
N	Ephemerum serratum	a Moss				S2S3	3	76.5 ± 0.0	NB
N	Fissidens bushii	Bush's Pocket Moss				S2S3	7	7.5 ± 0.0	NB
N	Hypnum cupressiforme var.	a Moss				S2S3	1	92.6 ± 0.0	NS
	filiforme								ND
N	Isopterygiopsis pulchella	Neat Silk Moss				S2S3	3	97.7 ± 0.0	NB
N	Neckera complanata	a Moss				S2S3	5	7.5 ± 0.0	NB
N	Orthotrichum elegans	Showy Bristle Moss				S2S3	3	58.4 ± 2.0	NB
N	Pohlia proligera	Cottony Nodding Moss				S2S3	2	98.1 ± 1.0	NB
N	Codriophorus fascicularis	Clustered Rock Moss				S2S3	2	66.4 ± 0.0	NB
N	Bucklandiella affinis	Lesser Rock Moss				S2S3	5	81.0 ± 0.0	NS
N	Scorpidium scorpioides	Hooked Scorpion Moss				S2S3	4	1.1 ± 0.0	NB
N	Seligeria campylopoda	a Moss				S2S3	1	35.3 ± 100.0	NB
N	Sphagnum centrale	Central Peat Moss				S2S3	7	78.6 ± 5.0	NS
N	Sphagnum subfulvum	a Peatmoss				S2S3	5	21.2 ± 1.0	NB
1 4									
N	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2S3	1	29.3 ± 1.0	NB
	Taxiphyllum deplanatum Zygodon viridissimus	Imbricate Yew-leaved Moss a Moss				S2S3 S2S3	1 4	29.3 ± 1.0 68.2 ± 5.0	NB NB

Prov

Taxonomic								
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
N	Loeskeobryum brevirostre	a Moss				S2S3	11	20.5 ± 1.0
N	Cyrtomnium hymenophylloides	Short-pointed Lantern Moss				S2S3	4	74.9 ± 0.0
N	Sphaerophorus globosus	Northern Coral Lichen				S2S3	14	15.0 ± 0.0
N	Chaenotheca xyloxena					S2S3	2	29.2 ± 0.0
N	Cladonia acuminata	Scantily Clad Pixie Lichen				S2S3	2	95.6 ± 1.0
	01 1 1	5 111				0000	_	

N	Loeskeobryum brevirostre	a Moss	S2S3	11	20.5 ± 1.0	NB
	Cyrtomnium					NB
N	hymenophylloides	Short-pointed Lantern Moss	S2S3	4	74.9 ± 0.0	
N	Sphaerophorus globosus	Northern Coral Lichen	S2S3	14	15.0 ± 0.0	NB
N	Chaenotheca xyloxena	Notthern Coral Lichen	S2S3	2	29.2 ± 0.0	NB
N	Cladonia acuminata	Scantily Clad Pixie Lichen	S2S3	2	95.6 ± 1.0	NB
N	Cladonia acuminata Cladonia ramulosa	Bran Lichen	S2S3	3	99.8 ± 1.0	NB
N N	Cladonia ramuiosa Cladonia sulphurina	Greater Sulphur-cup Lichen	S2S3	4	95.6 ± 1.0 95.6 ± 0.0	NB
N			S2S3	1		NB
IN	Parmeliopsis ambigua	Green Starburst Lichen	5253	1	93.1 ± 1.0	
N	Polychidium muscicola	Eyed Mossthorns	S2S3	7	26.1 ± 0.0	NB
	0 1 " 1 "	Woollybear Lichen	00		000 10	ND
N	Cynodontium tenellum	Delicate Dogtooth Moss	S3	1_	29.3 ± 1.0	NB
N	Hypnum curvifolium	Curved-leaved Plait Moss	S3	7	68.2 ± 5.0	NB
N	Tortella fragilis	Fragile Twisted Moss	S3	1	98.4 ± 0.0	NB
N	Schistidium maritimum	a Moss	S3	9	29.3 ± 1.0	NB
N	Hymenostylium	Curve-beak Beardless Moss	S3	8	86.2 ± 0.0	NS
	recurvirostrum					
N	Solorina saccata	Woodland Owl Lichen	S3	8	42.7 ± 0.0	NB
N	Ahtiana aurescens	Eastern Candlewax Lichen	S3	2	95.9 ± 0.0	NB
N	Normandina pulchella	Rimmed Elf-ear Lichen	S3	16	72.9 ± 0.0	NS
N	Cladonia strepsilis	Olive Cladonia Lichen	S3	4	39.6 ± 0.0	NB
N	Hypotrachyna catawbiensis	Powder-tipped Antler Lichen	S3	19	29.2 ± 0.0	NB
N	Scytinium lichenoides	Tattered Jellyskin Lichen	S3	16	31.3 ± 0.0	NB
N	Nephroma bellum	Naked Kidney Lichen	S3	1	94.7 ± 1.0	NB
N	Peltigera degenii	Lustrous Pelt Lichen	S3	3	95.2 ± 1.0	NB
NI.		Short-bearded Jellyskin	00	•	040.00	NB
N	Leptogium laceroides	Lichen	S3	3	34.0 ± 0.0	
N	Peltigera membranacea	Membranous Pelt Lichen	S3	18	34.8 ± 0.0	NB
N	Cladonia botrytes	Wooden Soldiers Lichen	S3	1	95.7 ± 0.0	NB
N	Cladonia deformis	Lesser Sulphur-cup Lichen	S3	8	66.2 ± 0.0	NB
N	Aulacomnium androgynum	Little Groove Moss	S3?	12	20.5 ± 1.0	NB
N	Ptychostomum inclinatum	Blunt-tooth Thread Moss	S3?	2	76.3 ± 3.0	NS
N	Dicranella rufescens	Red Forklet Moss	S3?	3	83.8 ± 4.0	NB
N	Rhytidiadelphus loreus	Lanky Moss	S3?	5	78.5 ± 0.0	NS
N	Sphagnum lescurii	a Peatmoss	S3?	9	21.9 ± 0.0	NB
N	Sphagnum inundatum	a Sphagnum	\$3?	2	36.4 ± 0.0	NB
N	Rostania occultata	Crusted Tarpaper Lichen	\$3?	3	94.7 ± 0.0	NS
N	Cystocoleus ebeneus	Rockgossamer Lichen	S3?	1	85.3 ± 0.0	NS
N	Scytinium subtile	Appressed Jellyskin Lichen	\$3?	8	40.5 ± 0.0	NB
N	Peltigera neckeri	Black-saddle Pelt Lichen	S3?	1	94.4 ± 5.0	NB
N	Anomodon rugelii	Rugel's Anomodon Moss	S3S4	4	89.6 ± 3.0	NS
	· ·	Lesser Bird's-claw Beard				NB
N	Barbula convoluta	Moss	S3S4	2	86.6 ± 8.0	.,0
N	Brachytheciastrum velutinum	Velvet Ragged Moss	S3S4	6	67.1 ± 0.0	NB
N	Calliergon giganteum	Giant Spear Moss	S3S4	1	93.6 ± 0.0	NS
N	Dicranella cerviculata	a Moss	S3S4	5	29.3 ± 1.0	NB
N	Dicraniena cerviculata Dicranum majus	Greater Broom Moss	S3S4	15	29.5 ± 1.0 22.7 ± 0.0	NB
N	Dicranum leioneuron	a Dicranum Moss	S3S4	1	98.1 ± 0.0	NB
N N	Encalypta ciliata	Fringed Extinguisher Moss	S3S4 S3S4	1	98.7 ± 0.0	NB
N	Fissidens bryoides	Lesser Pocket Moss	S3S4 S3S4	3	31.6 ± 5.0	NB
N N	Elodium blandowii	Blandow's Bog Moss	S3S4 S3S4	1	11.7 ± 0.0	NB
N N			S3S4 S3S4	1	58.4 ± 2.0	NB NB
N N	Heterocladium dimorphum	Dimorphous Tangle Moss	S3S4 S3S4			
	Isopterygiopsis muelleriana	a Moss		13	20.5 ± 1.0	NB
N	Myurella julacea	Small Mouse-tail Moss	S3S4	5	20.5 ± 1.0	NB
N	Orthotrichum speciosum	Showy Bristle Moss	S3S4	3	90.5 ± 0.0	NB
N	Physcomitrium pyriforme	Pear-shaped Urn Moss	S3S4	8	70.7 ± 0.0	NB
N	Pogonatum dentatum	Mountain Hair Moss	S3S4	3	29.3 ± 1.0	NB
N	Sphagnum torreyanum	a Peatmoss	S3S4	6	8.9 ± 0.0	NB

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Sphagnum austinii	Austin's Peat Moss				S3S4	2	7.8 ± 1.0	NB
N	Sphagnum contortum	Twisted Peat Moss				S3S4	2	18.9 ± 0.0	NB
N	Sphagnum quinquefarium	Five-ranked Peat Moss				S3S4	3	20.5 ± 1.0	NB
N	Splachnum rubrum	Red Collar Moss				S3S4	1	37.6 ± 1.0	NB
N	Tetraphis geniculata	Geniculate Four-tooth Moss				S3S4	8	0.9 ± 0.0	NB
N	Tetraplodon angustatus	Toothed-leaved Nitrogen Moss				S3S4	2	29.3 ± 1.0	NB
N	Weissia controversa	Green-Cushioned Weissia				S3S4	6	20.9 ± 1.0	NB
N	Abietinella abietina	Wiry Fern Moss				S3S4	2	70.5 ± 0.0	NB
N	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	7	7.5 ± 0.0	NB
N	Rauiella scita	Smaller Fern Moss				S3S4	1	97.5 ± 1.0	NB
N	Pannaria rubiginosa	Brown-eyed Shingle Lichen				S3S4 S3S4	20	40.5 ± 0.0	NB
N	Pseudocyphellaria holarctica	Yellow Specklebelly Lichen				S3S4 S3S4	111	20.6 ± 0.0	NB
N	Ramalina thrausta	Angelhair Ramalina Lichen				S3S4 S3S4	5	91.9 ± 1.0	NB
						S3S4 S3S4	17		NB
N	Hypogymnia vittata	Slender Monk's Hood Lichen						91.9 ± 1.0	
N	Scytinium teretiusculum	Curly Jellyskin Lichen				S3S4	6	74.0 ± 0.0	NB
N	Montanelia panniformis	Shingled Camouflage Lichen				S3S4	3	95.0 ± 1.0	NB
N	Cladonia terrae-novae	Newfoundland Reindeer Lichen				S3S4	5	16.2 ± 0.0	NB
N	Cladonia floerkeana	Gritty British Soldiers Lichen				S3S4	5	39.6 ± 0.0	NB
N	Cladonia parasitica	Fence-rail Lichen				S3S4	1	95.8 ± 0.0	NB
N	Xylopsora friesii	a Lichen				S3S4	1	98.6 ± 1.0	NB
N	Nephroma parile	Powdery Kidney Lichen				S3S4	24	33.0 ± 0.0	NB
N	Nephroma resupinatum	a lichen				S3S4	1	94.4 ± 0.0	NS
N	Protopannaria pezizoides	Brown-gray Moss-shingle				S3S4	39	25.8 ± 0.0	NB
		Lichen				0004		00000	NID
N	Parmelia fertilis	Fertile Shield Lichen				S3S4	1	32.8 ± 0.0	NB
N	Usnea strigosa	Bushy Beard Lichen				S3S4	8	20.5 ± 0.0	NB
N	Fuscopannaria sorediata	a Lichen				S3S4	10	34.0 ± 0.0	NB
N	Stereocaulon condensatum	Granular Soil Foam Lichen				S3S4	6	28.0 ± 0.0	NB
N	Stereocaulon paschale	Easter Foam Lichen				S3S4	1	95.0 ± 1.0	NS
N	Pannaria conoplea	Mealy-rimmed Shingle Lichen				S3S4	68	75.9 ± 0.0	NS
N	Physcia tenella	Fringed Rosette Lichen				S3S4	1	35.9 ± 0.0	NB
N	Anaptychia palmulata	Shaggy Fringed Lichen				S3S4	43	21.3 ± 0.0	NB
N	Peltigera neopolydactyla	Undulating Pelt Lichen				S3S4	7	34.0 ± 0.0	NB
N	Grimmia anodon	Toothless Grimmia Moss				SH	2	11.6 ± 10.0	NB
N	Leucodon brachypus	a Moss				SH	4	60.4 ± 100.0	NB
N	Thelia hirtella	a Moss				SH	2	65.3 ± 100.0	NB
N	Cyrto-hypnum minutulum	Tiny Cedar Moss				SH	3	96.8 ± 10.0	NB
P	, ,,	Butternut	Fadanasad	Fadanasad	Fadanasad	Sn S1	3 154	7.5 ± 0.0	NB
P P	Juglans cinerea		Endangered	Endangered	Endangered				
•	Polemonium vanbruntiae	Van Brunt's Jacob's-ladder	Threatened	Threatened	Threatened	S1	74	25.3 ± 0.0	NB
P	Fraxinus nigra	Black Ash	Threatened Special			S3S4	443	7.5 ± 0.0	NB NB
Р	Isoetes prototypus	Prototype Quillwort	Concern	Special Concern	Endangered	S1	29	23.1 ± 0.0	
Р	Symphyotrichum anticostense	Anticosti Aster	Special Concern	Special Concern	Endangered	S3	6	3.9 ± 0.0	NB
P	Pterospora andromedea	Woodland Pinedrops			Endangered	S1	28	89.7 ± 0.0	NB
P	Cryptotaenia canadensis	Canada Honewort			•	S1	1	74.6 ± 1.0	NB
P	Antennaria parlinii ssp. fallax	Parlin's Pussytoes				S1	7	57.1 ± 1.0	NB
Р	Antennaria howellii ssp.	Pussy-Toes				S1	4	7.1 ± 1.0	NB
Р	petaloidea Bidens discoidea	Swamp Beggarticks				S1	4	69.6 ± 0.0	NB
Р	Pseudognaphalium obtusifolium	Eastern Cudweed				S1	2	88.9 ± 0.0	NB
Р	Helianthus decapetalus	Ten-rayed Sunflower				S1	14	90.8 ± 0.0	NB
P	Hieracium paniculatum	Panicled Hawkweed				S1 S1	17	50.8 ± 0.0	NB
P	Senecio pseudoarnica	Seabeach Ragwort				S1 S1	18	79.5 ± 0.0	NB
г	зенесто рѕешиоантиса	Seabeach Raywort				31	10	7 3.3 ± 0.0	IND

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Barbarea orthoceras	American Yellow Rocket				S1	3	67.1 ± 1.0	NB
P	Cardamine parviflora	Small-flowered Bittercress				S1	17	33.7 ± 0.0	NB
P	Cardamine concatenata	Cut-leaved Toothwort				S1	3	60.5 ± 0.0	NB
P	Draba arabisans	Rock Whitlow-Grass				S1	24	20.1 ± 0.0	NB
Р	Draba cana	Lance-leaved Draba				S1	10	91.5 ± 0.0	NB
P	Draba qlabella	Rock Whitlow-Grass				S1	12	8.1 ± 1.0	NB
Р	Mononeuria groenlandica	Greenland Stitchwort				S1	5	13.1 ± 0.0	NB
Р	Chenopodiastrum simplex	Maple-leaved Goosefoot				S1	9	80.5 ± 1.0	NB
P	Blitum capitatum	Strawberry-Blite				S1	4	12.8 ± 1.0	NB
Р	Callitriche terrestris	Terrestrial Water-Starwort				S1	1	97.0 ± 0.0	NB
Р	Hypericum virginicum	Virginia St. John's-wort				S1	10	15.4 ± 0.0	NB
P	Viburnum acerifolium	Maple-leaved Viburnum				S1	11	86.8 ± 1.0	NB
P	Corema conradii	Broom Crowberry				S1	1	11.0 ± 10.0	NB
P		,							
•	Vaccinium boreale	Northern Blueberry				S1	1	27.0 ± 0.0	NB
P	Vaccinium corymbosum	Highbush Blueberry				S1	3	77.0 ± 5.0	NB
P	Euphorbia polygonifolia	Seaside Spurge				S1	8	75.3 ± 0.0	NB
P	Hylodesmum glutinosum	Large Tick-trefoil				S1	1	94.3 ± 1.0	NB
P	Lespedeza capitata	Round-headed Bush-clover				S1	11	70.8 ± 0.0	NB
P	Gentiana rubricaulis	Purple-stemmed Gentian				S1	17	43.0 ± 0.0	NB
P	Lomatogonium rotatum	Marsh Felwort				S1	3	54.8 ± 0.0	NB
P	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	3	29.3 ± 0.0	NB
P	Lycopus virginicus	Virginia Bugleweed				S1	2	87.8 ± 0.0	NB
Р	Pycnanthemum virginianum	Virginia Mountain Mint				S1	4	40.7 ± 0.0	NB
P	Polygonum douglasii	Douglas Knotweed				S1	1	77.0 ± 0.0	NB
Р	Lysimachia hybrida	Lowland Yellow Loosestrife				S1	17	88.0 ± 0.0	NB
P	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	16	8.8 ± 1.0	NB
Г Р	Primula laurentiana	Laurentian Primrose				S1	46	71.9 ± 2.0	NS
г Р	Crataegus jonesiae	Jones' Hawthorn				S1	5	68.6 ± 0.0	NB
P									
•	Potentilla canadensis	Canada Cinquefoil				S1	1	50.9 ± 0.0	NB
P	Rubus flagellaris	Northern Dewberry				S1	4	5.4 ± 1.0	NB
Р	Galium brevipes	Limestone Swamp Bedstraw				S1	2	7.5 ± 0.0	NB
Р	Saxifraga paniculata ssp. laestadii	Laestadius' Saxifrage				S1	38	20.5 ± 1.0	NB
P	Agalinis tenuifolia	Slender Agalinis				S1	9	78.6 ± 0.0	NB
P	Gratiola lutea	Golden Hedge-hyssop				S1	3	8.5 ± 5.0	NB
P	Pedicularis canadensis	Canada Lousewort				S1	23	51.7 ± 0.0	NB
Р	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	37	74.6 ± 0.0	NB
Р	Carex atlantica ssp. atlantica	Atlantic Sedge				S1	1	79.2 ± 0.0	NB
P	Carex backii	Rocky Mountain Sedge				S1	6	76.3 ± 0.0	NB
Р	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	4	70.4 ± 0.0	NB
Р	Carex salina	Saltmarsh Sedge				S1	2	9.1 ± 1.0	NB
P	Carex scirpoidea	Scirpuslike Sedge				S1	6	73.9 ± 0.0	NB
P	Carex waponahkikensis	Dawn-land Sedge				S1	2	74.2 ± 0.0	NB
P	Carex sterilis	Sterile Sedge				S1	1	93.4 ± 0.0	NB
Р	Carex grisea	Inflated Narrow-leaved Sedge				S1	13	45.3 ± 0.0	NB
P	Carex saxatilis	Russet Sedge				S1	14	9.2 ± 10.0	NB
P	Cyperus diandrus	Low Flatsedge				S1	7	78.5 ± 1.0	NB
P	Eleocharis flavescens var.	D:11 0 1				0.4		007 40	NB
Р	olivacea	Bright-green Spikerush				S1	4	86.7 ± 1.0	
Р	Rhynchospora capillacea	Slender Beakrush				S1	3	91.4 ± 0.0	NB
ı P	Scirpus pendulus	Hanging Bulrush				S1	1	74.2 ± 0.0	NB
•	· ·	Narrow-leaved Blue-eyed-							NB
P	Sisyrinchium angustifolium					S1	12	13.4 ± 1.0	IND
5	- Lungua araanai	grass				S1	4	20.4 . 0.0	ND
P P	Juncus greenei	Greene's Rush					1	39.4 ± 0.0	NB
	Juncus subtilis	Creeping Rush				S1	1	47.3 ± 5.0	NB
P P	Allium canadense	Canada Garlic				S1	11	40.9 ± 0.0	NB
	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	10	74.5 ± 0.0	NB

Taxonomic	
I axononio	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
<u>. </u>	Malaxis monophyllos var.	North American White			<u>-</u>	S1	4	78.5 ± 10.0	NB
-	brachypoda	Adder's-mouth				51	4	78.5 ± 10.0	
Р	Platanthera flava var. herbiola	Pale Green Orchid				S1	14	52.9 ± 1.0	NB
>	Platanthera macrophylla	Large Round-Leaved Orchid				S1	11	43.6 ± 0.0	NB
o	Spiranthes casei	Case's Ladies'-Tresses				S1	6	90.0 ± 0.0	NB
•	Bromus pubescens	Hairy Wood Brome Grass				S1	6	67.5 ± 0.0	NB
)	Cinna arundinacea	Sweet Wood Reed Grass				S1	55	50.1 ± 0.0	NB
	Danthonia compressa	Flattened Oat Grass				S1	7	76.8 ± 0.0	NS
	Dichanthelium dichotomum	Forked Panic Grass				S1	20	31.9 ± 1.0	NB
o	Glyceria obtusa	Atlantic Manna Grass				S1	14	33.9 ± 0.0	NB
	Sporobolus compositus	Rough Dropseed				S1	17	91.0 ± 0.0	NB
•	Potamogeton friesii	Fries' Pondweed				S1	6	6.7 ± 5.0	NB
o	Potamogeton nodosus	Long-leaved Pondweed				S1	8	61.1 ± 0.0	NB
	Potamogeton strictifolius	Straight-leaved Pondweed				S1 S1	2	27.1 ± 0.0	NB
)									
,	Xyris difformis	Bog Yellow-eyed-grass				S1	11	15.3 ± 0.0	NB
	Asplenium ruta-muraria var. cryptolepis	Wallrue Spleenwort				S1	4	20.1 ± 0.0	NB
•	Cystopteris laurentiana	Laurentian Bladder Fern				S1	1	75.9 ± 1.0	NB
>	Huperzia selago	Northern Firmoss				S1	1	95.0 ± 1.0	NS
•	Sceptridium oneidense	Blunt-lobed Moonwort				S1	4	51.9 ± 0.0	NB
	Sceptridium rugulosum	Rugulose Grapefern				S1	1	74.2 ± 1.0	NB
	Selaginella rupestris	Rock Spikemoss				S1	45	76.0 ± 1.0	NB
	Cuscuta campestris Polygonum aviculare ssp.	Field Dodder				S1?	3	72.2 ± 10.0	NB NB
	neglectum	Narrow-leaved Knotweed				S1?	6	82.4 ± 0.0	
	Alisma subcordatum	Southern Water Plantain				S1?	4	37.2 ± 0.0	NB
•	Carex laxiflora	Loose-Flowered Sedge				S1?	2	78.1 ± 5.0	NS
)	Wolffia columbiana	Columbian Watermeal				S1?	7	68.5 ± 0.0	NB
•	Euphrasia farlowii	Farlow's Eyebright				S1S2	1	62.4 ± 1.0	NB
)	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1S2	11	44.9 ± 0.0	NB
)	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	5	24.3 ± 0.0	NB
)	Spiranthes cernua	Nodding Ladies'-Tresses				S1S3	32	39.3 ± 0.0	NB
•	Spiranthes arcisepala	Appalachian Ladies'-tresses				S1S3	7	20.1 ± 0.0	NB
•	Neottia bifolia	Southern Twayblade			Endangered	S2	16	82.6 ± 0.0	NB
)	Sanicula trifoliata	Large-Fruited Sanicle				S2	1	42.0 ± 5.0	NB
	Sanicula odorata	Clustered Sanicle				S2	1	97.0 ± 0.0	NB
	Hieracium robinsonii	Robinson's Hawkweed				S2	7	92.4 ± 0.0	NB
)	Betula minor	Dwarf White Birch				S2	1	99.3 ± 0.0	NB
	Atriplex glabriuscula var.								NB
•	franktonii	Frankton's Saltbush				S2	5	53.1 ± 1.0	
•	Hypericum x dissimulatum	Disguised St. John's-wort				S2	7	45.2 ± 1.0	NB
>	Viburnum dentatum	Southern Arrow-Wood				S2	1	80.4 ± 1.0	NS
o	Viburnum dentatum var.	Northorn Arrow Mood				S2	171	50.4 ± 0.0	NB
•	lucidum	Northern Arrow-Wood				52	171	50.4 ± 0.0	
•	Astragalus eucosmus	Elegant Milk-vetch				S2	10	31.5 ± 0.0	NB
•	Quercus macrocarpa	Bur Oak				S2	177	7.5 ± 0.0	NB
•	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	11	11.6 ± 1.0	NB
•	Polygaloides paucifolia	Fringed Milkwort				S2	21	51.0 ± 1.0	NB
	Persicaria amphibia var.	•							NB
	emersa .	Long-root Smartweed				S2	61	34.8 ± 0.0	
P	Micranthes virginiensis	Early Saxifrage				S2	14	89.8 ± 0.0	NB
•	Scrophularia lanceolata	Lance-leaved Figwort				S2	5	30.5 ± 5.0	NB
•	Carex cephaloidea	Thin-leaved Sedge				S2	2	95.9 ± 0.0	NB
	Carex albicans var.	White-tinged Sedge				S2	6	19.7 ± 0.0	NB
•	emmonsii	= =							

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Calypso bulbosa var. americana	Calypso				S2	5	15.7 ± 0.0	NB
Р	Coeloglossum viride	Long-bracted Frog Orchid				S2	5	43.9 ± 5.0	NB
Р	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	5	4.9 ± 1.0	NB
Р	Platanthera huronensis	Fragrant Green Orchid				S2	4	86.1 ± 1.0	NB
P	Puccinellia nutkaensis	Alaska Alkaligrass				S2	8	8.6 ± 1.0	NB
P	Schizaea pusilla	Little Curlygrass Fern				S2	30	8.2 ± 0.0	NB
P	Coryphopteris simulata	Bog Fern				S2	10	71.2 ± 0.0	NB
Р	Toxicodendron radicans var. radicans	Eastern Poison Ivy				S2?	14	31.7 ± 0.0	NB
Р	Symphyotrichum novi-belgii var. crenifolium	New York Aster				S2?	9	11.8 ± 0.0	NB
Р	Humulus lupulus var. Iupuloides	Common Hop				S2?	4	79.4 ± 0.0	NB
P	Rubus x recurvicaulis	arching dewberry				S2?	5	19.8 ± 5.0	NB
Р	Osmorhiza longistylis	Smooth Sweet Cicely				S2S3	3	71.6 ± 0.0	NB
Р	Symphyotrichum racemosum	Small White Aster				S2S3	11	42.5 ± 0.0	NB
P	Alnus serrulata	Smooth Alder				S2S3	36	49.0 ± 0.0	NB
P	Cuscuta cephalanthi	Buttonbush Dodder				S2S3	1	19.9 ± 0.0	NB
P	Gentiana linearis	Narrow-Leaved Gentian				S2S3	5	84.2 ± 5.0	NB
P	Hedeoma pulegioides	American False Pennyroyal				S2S3	62	6.6 ± 0.0	NB
P	Aphyllon uniflorum	One-flowered Broomrape				S2S3	23	19.2 ± 1.0	NB
P	Polygala senega	Seneca Snakeroot				S2S3	2	96.1 ± 1.0	NB
P	Persicaria careyi	Carey's Smartweed				S2S3	17	31.3 ± 5.0	NB
P	Hepatica americana	Round-lobed Hepatica				S2S3	39	43.2 ± 1.0	NB
P	Ranunculus sceleratus	Cursed Buttercup				S2S3	8	7.3 ± 0.0	NB
P	Cephalanthus occidentalis	Common Buttonbush				S2S3	49	61.8 ± 0.0	NB
P	Galium obtusum	Blunt-leaved Bedstraw				S2S3	5	7.5 ± 0.0	NB
P	Euphrasia randii	Rand's Eyebright				S2S3	42	14.3 ± 0.0	NB
P	Dirca palustris	Eastern Leatherwood				S2S3	16	71.6 ± 1.0	NB
P P	Phryma leptostachya	American Lopseed				S2S3	4	94.5 ± 1.0	NB
•	Verbena urticifolia	White Vervain				S2S3	17	89.8 ± 2.0	NB
P P	Viola novae-angliae	New England Violet				S2S3	16	33.8 ± 0.0	NB
P P	Carex comosa Carex rostrata	Bearded Sedge Narrow-leaved Beaked				S2S3 S2S3	5 3	76.8 ± 0.0 42.1 ± 0.0	NS NB
		Sedge							
P P	Carex vacillans	Estuarine Sedge				S2S3	4	61.6 ± 1.0	NB
P P	Scirpus atrovirens	Dark-green Bulrush				S2S3	2	95.4 ± 0.0	NB
P	Juncus ranarius Allium tricoccum	Seaside Rush Wild Leek				S2S3 S2S3	1 60	7.5 ± 0.0	NB NB
P	Corallorhiza maculata var. occidentalis	Spotted Coralroot				S2S3	5	32.5 ± 0.0 70.4 ± 0.0	NB
Р	Corallorhiza maculata var. maculata	Spotted Coralroot				S2S3	6	54.6 ± 1.0	NB
Р	Elymus canadensis	Canada Wild Rye				S2S3	18	7.5 ± 0.0	NB
P	Piptatheropsis canadensis Puccinellia phryganodes	Canada Ricegrass				S2S3	6	48.5 ± 0.0	NB NB
P P	ssp. neoarctica	Creeping Alkali Grass				S2S3	18	25.5 ± 0.0	
P P	Poa glauca	Glaucous Blue Grass				S2S3	18	10.8 ± 2.0	NB NB
P P	Potamogeton vaseyi Isoetes tuckermanii ssp.	Vasey's Pondweed Acadian Quillwort				S2S3 S2S3	6 9	6.7 ± 1.0 37.2 ± 0.0	NB NB
•	acadiensis								
Р	Botrychium tenebrosum	Swamp Moonwort				S2S3	1	86.2 ± 0.0	NB
•									
P	Panax trifolius Artemisia campestris ssp.	Dwarf Ginseng				S3	27	16.3 ± 0.0	NB NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Artemisia campestris	Field Wormwood				S3	5	71.4 ± 0.0	NB
Р	Nabalus racemosus	Glaucous Rattlesnakeroot				S3	85	6.6 ± 0.0	NB
Р	Solidago racemosa	Racemose Goldenrod				S3	14	90.6 ± 0.0	NB
P	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	25	17.3 ± 1.0	NB
Р	Pseudognaphalium macounii	Macoun's Cudweed				S3	7	10.8 ± 0.0	NB
P	Impatiens pallida	Pale Jewelweed				S3	6	74.3 ± 0.0	NB
P		Tower Mustard				S3	2	7.5 ± 0.0	NB
•	Turritis glabra								
P	Arabis pycnocarpa	Cream-flowered Rockcress				S3	18	9.9 ± 0.0	NB
P	Cardamine maxima	Large Toothwort				S3	46	7.5 ± 0.0	NB
P	Boechera stricta	Drummond's Rockcress				S3	21	9.9 ± 1.0	NB
Р	Sagina nodosa	Knotted Pearlwort				S3	28	7.5 ± 0.0	NB
Р	Sagina nodosa ssp. borealis	Knotted Pearlwort				S3	2	14.2 ± 0.0	NB
Р	Stellaria humifusa	Saltmarsh Starwort				S3	8	8.1 ± 0.0	NB
Р	Stellaria longifolia	Long-leaved Starwort				S3	9	7.5 ± 0.0	NB
Р	Oxybasis rubra	Red Goosefoot				S3	4	6.8 ± 0.0	NB
Р	Hudsonia tomentosa	Woolly Beach-heath				S3	4	7.5 ± 0.0	NB
Р	Cornus obliqua	Silky Dogwood				S3	243	32.0 ± 0.0	NB
Р	Lonicera oblongifolia	Swamp Fly Honeysuckle				S3	22	8.7 ± 6.0	NB
Р	Triosteum aurantiacum	Orange-fruited Tinker's				S3	6	91.5 ± 0.0	NB
Р	100	Weed				00	00	77.4 0.0	ND
•	Viburnum lentago	Nannyberry				S3	90	77.1 ± 0.0	NB
P	Rhodiola rosea	Roseroot				S3	97	7.5 ± 0.0	NB
Р	Astragalus alpinus	Alpine Milk-vetch				S3	2	7.5 ± 0.0	NB
Р	Astragalus alpinus var. brunetianus	Alpine Milk-Vetch				S3	3	90.6 ± 0.0	NB
Р	Oxytropis campestris var. johannensis	Field Locoweed				S3	10	19.7 ± 50.0	NB
Р	Bartonia paniculata	Branched Bartonia				S3	1	29.3 ± 0.0	NB
Р	Bartonia paniculata ssp. iodandra	Branched Bartonia				S3	42	7.7 ± 0.0	NB
Р	Gentianella amarella ssp. acuta	Northern Gentian				S3	6	9.5 ± 5.0	NB
Р	Geranium bicknellii	Bicknell's Crane's-bill				S3	17	3.5 ± 5.0	NB
Р	Myriophyllum farwellii	Farwell's Water Milfoil				S3	29	15.8 ± 0.0	NB
Р	Myriophyllum humile	Low Water Milfoil				S3	10	7.9 ± 0.0	NB
Р	Myriophyllum quitense	Andean Water Milfoil				S3	71	7.4 ± 0.0	NB
P	Proserpinaca palustris	Marsh Mermaidweed				S3	51	38.9 ± 0.0	NB
Р	Utricularia resupinata	Inverted Bladderwort				S3	19	3.6 ± 0.0	NB
P	Fraxinus pennsylvanica	Red Ash				S3	155	3.9 ± 0.0	NB
Р	Rumex pallidus	Seabeach Dock				S3	17	15.5 ± 0.0	NB
P	Rumex occidentalis	Western Dock				S3	1	77.5 ± 1.0	NB
P	Podostemum ceratophyllum	Horn-leaved Riverweed				S3	24	42.8 ± 0.0	NB
P						S3		42.8 ± 0.0 2.9 ± 1.0	NB
P	Primula mistassinica	Mistassini Primrose					13		
P P	Pyrola minor	Lesser Pyrola				S3 S3	5	26.0 ± 0.0	NB NB
P P	Anemone multifida	Cut-leaved Anemone					1	91.8 ± 0.0	
•	Clematis occidentalis	Purple Clematis				S3	32	7.5 ± 0.0	NB
P	Ranunculus flabellaris	Yellow Water Buttercup				S3	21	25.8 ± 0.0	NB
P	Amelanchier canadensis	Canada Serviceberry				S3	20	7.5 ± 0.0	NB
P	Crataegus scabrida	Rough Hawthorn				S3	7	20.1 ± 0.0	NB
Р	Rubus occidentalis	Black Raspberry				S3	27	42.1 ± 0.0	NB
Р	Salix candida	Sage Willow				S3	2	92.0 ± 1.0	NB
P	Salix myricoides	Bayberry Willow				S3	8	70.6 ± 0.0	NB
Р	Salix nigra	Black Willow				S3	183	6.7 ± 1.0	NB
P	Salix interior	Sandbar Willow				S3	34	7.5 ± 0.0	NB
Р	Comandra umbellata	Bastard's Toadflax				S3	2	7.5 ± 0.0	NB
D	Agalinis purpurea var.	Small-flowered Purple False							NB
Р	parviflora	Foxglove				S3	11	30.5 ± 1.0	

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Valeriana uliginosa	Swamp Valerian			-	S3	1	84.3 ± 1.0	NB
Р	Viola adunca	Hooked Violet				S3	9	7.5 ± 0.0	NB
Р	Symplocarpus foetidus	Eastern Skunk Cabbage				S3	106	13.5 ± 1.0	NB
Р	Carex adusta	Lesser Brown Sedge				S3	7	7.2 ± 1.0	NB
Р	Carex arcta	Northern Clustered Sedge				S3	57	7.5 ± 0.0	NB
Р	Carex conoidea	Field Sedge				S3	36	6.9 ± 1.0	NB
Р	Carex garberi	Garber's Sedge				S3	4	31.0 ± 0.0	NB
Р	Carex granularis	Limestone Meadow Sedge				S3	8	74.5 ± 5.0	NB
Р	Carex gynocrates	Northern Bog Sedge				S3	5	77.0 ± 1.0	NB
P	Carex hirtifolia	Pubescent Sedge				S3	3	48.6 ± 0.0	NB
Р	Carex livida	Livid Sedge				S3	2	10.8 ± 2.0	NB
P	Carex ormostachya	Necklace Spike Sedge				S3	8	60.5 ± 1.0	NB
P	Carex plantaginea	Plantain-Leaved Sedge				S3	5	88.0 ± 0.0	NB
P	Carex prairea	Prairie Sedge				S3	1	81.8 ± 5.0	NS
P	Carex rosea	Rosy Sedge				S3	36	7.5 ± 0.0	NB
P	Carex sprengelii	Longbeak Sedge				S3	4	70.2 ± 0.0	NB
Р	Carex tenuiflora	Sparse-Flowered Sedge				S3	17	68.7 ± 0.0	NB
Р	Carex vaginata	Sheathed Sedge				S3	15	78.5 ± 0.0	NB
Р	Cyperus esculentus	Perennial Yellow Nutsedge				S3	2	71.0 ± 0.0	NB
	Cyperus esculentus var.	· ·							NB
Р	leptostachyus	Perennial Yellow Nutsedge				S3	82	7.5 ± 0.0	IND
Р	Cyperus squarrosus	Awned Flatsedge				S3	46	38.9 ± 0.0	NB
P	Eriophorum gracile	Slender Cottongrass				S3	9	13.3 ± 0.0	NB
P	Blysmopsis rufa	Red Bulrush				S3	4	7.5 ± 0.0	NB
P	Elodea nuttallii	Nuttall's Waterweed				S3	11	7.5 ± 0.0 33.1 ± 0.0	NB NB
P	Juncus vaseyi	Vasey Rush				S3	1	51.6 ± 0.0	NB
P		Thread-Like Naiad				S3	11	34.0 ± 0.0	NB
P	Najas gracillima Cypripedium reginae	Showy Lady's-Slipper				S3	24	3.9 ± 0.0	NB
P							10	5.4 ± 1.0	
P P	Neottia auriculata	Auricled Twayblade				S3			NB
P P	Platanthera grandiflora	Large Purple Fringed Orchid				S3	76	6.1 ± 1.0	NB
P	Platanthera orbiculata	Small Round-leaved Orchid				S3	18	7.5 ± 0.0	NB
P P	Spiranthes lucida	Shining Ladies'-Tresses				S3 S3	13	31.3 ± 0.0	NB NB
P	Agrostis mertensii	Northern Bent Grass Broad-Glumed Brome				S3	1 3	62.4 ± 1.0 45.9 ± 0.0	NB NB
	Bromus latiglumis								
P	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S3	13	42.9 ± 0.0	NB
P	Leersia virginica	White Cut Grass				S3	42	45.8 ± 0.0	NB
P	Muhlenbergia richardsonis	Mat Muhly				S3	9	90.8 ± 0.0	NB
P	Schizachyrium scoparium	Little Bluestem				S3	54	32.7 ± 0.0	NB
Р	Zizania aquatica	Southern Wild Rice				S3	2	7.5 ± 0.0	NB
Р	Zizania aquatica var. 	Eastern Wild Rice				S3	5	50.0 ± 0.0	NB
Б.	aquatica	N				00		00 10	ND
P	Adiantum pedatum	Northern Maidenhair Fern				S3	18	6.6 ± 1.0	NB
P	Asplenium trichomanes	Maidenhair Spleenwort				S3	22	6.8 ± 0.0	NB
P	Anchistea virginica	Virginia chain fern				S3	24	73.1 ± 1.0	NB
P	Dryopteris goldieana	Goldie's Woodfern				S3	7	94.2 ± 5.0	NB
P	Woodsia alpina	Alpine Cliff Fern				S3	11	20.5 ± 1.0	NB
Р	Woodsia glabella	Smooth Cliff Fern				S3	62	40.1 ± 1.0	NB
Р	Isoetes tuckermanii ssp. tuckermanii	Tuckerman's Quillwort				S3	29	6.8 ± 0.0	NB
Р	Diphasiastrum x sabinifolium	Savin-leaved Ground-cedar				S3	11	6.0 ± 1.0	NB
P	Huperzia appressa	Mountain Firmoss				S3	38	11.6 ± 1.0	NB
Р	Sceptridium dissectum	Dissected Moonwort				S3	28	7.5 ± 0.0	NB
Р	Botrychium lanceolatum ssp.					S3	10	6.9 ± 0.0	NB
•	angustisegmentum	Narrow Triangle Moonwort							
P	Botrychium simplex	Least Moonwort				S3	11	70.3 ± 0.0	NB
Р	Ophioglossum pusillum	Northern Adder's-tongue				S3	9	7.4 ± 1.0	NB
P	Selaginella selaginoides	Low Spikemoss				S3	12	8.4 ± 6.0	NB
Р	Crataegus submollis	Quebec Hawthorn				S3?	19	9.5 ± 1.0	NB

Т	ax	or	10	mi	С

P	Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P PilatanThema hooken' Hooker's Orchid S37 31 7.5 ± 0.0 NB	P	Crataegus succulenta	Fleshy Hawthorn						84.7 ± 5.0	NB
Biblens hyperborene	P									
P Solidago dilsissima										
P										
P										
Merterisis marinima										
Subularia aquaticas sp. american Water Awlwort			3							
P			Sea Lungwort					33	7.3 ± 0.0	
P	P	americana .								
P										
P		Callitriche hermaphroditica	Northern Water-starwort							
Penthorum secloides	P	Viburnum edule							7.5 ± 0.0	
Elatine americana	P	Crassula aquatica	Water Pygmyweed				S3S4	12	47.2 ± 0.0	NB
P	P	Penthorum sedoides	Ditch Stonecrop				S3S4	85	36.0 ± 0.0	NB
Pagus grandfolla	P	Elatine americana	American Waterwort				S3S4	8	9.2 ± 1.0	NB
Fagus grandifolia	P	Hedysarum americanum	Alpine Hedysarum				S3S4	3	7.5 ± 0.0	NB
P Geranium robertianum	Р									
Stachys hispida	P									
Package Package Hairy Hedge-Nettle S3S4 6 77, 2 ± 1.0 NB										
P										
P										
P										
Pacificis americana										
Package Pack			•							
Fallopia scandens										
Rumex persicarioides										
P										
P										
P Drymocallis arguta Tall Wood Beauty S354 36 7.5 ± 0.0 NB P Rosa palustris Swamp Rose S354 140 6.0 ± 1.0 NB P Rubus pensilvanicus Pennsylvania Blackberry S354 24 17.2 ± 0.0 NB P Sanguisorba canadensis Canada Burnet S354 1 100.0 ± 0.0 NB P Galium boroale Northern Bedistraw S354 9 7.5 ± 0.0 NB P Galium labradoricum Labrador Bedistraw S354 19 50.6 ± 1.0 NB P Galium labradoricum Labrador Bedistraw S354 16 7.5 ± 0.0 NB P Geocaulon lividum Northern Comandra S354 16 7.5 ± 0.0 NB P Parassia glauca Fen Grass-of-Parmassus S354 2 2.7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis S354 18 1 ± 0.0 NB P Limosella australis<										
P Rosa palustris Swamp Rose SS4 140 6.0 ± 1.0 NB P Rubus pensilvanicus Pensylvania Blackberry \$384 24 17.2 ± 0.0 NB P Sanguisorba canadensis Canada Burnet \$384 1 100.0 ± 0.0 NB P Gallium boreale Northern Bedstraw \$384 9 7.5 ± 0.0 NB P Gallium baradoricum Labrador Bedstraw \$384 19 50.6 ± 1.0 NB P Galium Interadoricum Northeradoricum S384 76 7.5 ± 0.0 NB P Galium Interadoricum Northern Comandra \$384 13 7.5 ± 0.0 NB P Geocaulon lividum Northern Comandra \$384 12 7.5 ± 0.0 NB P Parmassia glauca Fen Grass-of-Parmassus \$384 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis \$384 18 8.1 ± 0.0 NB P Humea quartia		Thalictrum confine	Northern Meadow-rue						7.5 ± 0.0	
P Rubu's pensilvanicus	P							36		
P Sanguisorba canadensis Canada Burnet Sanguisorba canadensis Northern Bedstraw Sanguisorba canadensis Northern Bedstraw Sanguisorba canadensis Sanguisorba canadensisorba canadensis Sanguisorba canaden		Rosa palustris	Swamp Rose				S3S4	140	6.0 ± 1.0	NB
P Galium boreale Nothtern Bedstraw S3S4 9 7.5 ± 0.0 NB P Galium labradoricum Labrador Bedstraw S3S4 19 50.6 ± 1.0 NB P Salix pedicellaris Bog Willow S3S4 76 7.5 ± 0.0 NB P Geocaulon lividum Northern Comandra S3S4 13 7.5 ± 0.0 NB P Parnassia glauca Fen Grass-of-Parnassus S3S4 12 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis S3S4 58 8.1 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis S3S4 15 8.0 NB P Limosella australis Southern Mudwort S3S4 11 77.8 ± 0.0 NB P Limosella australis Southern Mudwort S3S4 111 77.8 ± 0.0 NB P Limosella australis Sasa 111 77.8 ± 0.0 NB P Guera Limosella australis Sasa	P	Rubus pensilvanicus	Pennsylvania Blackberry				S3S4	24	17.2 ± 0.0	NB
P Galium labradoricum Salix pedicellaris Labrador Bedstraw \$3\$4 19 \$0.6 ± 1.0 NB P Salix pedicellaris Bog Willow \$3\$4 76 7.5 ± 0.0 NB P Geocaulon lividum Northem Comandra \$3\$4 13 7.5 ± 0.0 NB P Parmassia glauca Fen Grass-of-Parnassus \$3\$4 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis \$3\$4 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort \$3\$4 11 77.8 ± 0.0 NB P Limosella australis Southern Mudwort \$3\$4 11 77.8 ± 0.0 NB P Ulmus americana White Elm \$3\$4 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$3\$4 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper \$3\$4 41 7.5 ± 0.0 NB P <th< td=""><td>P</td><td>Sanguisorba canadensis</td><td>Canada Burnet</td><td></td><td></td><td></td><td>S3S4</td><td>1</td><td>100.0 ± 0.0</td><td>NB</td></th<>	P	Sanguisorba canadensis	Canada Burnet				S3S4	1	100.0 ± 0.0	NB
P Salix pedicellaris Bog Willow Northern Comandra S3S4 76 7.5 ± 0.0 NB P Geocaulon lividum Northern Comandra S3S4 13 7.5 ± 0.0 NB P Parmassis glauca Fen Grass-of-Parmassus S3S4 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis S3S4 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort S3S4 11 77.8 ± 0.0 NB P Ulmus americana White Elm S3S4 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle S3S4 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper S3S4 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge S3S4 17 7.5 ± 0.0 NB P Carex exilis Coastal Sedge S3S4 17 7.5 ± 0.0 NB P Carex exilis Coastal Sedge S3S4 112 1.7 ± 0.0 NB P Carex lupulina Hayden's Sedge S3S4 112 1.7 ± 0.0 NB P Carex lupulina Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 68 1.0 ± 0.0 NB P Carex lupulina Finder Sedge S3S4 68 1.0 ± 0.0 NB P Carex exilis Scadge S3S4 68 1.0 ± 0.0 NB P Carex tenera Tender Sedge S3S4 68 1.0 ± 0.0 NB P Carex tenera Scadge S3S4 53S4 68 1.0 ± 0.0 NB P Carex exilis Scadge S3S4 53S4 53S4	P	Galium boreale	Northern Bedstraw				S3S4	9	7.5 ± 0.0	NB
P Geocaulon lividum Northern Comandra \$3\$4 13 7.5 ± 0.0 NB P Parnassis glauca Fen Grass-of-Parnassus \$354 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis \$354 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort \$354 11 77.8 ± 0.0 NB P Ulmus americana White Elm \$354 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 161 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 151 43.4 ± 7.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 161 7.5 ± 0.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Carex keburea Bistlle-leaved Sedge \$354 17 7.5 ± 0.0 NB P	P	Galium labradoricum	Labrador Bedstraw				S3S4	19	50.6 ± 1.0	NB
P Geocaulon lividum Northern Comandra \$3\$4 13 7.5 ± 0.0 NB P Parnassis glauca Fen Grass-of-Parnassus \$354 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis \$354 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort \$354 11 77.8 ± 0.0 NB P Ulmus americana White Elm \$354 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 161 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 151 43.4 ± 7.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 161 7.5 ± 0.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Carex keburea Bistlle-leaved Sedge \$354 17 7.5 ± 0.0 NB P	Р	Salix pedicellaris	Bog Willow				S3S4	76	7.5 ± 0.0	NB
P Pamassia glauca Fen Grass-of-Pamassus \$354 2 7.5 ± 0.0 NB P Agalinis neoscotica Nova Scotia Agalinis \$354 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort \$354 11 77.8 ± 0.0 NB P Ulmus americana White Elm \$354 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$354 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Juniperus horizontalis Creeping Juniper \$354 41 7.5 ± 0.0 NB P Carex decelia Bristlie-leaved Sedge \$354 17 7.5 ± 0.0 NB P Carex h	P									
P Agalinis nosocotica Nova Scotia Agalinis \$384 58 8.1 ± 0.0 NB P Limosella australis Southern Mudwort \$384 11 77.8 ± 0.0 NB P Ulmus americana White Elm \$384 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$384 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper \$384 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge \$384 41 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$384 17 7.5 ± 0.0 NB P Carex exilis Coastal Sedge \$384 112 1.7 ± 0.0 NB P Carex exilis Coastal Sedge \$384 102 8.8 ± 1.0 NB P Carex haydenii Haydeni's Sedge \$384 102 8.8 ± 1.0 NB P Carex tenera Tender Sedge <td></td>										
P Limosella australis Southern Mudwort S3S4 11 77.8 ± 0.0 NB P Ulmus americana White Elm S3S4 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle S3S4 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper S3S4 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge S3S4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge S3S4 17 7.5 ± 0.0 NB P Carex evilis Coastal Sedge S3S4 17 36.4 ± 0.0 NB P Carex kilis Coastal Sedge S3S4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex viegandii Wiegand's Sedge										
P Ulmus americana White Elm \$3\$4 169 7.5 ± 0.0 NB P Boehmeria cylindrica Small-spike False-nettle \$3\$4 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper \$3\$4 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge \$3\$4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$3\$4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$3\$4 17 36.4 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$3\$4 112 1.7 ± 0.0 NB P Carex exilis Coastal Sedge \$3\$4 102 8.8 ± 1.0 NB P Carex haydenii Hayden's Sedge \$3\$4 102 8.8 ± 1.0 NB P Carex tenera Tender Sedge \$3\$4 129 28.3 ± 0.0 NB P Carex wiegandii Wiegand's Sedge										
P Boehmeria cylindrica Small-spike False-nettle \$3\$4 151 43.4 ± 7.0 NB P Juniperus horizontalis Creeping Juniper \$3\$4 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge \$3\$4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$3\$4 17 36.4 ± 0.0 NB P Carex exilis Coastal Sedge \$3\$4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge \$3\$4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge \$3\$4 102 8.8 ± 1.0 NB P Carex tenera Tender Sedge \$3\$4 129 28.3 ± 0.0 NB P Carex wiegandii Wiegand's Sedge \$3\$4 69 7.5 ± 0.0 NB P Carex recta Estuary Sedge \$3\$4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge										
P Juniperus horizontalis Creeping Juniper S3S4 41 7.5 ± 0.0 NB P Carex capillaris Hairlike Sedge S3S4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge S3S4 17 36.4 ± 0.0 NB P Carex exilis Coastal Sedge S3S4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 10 11.2 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4										
P Carex capillaris Hairlike Sedge \$3\$4 17 7.5 ± 0.0 NB P Carex eburnea Bristle-leaved Sedge \$3\$4 17 36.4 ± 0.0 NB P Carex exilis Coastal Sedge \$3\$4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge \$3\$4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge \$3\$4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge \$3\$4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge \$3\$4 69 7.5 ± 0.0 NB P Carex recta Estuary Sedge \$3\$4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge \$3\$4 10 11.2 ± 0.0 NB P Cladium mariscoides Smooth Twigrush \$3\$4 117 1.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush \$3\$4 21 7.5 ± 0.0 NB P Eleocharis quinqueflora										
P Carex eburnea Bristle-leaved Sedge S3S4 17 36.4 ± 0.0 NB P Carex exilis Coastal Sedge S3S4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush										
P Carex exillis Coastal Sedge S3S4 112 1.7 ± 0.0 NB P Carex haydenii Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrus										
P Carex haydenii Hayden's Sedge S3S4 102 8.8 ± 1.0 NB P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Cli										
P Carex lupulina Hop Sedge S3S4 129 28.3 ± 0.0 NB P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 241 7.5 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB										
P Carex tenera Tender Sedge S3S4 69 7.5 ± 0.0 NB P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush NB S3S4 51 15.0 ± 0.0 NB										
P Carex wiegandii Wiegand's Sedge S3S4 68 1.0 ± 0.0 NB P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	P									
P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	P	Carex tenera	Tender Sedge				S3S4	69	7.5 ± 0.0	NB
P Carex recta Estuary Sedge S3S4 10 11.2 ± 0.0 NB P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	P	Carex wiegandii	Wiegand's Sedge					68	1.0 ± 0.0	
P Carex atratiformis Scabrous Black Sedge S3S4 2 7.5 ± 0.0 NB P Cladium mariscoides Smooth Twigrush S3S4 117 1.5 ± 0.0 NB P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	P						S3S4	10	11.2 ± 0.0	NB
P Cladium mariscoides Smooth Twigrush	Р	Carex atratiformis					S3S4	2	7.5 ± 0.0	NB
P Cyperus dentatus Toothed Flatsedge S3S4 241 7.5 ± 0.0 NB Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	P									
P Eleocharis quinqueflora Few-flowered Spikerush S3S4 10 18.7 ± 0.0 NB P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB	Р									
P Rhynchospora capitellata Small-headed Beakrush S3S4 21 44.1 ± 0.0 NB P Trichophorum clintonii Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB										
P <i>Trichophorum clintonii</i> Clinton's Clubrush S3S4 51 15.0 ± 0.0 NB										
r boliposcripentas itaviatins ravet bulliusti 5354 59 11.0 ± 0.0 NB		•								
	г	บบเมบริบาเบียาเนร แนงเสเแร	MIVEL DUILUSIT				5554	วษ	11.0 ± 0.0	IND

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Triglochin gaspensis	Gasp - Arrowgrass				S3S4	23	7.3 ± 0.0	NB
Р	Lilium canadense	Canada Lily				S3S4	98	7.5 ± 0.0	NB
Р	Triantha glutinosa	Sticky False-Asphodel				S3S4	10	7.5 ± 0.0	NB
Р	Corallorhiza maculata	Spotted Coralroot				S3S4	20	7.5 ± 0.0	NB
Р	Liparis loeselii	Loesel's Twayblade				S3S4	19	6.6 ± 0.0	NB
Р	Neottia cordata	Heart-leaved Twayblade				S3S4	22	5.8 ± 1.0	NB
Р	Platanthera obtusata	Blunt-leaved Orchid				S3S4	41	7.5 ± 0.0	NB
Р	Platanthera obtusata ssp. obtusata	Blunt-leaved Orchid				S3S4	1	87.4 ± 0.0	NB
Р	Calamagrostis pickeringii	Pickering's Reed Grass				S3S4	120	1.6 ± 0.0	NB
Р	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	4	7.1 ± 2.0	NB
Р	Eragrostis pectinacea	Tufted Love Grass				S3S4	17	7.5 ± 0.0	NB
Р	Stuckenia filiformis	Thread-leaved Pondweed				S3S4	7	10.8 ± 0.0	NB
Р	Potamogeton praelongus	White-stemmed Pondweed				S3S4	12	10.8 ± 1.0	NB
Р	Potamogeton richardsonii	Richardson's Pondweed				S3S4	41	10.8 ± 1.0	NB
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3S4	31	1.7 ± 0.0	NB
Р	Cryptogramma stelleri	Steller's Rockbrake				S3S4	4	7.5 ± 0.0	NB
Р	Asplenium viride	Green Spleenwort				S3S4	22	2.6 ± 0.0	NB
Р	Dryopteris fragrans	Fragrant Wood Fern				S3S4	44	6.8 ± 0.0	NB
Р	Equisetum palustre	Marsh Horsetail				S3S4	11	15.2 ± 0.0	NB
Р	Polypodium appalachianum	Appalachian Polypody				S3S4	20	7.5 ± 0.0	NB
Р	Montia fontana	Water Blinks				SH	1	52.1 ± 1.0	NB
Р	Solidago caesia	Blue-stemmed Goldenrod				SX	2	12.8 ± 1.0	NB
Р	Celastrus scandens	Climbing Bittersweet				SX	2	88.0 ± 100.0	NB
Р	Carex swanii	Swan's Sedge				SX	77	76.2 ± 0.0	NS

5.1 SOURCE BIBLIOGRAPHY (100 km)

Watts, Todd. 2021. Bird Species at Risk records, NB. Peskotomuhkati Nation at Skutik.

399 399

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

# recs	CITATION
14703	eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
6629	Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
6549	Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
3819	Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
3336	Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 - 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6
1801	Paquet, Julie. 2018. Atlantic Canada Shorebird Survey (ACSS) database 2012-2018. Environment Canada, Canadian Wildlife Service.
1734	iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
1596	Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
1055	Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.
864	Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
795	Askanas, H. 2016. New Brunswick Wood Turtle Database. New Brunswick Department of Energy and Resource Development.
713	Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
663	Wallace, S. 2021. Wood Turtle Radio Tracking data from the Nashwaaksis Stream. University of New Brunswick.
624	eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
605	Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
496	Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
472	SwiftWatch. 2022. Total Chimney Swift counts from roost watches for the duration of the SwiftWatch program (2011-2021). Birds Canada.
431	Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
426	Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
419	Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre, 2318 recs.
417	Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
399	Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.

recs CITATION

- 385 Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- 370 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
- 316 Epworth, W. 2016. Species at Risk records, 2014-2016. Fort Folly Habitat Recovery Program, 38 recs.
- 309 Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
- 304 Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 296 Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre, 907 recs.
- 294 Blaney, C.S. 2020. Sean Blaney 2020 field data. Atlantic Canada Conservation Data Centre, 4407 records.
- 280 Chapman-Lam, C.J. 2022. Atlantic Canada Conservation Data Centre 2021 botanical fieldwork. Atlantic Canada Conservation Data Centre, 15099 recs.
- Watts, T. 2021. Fuscopannaria leucosticta, Pannaria lurida and Fraxinus nigra records from western Charlotte County, New Brunswick. Peskotomuhkati Nation at Skutik, 273 records.
- 267 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
- 230 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- Mazerolle, D.M. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 13515 recs.
- 217 Churchill, J.L. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 217 Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
- 210 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
- 198 Churchill, J.L.; Klymko, J.D. 2016. Bird Species at Risk Inventory on the Acadia Research Forest, 2016. Atlantic Canada Conservation Data Centre, 1043 recs.
- 196 Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 194 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick, 2189 records.
- 192 Paquet, Julie. 2019. Atlantic Canada Shorebird Survey ACSS database for 2019. Environment Canada, Canadian Wildlife Service.
- 191 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 191 Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
- 177 Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- 174 Riley, J. 2020. Digby County lichen observations. Pers. comm. to J.L. Churchill.
- 169 Klymko, J. 2019. Atlantic Canada Conservation Data Centre zoological fieldwork 2018. Atlantic Canada Conservation Data Centre.
- 168 Klymko, J. 2020. Atlantic Canada Conservation Data Centre zoological fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 163 Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
- 155 Riley, J. 2019. Digby County lichen observations. Pers. comm. to J.L. Churchill, 50 recs.
- 153 Belliveau, A.G. 2020. E.C. Śmith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2019, 2020. E.C. Śmith Herbarium.
- 150 Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- 150 Phinney, Lori. 2020. Pre- and post White-nose Syndrome bat acoustic monitoring, NS. Mersey Tobeatic Research Institute, 1279 recs.
- 149 Blaney, C.S. 2019. Sean Blaney 2019 field data. Atlantic Canada Conservation Data Centre, 4407 records.
- 148 Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs.
- 141 Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.
- Watts, Todd. 2021. Todd Watts rare species data 2021. Peskotomakuti First Nation at Skutik, 152 records.
- 138 Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- 133 Chapman-Lam, C.J. 2021. Atlantic Canada Conservation Data Centre 2020 botanical fieldwork. Atlantic Canada Conservation Data Centre, 17309 recs.
- 130 Klymko, J. 2018. Maritimes Butterfly Atlas database. Atlantic Canada Conservation Data Centre.
- 128 Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
- 127 Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs.
- 125 Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
- iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs.
- 117 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
- Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.
- 113 Richardson, Leif. 2018. Maritimes Bombus records from various sources. Richardson, Leif.
- Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- Parks Canada, 2010, Specimens in or near National Parks in Atlantic Canada, Canadian National Museum, 3925 recs.
- Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- 96 Belliveau, A.G. 2018, Atlantic Canada Conservation Data Centre, Fieldwork 2017, Atlantic Canada Conservation Data Centre.
- 95 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 94 Belliveau, A.G. 2018, E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2018, E.C. Smith Herbarium, 6226 recs.
- 92 Chapman-Lam, Colin J. 2022. Atlantic Canada Conservation Data Centre 2022 contracted project work. Atlantic Canada Conservation Data Centre.
- 92 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 91 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 89 Robinson, Sarah. 2022. Winter bird obserations at Woodwards Cove, NB. CBCL.
- 88 Benjamin, L.K. 2009. NSDNR Fieldwork & Consultants Reports. Nova Scotia Dept Natural Resources, 143 recs.
- 84 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 78 Beardmore, T. 2017. Wood turtle data: observations May 2017. Nashwaaksis Stream, NB. Natural Resources Canada, 78 records.
- 78 O'Malley, Z., Z.G. Compson, J.M. Orlofske, D.J. Baird, R.A. Curry, and W.A. Monk. 2021. Riparian and in channel habitat properties linked to dragonfly emergence. Scientific Reports, 10(17665):1-12.

recs CITATION

- 75 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015. Atlantic Canada Conservation Data Centre Fieldwork 2015. Atlantic Canada Conservation Data Centre, # recs.
- 72 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
- 69 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 68 Robinson, S.L. 2015. 2014 field data.
- 65 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- Belliveau, A.G., Churchill, J.L. 2019. Compilation of flora and fauna observation records from Isle Haute, Nova Scotia. Acadia University; Atlantic Canada Conservation Data Centre, 522 recs.
- 61 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- 60 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- 57 Klymko, J.J.D. 2018, 2017 field data, Atlantic Canada Conservation Data Centre.
- Nature Trust of New Brunswick. 2020. Nature Trust of New Brunswick 2020 staff observations of species occurence data. Nature Trust of New Brunswick, 133 records.
- Honeyman, K. 2019. Unique Areas Database, 2018. J.D. Irving Ltd.
- Nussey, Pat & NCC staff. 2019. AEI tracked species records, 2016-2019. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 333.
- 54 Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
- 52 e-Butterfly. 2016. Export of Maritimes records and photos. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 52 Klymko, J.J.D. 2016. 2015 field data. Atlantic Canada Conservation Data Centre.
- 50 Sabine, M. 2016. Black Ash records from the NB DNR Forest Development Survey. New Brunswick Department of Natural Resources.
- 49 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 49 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 49 Wisniowski, C. & Dowding, A. 2019. NB species occurrence data for 2016-2018. Nature Trust of New Brunswick.
- 48 Klymko, John. 2022. Atlantic Canada Conservation Data Centre zoological fieldwork 2021. Atlantic Canada Conservation Data Centre.
- 46 Klymko, J. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 44 Clayden, S. Digitization of Wolfgang Maass Nova Scotia forest lichen collections, 1964-2004. New Brunswick Museum. 2018.
- 44 Neily, T.H. 2019. Tom Neily NS Bryophyte records (2009-2013). T.H. Neily, Atlantic Canada Conservation Data Centre, 1029 specimen records.
- 44 Thomas, A.W. 1996. A preliminary atlas of the butterflies of New Brunswick. New Brunswick Museum.
- 43 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 41 Patrick, Allison. 2021. Animal and plant records from NCC properties from 2019 and 2020. Nature Conservancy Canada.
- 39 McLean, K. 2020. Species occurrence records from Clean Annapolis River Project fieldwork in 2020. Clean Annapolis River Project, 206 records.
- 38 Brazner, J. 2016. Nova Scotia Forested Wetland Bird Surveys. Nova Scotia Department of Lands and Forestry.
- 37 Porter, Caitlin. 2020. Observations for 26 EcoGifts sites in southwest New Brunswick. Atlantic Canada Conservation Data Centre, 1073 records.
- 37 Porter, Caitlin. 2021. Field data for 2020 in various locations across the Maritimes. Atlantic Canada Conservation Data Centre, 3977 records.
- 36 Cowie, F. 2007, Electrofishing Population Estimates 1979-98, Canadian Rivers Institute, 2698 recs.
- 36 Wisniowski, C. & Dowding, A. 2020. NB species occurrence data for 2020. Nature Trust of New Brunswick.
- 35 Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs.
- Bishop, G., M. Lovit. 2019. Vascular Plant Flora of the Three Islands. Mazerolle, D.M., Chapman, C.J. (ed.) Bowdoin College & New Brunswick Museum, 291 pp.
- 35 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- Jobin, C. & Clow, A., Van Dijk, J. 2019. Eastern Waterfan data, Mount Allison Fundy Field Camp 2019. Chapman, C.J. (ed.) Fundy National Park and Mount Allison University, 31 recs.
- 30 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 30 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 30 Scott, F.W. 2002. Nova Scotia Herpetofauna Atlas Database. Acadia University, Wolfville NS, 8856 recs.
- 27 East Coast Aquatics Inc. 2021. Species at Risk records from Spicer North Mountain Quarry Expansion Environmental Assessment. East Coast Aquatics, 44 records.
- 27 Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- 26 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- 26 Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.
- 26 Munro, Marian K. Nova Scotia Provincial Museum of Natural History, Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 26 Neily, T.H. & Pepper, C.; Toms, B. 2020. Nova Scotia lichen database [as of 2020-03-18]. Mersey Tobeatic Research Institute.
- 26 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- Wilhelm, S.I. et al. 2019. Colonial Waterbird Database. Canadian Wildlife Service.
- 24 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- 24 Tingley, S. (compiler). 2001. Butterflies of New Brunswick. , Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs.
- 23 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 22 Sollows, M.C., 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
- 21 Wissink, R. 2006. Fundy National Park Digital Database. Parks Canada, 41 recs.
- 20 Chapman, C.J. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 11171 recs.
- 20 McLean, K. 2019. Species At Risk observations. Clean Annapolis River Project.
- 20 NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- 20 Staicer, C. 2021. Additional compiled Nova Scotia Species at Risk bird records, 2005-2020. Dalhousie University.
- 19 Department of Natural Resources and Energy Development. 2022. Wood Turtle records for New Brunswick. Government of New Brunswick, 28 records.

Data Report 7616: Crane Mountain Landfill, NB

Page 27 of 30

CITATION # recs McMullin, R.T. 2022. Maritimes lichen records. Canadian Museum of Nature. 19 Pronych, G. & Wilson, A. 1993. Atlas of Rare Vascular Plants in Nova Scotia. Nova Scotia Museum, Halifax NS, I:1-168, II:169-331. 1446 recs. 19 19 Toms, Brad & Pepper, Chris; Neily, Tom. 2022. Nova Scotia lichen database [as of 2022-04]. Mersey Tobeatic Research Institute. Klymko, J.J.D. 2016. 2014 field data. Atlantic Canada Conservation Data Centre. 18 17 Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs. 17 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs. 16 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs. LaPaix, R.W.; Crowell, M.J.; MacDonald, M.; Neily, T.D.; Quinn, G. 2017. Stantec Nova Scotia rare plant records, 2012-2016. Stantec Consulting. 16 16 Westwood, A., Staicer, C. 2016, Nova Scotia landbird Species at Risk observations, Dalhousie University. 15 Hughes, Cory, 2020, Atlantic Forestry Centre Coccinella transversoguttata collections, Canadian Forest Service, Atlantic Forestry Centre, Sabine, M. 2016. NB DNR staff incidental Black Ash observations. New Brunswick Department of Natural Resources. 15 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000. 14 14 Clayden, S.R. 2005, Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia), Committee on the Status of Endangered Wildlife in Canada, 27 recs. Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs. 14 14 Eaton, S. 2014. Nova Scotia Wood Turtle Database. Environment and Climate Change Canada, 4843 recs. Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99., Pers. comm. to K.A. Bredin. 91 recs. 14 14 Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp. 13 Basquill, S.P., Porter, C. 2019. Bryophyte and lichen specimens submitted to the E.C. Smith Herbarium. NS Department of Lands and Forestry. 13 Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs. 13 G.Proulx, R. Newell, A. Mills, D. Bayne. 2018. Selaginella rupestris records, Digby Co. Nova Scotia Lands and Forestry, 1387601 recs. 13 Robinson, S.L. 2014. 2013 Field Data. Atlantic Canada Conservation Data Centre. 13 Toms, B. 2018. Bat Species data from www.batconservation.ca for Nova Scotia. Mersey Tobeatic Research Institute, 547 Records. Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada. 12 Mazerolle, D.M. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre. 12 12 Sabine, M. 2016. Black Ash records from NB DNR permanent forest sampling Plots. New Brunswick Department of Natural Resources, 39 recs. Shortt, R. UNB specimen data for various tracked species formerly considered secure. Connell Memorial Herbarium, UNB, Fredericton NB. 2019. 12 Blaney, C.S. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre. 11 Webster, R.P. 2004. Lepidopteran Records for National Wildlife Areas in New Brunswick, Webster, 1101 recs. 11 10 Blaney, C.S. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre. Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active). 10 McNeil, J.A. 2019. Snapping Turtle records, 2019. Mersey Tobeatic Research Institute. 10 Neily, T. H. 2018. Lichen and Bryophyte records. AEI 2017-2018. Tom Neily: Atlantic Canada Conservation Data Centre. 10 10 Noseworthy, J. 2013, Van Brunt's Jacob's-ladder observations along tributary of Dipper Harbour Ck, Nature Conservancy of Canada, 10 recs. 10 Wisniowski, C. 2018. Optimizing wood turtle conservation in New Brunswick, 10 records. 9 Belliveau, A.G. 2014. Plant Records from Southern and Central Nova Scotia. Atlantic Canada Conservation Data Centre, 919 recs. Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs. 9 Caissie, A. Herbarium Records. Fundy National Park, Alma NB. 1961-1993. Department of Natural Resources and Energy Development. 2022. Pinedrops (Pterospora andromedea) records for New Brunswick. Government of New Brunswick, 12 records. Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates. 9 9 Lovit, M. 2015. Rare Passamaguoddy Flora of Grand Manan. New Brunswick Museum, Florence M. Christie Grant in Botany, 32 pp. q Munro, Marian K. Tracked lichen specimens, Nova Scotia Provincial Museum of Natural History Herbarium. Atlantic Canada Conservation Data Centre. 2019. Neily, T.H. Tom Neily NS Sphagnum records (2009-2014). T.H. Neily, Atlantic Canada Conservation Data Centre. 2019. q a Richardson, D., Anderson, F., Cameron, R, McMullin, T., Clayden, S. 2014. Field Work Report on Black Foam Lichen (Anzia colpodes). COSEWIC. a Shortt, R. Connell Herbarium Black Ash specimens. University New Brunswick, Fredericton. 2019. Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs. R Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs. R 8 Edsall, J. 2007, Personal Butterfly Collection; specimens collected in the Canadian Maritimes, 1961-2007, J. Edsall, unpubl. report, 137 recs.

- King, Amelia. 2020. Belleisle Watershed Coalition Turtle Watch Data. Belleisle Watershed Coalition.
- Klymko. J. Dataset of butterfly records at the New Brunswick Museum not yet accessioned by the museum. Atlantic Canada Conservation Data Centre. 2016.
- Litvak, M.K. 2001, Shortnose Sturgeon records in four NB rivers, UNB Saint John NB, Pers, comm. to K. Bredin, 6 recs.
- McNeil, J.A. 2018. Wood Turtle records, 2018. Mersey Tobeatic Research Institute, 68 recs.
- Parker, M.S.R. 2011. Hampton Wind Farm 2010: significant floral/faunal observations., 13 recs.
- Webster, R.P. 2006. Survey for Suitable Salt Marshes for the Maritime Ringlet, New Populations of the Cobblestone Tiger Beetle, & New Localities of Three Rare Butterfly Species. New Brunswick WTF Report, 28
- Webster, R.P. Atlantic Forestry Centre Insect Collection, Maritimes butterfly records. Natural Resources Canada. 2014.
- Wissink, R. 2000. Rare Plants of Fundy: maps. Parks Canada, 20 recs.
- Young, Elva. 2019. Epargyreus clarus records from Charlotte County, Young, Elva, pers. comm.
- Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs.

recs CITATION

7

3

- 7 e-Butterfly. 2019. Export of Maritimes records and photos. McFarland, K. (ed.) e-butterfly.org.
- Hinds, H.R. 1992. Rare Vascular Plants of Fundy National Park., 10 recs.
- McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
- 7 McLean, K. 2019. Wood Turtle observations. Clean Annapolis River Project.
- 7 McNeil, Jeffie. 2022. 2021 Turtle Records. Mersey Tobeatic Research Institute.
- 7 Pepper, C. 2021. Rare bird, plant and mammal observations in Nova Scotia, 2017-2021.
- Richardson, D., Anderson, F., Cameron, R, Pepper, C., Clayden, S. 2015. Field Work Report on the Wrinkled Shingle lichen (Pannaria lurida). COSEWIC.
- 6 Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000. Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- 6 Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
- 6 Mersey Tobetic Research Institute, 2021, 2020 Monarch records from the MTRI monitoring program, Mersey Tobetic Research Institute, 72 records.
- 6 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 6 Webster, R.P. Database of R.P. Webster butterfly collection. 2017.
- Zinck, M. & Roland, A.E. 1998, Roland's Flora of Nova Scotia, Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.
- 5 Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- 5 Boyne, A.W. 2000. Harlequin Duck Surveys. Canadian Wildlife Service, Sackville, unpublished data. 5 recs.
- 5 Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
- 5 Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- Hicklin, P.W. 1999. The Maritime Shorebird Survey Newsletter. Calidris, No. 7. 6 recs.
- Hubley, Nicole, 2022, Monarch (Danaus plexippus) records submitted to MTRI from the 2021 field season. Mersey Tobeatic Research Institute.
- 5 Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
- McNeil, J.A. 2016. Blandings Turtle (Emydoidea blandingii), Eastern Ribbonsnake (Thamnophis sauritus), Wood Turtle (Glyptemys insculpta), and Snapping Turtle (Chelydra serpentina) sightings, 2016. Mersey Tobeatic Research Institute, 774 records.
- 5 Moldowan, Patrick Chrysemys picta records from COSEWIC status report, pers. comm. 2021.
- 5 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2014.
- Beardmore, T. 2017. 2017 Butternut observations. Natural Resources Canada.
- 4 Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs.
- 4 Cameron, R.P. 2018. Degelia plumbea records. Nova Scotia Environment.
- 4 Clayden, S.R. 2003. NS lichen ranks, locations. Pers. comm to C.S. Blaney. 1p, 5 recs, 5 recs.
- 4 Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- 4 Haughian, Sean. 2021. Update to lichen data from 2017-2021. Nova Scotia Museum.
- 4 LaPaix, R.W. 2014. Trans-Canada Energy East Pipeline Environmental Assessment, Records from 2013-14. Stantec Consulting, 5 recs.
- 4 Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
- Majka, C.G. & McCorquodale, D.B. 2006. The Coccinellidae (Coleoptera) of the Maritime Provinces of Canada: new records, biogeographic notes, and conservation concerns. Zootaxa. Zootaxa. 1154: 49–68. 7 recs
- 4 Marx, M. & Kenney, R.D. 2001. North Atlantic Right Whale Database. University of Rhode Island, 4 recs.
- 4 McLean, K. 2020. Wood Turtle observations . Clean Annapolis River Project.
- Patrick, A.; Horne, D.; Noseworthy, J. et. al. 2017. Field data for Nova Scotia and New Brunswick, 2015 and 2017. Nature Conservancy of Canada.
- 3 Adams, J. & Herman, T.B. 1998. Thesis, Unpublished map of C. insculpta sightings. Acadia University, Wolfville NS, 88 recs.
- 3 Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec.
- Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
- 3 Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08.
- 3 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 3 Clayden, S.R. 2006. Pseudevernia cladonia records. NB Museum. Pers. comm. to S. Blaney, Dec, 4 recs.
- 3 Clayden, S.R. 2020. Email to Sean Blaney regarding Pilophorus cereus and P. fibula at Fidele Lake area, Charlotte County, NB. pers. comm., 2 records.
- 3 Ferguson, D.C. 1954. The Lepidoptera of Nova Scotia. Part I, macrolepidoptera. Proceedings of the Nova Scotian Institute of Science, 23(3), 161-375.
- 3 Forbes, G. 2001. Bog Lemming, Phalarope records, NB., Pers. comm. to K.A. Bredin. 6 recs.
- 3 Forbes, G. 2021. Chrysemys picta record from Waasis, New Brunswick. pers. comm.
- 3 Lautenschlager, R.A. 2005. Survey for Species at Risk on the Canadian Forest Service's Acadia Research Forest near Fredericton, New Brunswick. Atlantic Canada Conservation Data Centre, 6. 3 recs.
- 3 Maddox, G.D., Cannell, P.F. 1982. The Butterflies Of Kent Island, Grand Manan, New Brunswick. Journal of the Lepidopterists' Society, 36(4): 264-268.
- 3 McNeil, J.A. 2019. Eastern Painted Turtle trapping records, 2019. Mersey Tobeatic Research Institute.
- Nash, Vicky. 2018. Hammond River Angling Association Wood Turtle observations. Hammond River Angling Association, 3 recs.
- 3 Newell, R.E. 2006. Rare plant observations in Digby Neck. Pers. comm. to S. Blaney, 6 recs.
- 3 NS DNR. 2017. Black Ash records from NS DNR Permanent Sample Plots (PSPs), 1965-2016. NS Dept of Natural Resources.
- 3 Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
- 3 Riley, J. 2020. Digby County Pannaria lurida observations. Pers. comm. to J.L. Churchill.
- 3 Staicer, Cindy. 2022. 2021 Landbird Species at Risk observations. Dalhousie University.
- 2 Amirault, D.L. & Stewart, J. 2007. Piping Plover Database 1894-2006. Canadian Wildlife Service, Sackville, 3344 recs, 1228 new.
- 2 Amiro, Peter G. 1998. Atlantic Salmon: Inner Bay of Fundy SFA 22 & part of SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-12. 4 recs.
- 2 Anon. 2017. Export of Maritimes Butterfly records. Global Biodiversity Information Facility (GBIF).

CITATION # recs Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs. 2 Bishop, G., Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property - Preliminary Botanical Survey. B&B Botanical, 12pp. Cameron, R.P. 2009. Cyanolichen database. Nova Scotia Environment & Labour, 1724 recs.

- Catling, P.M. 1981. Taxonomy of autumn-flowering Spiranthes species of southern Nova Scotia in Can. J. Bot. , 59:1250-1273. 30 recs.
- 2 Clayden, S.R.; Goltz, J.P. 2018. Emails to Sean Blaney on occurrence of Polygonum douglasii at Big Bluff, Kings Co., New Brunswick. pers. comm., 1 record.
- 2 Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs. 2
- Edsall, J. 1993. Spring 1993 Report. New Brunswick Bird Info Line, 3 recs.
- Emma Vost. 2022. Bank swallow colony and broad-winged hawk sightings in Bridgetown, NS. Personal communication, 4. 2
- 2 Goltz, J. 2017. Harlequin Duck observations. New Brunswick Department of Agriculture, Aquaculture and Fisheries.
- 2 Goltz, J.P. 2001, Botany Ramblings April 29-June 30, 2001, N.B. Naturalist, 28 (2): 51-2, 8 recs.
- Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs. 2
- Hill, N.M. 1994. Status report on the Long's bulrush Scirpus longii in Canada. Committee on the Status of Endangered Wildlife in Canada, 7 recs. 2
- Hinds, H.R. 1999. A Vascular Plant Survey of the Musquash Estuary in New Brunswick. , 12pp.
- McCain, J. & R.B. Pike and A.R. Hodgdon. 1973. The vascular flora of Kent Island, New Brunswick. Rhodora 75:311-322, 2 records.
- McIntosh, W. 1904. Supplementary List of the Lepidoptera of New Brunswick. Bulletin of the Natural History Society of New Brunswick, 23: 355-357.
- Neily, T.H. & Pepper, C.; Toms, B. 2018. Nova Scotia lichen database [as of 2018-03]. Mersey Tobeatic Research Institute.
- 2 Neily, T.H. & Pepper, C.; Toms, B. 2020. Nova Scotia lichen database [as of 2020-05-25]. Mersey Tobeatic Research Institute, 668 recs.
- Perrin, J., Russel, J. 1912. Catalogue of Butterflies and Moths, Mostly Collected in the Neighborhood of Halifax and Digby, Nova Scotia. Proceedings and Transactions of the Nova Scotian Institute of Science, 12(3), 2
- 2 Phinney, Lori; Toms, Brad; et. al. 2016. Bank Swallows (Riparia riparia) in Nova Scotia: inventory and assessment of colonies. Merset Tobeiatc Research Institute, 25 recs.
- Proulx, V.D. 2002. Selaginella rupestris sight record at Centreville, Nova Scotia. Virginia D. Proulx collection, 2 recs. 2
- Allen, Cory. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
- Amirault, D.L. 1997-2000. Unpublished files. Canadian Wildlife Service, Sackville, 470 recs.
- Anon. Dataset of butterfly records for the Maritime provinces. Museum of Comparative Zoology, Harvard University. 2017.
- Belliveau, A.G. 2020. Email to Colin Chapman on new NS locations for Allium tricoccum. Chapman, C.J. (ed.) Acadia University.
- Belliveau, A.G. E.C. Smith Herbarium Specimen Database 2019. E.C. Smith Herbarium, Acadia University. 2019.
- Benedict, B. 2006. Argus annotation: Salix pedicellaris. Pers. comm to C.S. Blaney, June 21, 1 rec.
- Benedict, B. Agalinis neoscotica specimen from Grand Manan, 2009.
- Bredin, K.A. 2000. NB & NS Bog Project, fieldwork. Atlantic Canada Conservation Data Centre, Sackville, 1 rec.
- Brunelle, P.-M. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
- Brunelle, P.-M. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs, 3 recs.
- Brunton, D. F. & McIntosh, K. L. Agalinis neoscotica herbarium record from D. F. Brunton Herbarium, D.F. Brunton Herbarium, Ottawa, 2005.
- Brunton, D.F. 2016, Record of Potamogeton vasevi in Joslin Creek, NB, pers, comm., 1 record.
- Brunton, Dan. 2022. Record of Isoetes prototypus near Sand Lake, NS. pers. comm.
- Calhoun, J.C. Butterfly records databased at the McGuire Center for Lepidoptera and Biodiversity. Calhoun, J.C. 2020.
- Clark, R. 2021. Email to S. Blaney, re: Wood Turtle observation from near Hunters Home, Queens Co., NB., May 20 2021. Rosemarie Clark <rsmr_clrk.luvsfam@hotmail.ca>, 1 record.
- Clayden, S.R. 2007. NBM Science Collections. Pers. comm. to D. Mazerolle, 1 rec.
- Clayden, S.R. 2020. Email regarding Blue Felt Lichen (Pectenia plumbea) occurrences in New Brunswick, from Stephen Clayden to Sean Blaney, pers. comm., 2 records.
- Clayden, S.R. 2022. Email to Sean Blaney regarding Heterodermia squamulosa record in Loch Alva PNA., 1 record.
- Crowell, M.J. Plant specimens from Nictaux, NS sent to Sean Blaney for identification. Jacques Whitford Limited. 2005.
- Dadswell, M.J. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
- Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, Sackville, 47pp.
- Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces. , Science Stock Status Report D3-22. 13 recs.
- Deseta, N. 2021. Email to John Klymko regarding Riparia riparia observations. Nashwaak Watershed Association Inc.
- e-Butterfly, 2018. Selected Maritimes butterfly records from 2016 and 2017. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- Edsall, J. 1993. Summer 1993 Report. New Brunswick Bird Info Line, 2 recs.
- Elderkin M.F. 2007. Selaginella rupestris, Iris prismatica & Lophiola aurea records in NS. NS Dept of Natural Resources, Wildlife Div. Pers. comm. to C.S. Blaney, 3 recs.
- Forbes, G.J. 2020. Email regarding a Snapping Turtle (Chelydra serpentina) occurrence in New Brunswick, from Graham Forbes to John Klymko. pers. comm, 1 record.
- Forbes, Graham. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
- Gobeil, R.E. 1965. Butterflies On Kent Island, New Brunswick, Journal of the Lepidopterists' Society, 19(3): 181-183.
- Goltz, J.P. 2016. Email to Sean Blanev re: discovery of Carex waponahkikensis at Campobello Island, pers. comm., 1 record.
- Goltz, J.P. 2020. Email to Sean Blaney regarding Anchistea virginica (Virginia Chain-fern) at Magaguadavic Lake, NB. pers. comm., 1 record.
- Hayes, Jodi. 2022. Email to AC CDC regarding Snapping Turtle, NB.
- Hicklin, P.W. 1990. Shorebird Concentration Sites (unpubl. data). Canadian Wildlife Service, Sackville, 296 sites, 30 spp.
- Hill, N. 2014. 2014 Monarch email report, Bridgetown, NS. Fern Hill Institute for Plant Conservation.
- Hill, N.M., Myra, M. 2017. Email to Sean Blaney regarding rich intervale flora on Nictaux River. Fern Hill Institute, 3 records.
- Hinds, H.R. 2000. Flora of New Brunswick (2nd Ed.). University New Brunswick, 694 pp.
- Hinds, H.R. 2000. Rare plants of Fundy in Rare Plants of Fundy: maps. Wissink, R. (ed.) Parks Canada, 2 recs. 1
- Houghton, Andrew. 2021. Email to Sean Blaney re: nesting Snapping Turtle, NB. pers. comm.

CITATION # recs Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec. Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec. Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017. Klymko, J., Sabine, D. 2015. Verification of the occurrence of Bombus affinis (Hymenoptera: Apidae) in New Brunswick, Canada. Journal of and Acadian Entomological Society, 11: 22-25. Klymko, J.J.D.; Robinson, S.L. 2012. 2012 field data. Atlantic Canada Conservation Data Centre, 447 recs. LaFlamme, C. 2008. Disovery of Goodyera pubescens at Springdale, NB. Amec Earth and Environmental. Pers. comm. to D.M. Mazerolle, 1 rec. LaPaix, R.W.; Crowell, M.J.; MacDonald, M. 2011. Stantec rare plant records, 2010-11. Stantec Consulting, 334 recs. Maass, W.S.G. & Yetman, D. 2002. Assessment and status report on the boreal felt lichen (Erioderma pedicellatum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 1 rec. MacFarlane, Wayne. 2018. Skunk Cabbage observation on Long Island, Kings Co. NB. Pers. comm., 1 records. MacKinnon, D.S. 2013. Email report of Peregrine Falcon nest E of St. Martins NB. NS Department of Environment and Labour, 1 record. Majka, C. 2009. Université de Moncton Insect Collection: Carabidae, Cerambycidae, Coccinellidae. Université de Moncton, 540 recs. McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, J.-L. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec. McAlpine, D.F. 1983. Species Record Cards. Fundy National Park, Library, 1 rec. McAlpine, D.F. 2020. Email to John Klymko about Epargyreus clarus record from Grand Bay, NB. Pers. comm. McIlraith, A.L. 1986. Additions to the flora of Kent Island, New Brunswick. Rhodora 88:441-443, 1 record. Munro, Marian C., Newell, R.E, & Hill, Nicholas M. 2014. Nova Scotia Plants. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia, First edition. NatureServe Canada. 2018. iNaturalist Butterfly Data Export . iNaturalist.org and iNaturalist.ca. NatureServe Canada. 2018. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca. Newell, R. & Neily, T.; Toms, B.; Proulx, G. et al. 2011. NCC Properties Fieldwork in NS: August-September 2010. Nature Conservancy Canada, 106 recs. Ogden, K. Nova Scotia Museum butterfly specimen database. Nova Scotia Museum. 2017. Oldham, M.J. 2000. Oldham database records from Maritime provinces. Oldham, M.J; ONHIC, 487 recs. Phillips, B. 2017. Emails to John Klymko regarding Eastern Waterfan (Peltigera hydrothyria) occurrences in Fundy National Park. Fundy Biosphere Reserve, 3 recs. Poirier, Nelson. 2012. Geranium robertianum record for NB. Pers. comm. to S. Blaney, Sep. 6, 1 rec. Porter, C.J.M. 2014. Field work data 2007-2014. Nova Scotia Nature Trust, 96 recs. Powell, B.C. 1967. Female sexual cycles of Chrysemy spicta & Clemmys insculpta in Nova Scotia. Can. Field-Nat., 81:134-139. 26 recs. Proulx, Lisa. 2022. Email to Sean Blaney regarding Sclerophora peronella (Frosted Glass Whiskers, a lichen) occurrence at Goldsmith Lake, Annapolis Co., NS. pers. comm., 1 record. Robicheau, C. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre. Sabine, D.L. & Goltz, J.P. 2006, Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown, Pers. comm. to D.M. Mazerolle, 1 rec. Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marysville NB. Pers. comm. to C.S. Blaney, 2pp, 4 recs. Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier. Simpson, D. Collection sites for Black Ash seed lots preserved at the National Tree Seed Centre in Fredericton NB. National Tree Seed Centre, Canadian Forest Service. 2016. Smith, M. 2013. Email to Sean Blaney regarding Schizaea pusilla at Caribou Plain Bog. Fundy NP, pers. comm., 1 rec. Staicer, C. & Bliss, S.: Achenbach, L. 2017, Occurrences of tracked breeding birds in forested wetlands, . 303 records. Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec. Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs. Toner, M. 2005. Listera australis population at Bull Pasture Plains. NB Dept of Natural Resources. Pers. comm. to S. Blaney, 8 recs. Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs. Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets, Sep 2, photo, 1 rec. Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec. Tummer, Kevin. 2016. Email communication (April 30, 2016) to John Klymko regarding Snapping Turtle observation in Nova Scotia. Pers. Comm. Vinison, Neil. 2018. Record of Saxifraga paniculata from Fundy NP, emailed to S. Blaney 19 July 2018. Pers. comm. Vinson, N. 2018. Email to S. Blaney regarding new occurrence of Saxifraga paniculata on Point Wolfe River. Parks Canada, 1 record. Vinson, Neil. 2016. Emails to Sean Blaney regarding yellow flower (Primula veris) and coastal habitat leaf rosettes (Primula laurentiana) in Fundy National Park. pers. comm.. 2 rec. Vinson, Neil. 2020. Email - additional Peltigera hydrothyria records, Fundy National Park. Chapman-Lam, Colin J. (ed.) Fundy National Park, 2. Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs. Wallace, S. 2022. Email to Sean Blaney regarding NB DNRED Ranger Wood Turtle sightings from 2021. NB DNRED, 5 records. Wallace, Shavlyn, 2022, Canada Lynx observation in New Brunswick, . 1 record.

Watts, T. 2021. Emails to Sean Blaney regarding Black Tern colony at King Brook Lake, Charlotte Co. and Third Lake, York Co., NB. Peskotomuhkati Nation at Skutik, 2 records.

- 1 Webster, R.P. Reggie Webster's records of Encyclops caerulea . pers. collection. 2018.
- 1 White, S. 2018, Notable species sightings, 2016-2017, East Coast Aquatics.
- 1 Wissink, R. 2000. Four-toed Salamander Survey results, 2000. Fundy National Park, Internal Documents, 1 rec.

Webster, R.P. Email to John Klymko detailing records of butterflies collected by Reggie Webster in June 2017. Webster, R.P. 2017.

1 Wong, Sarah. 2020. Two Chimney Swift observation made by Sarah Wong, pers. comm. to Sean Blaney.

GeoNB Wetland Layer

1:9,028

Department of Environment & Local Government/ Ministère de l'Environnement et Gouvernements locaux

0.4 mi

0.7 km

0.2

0.35

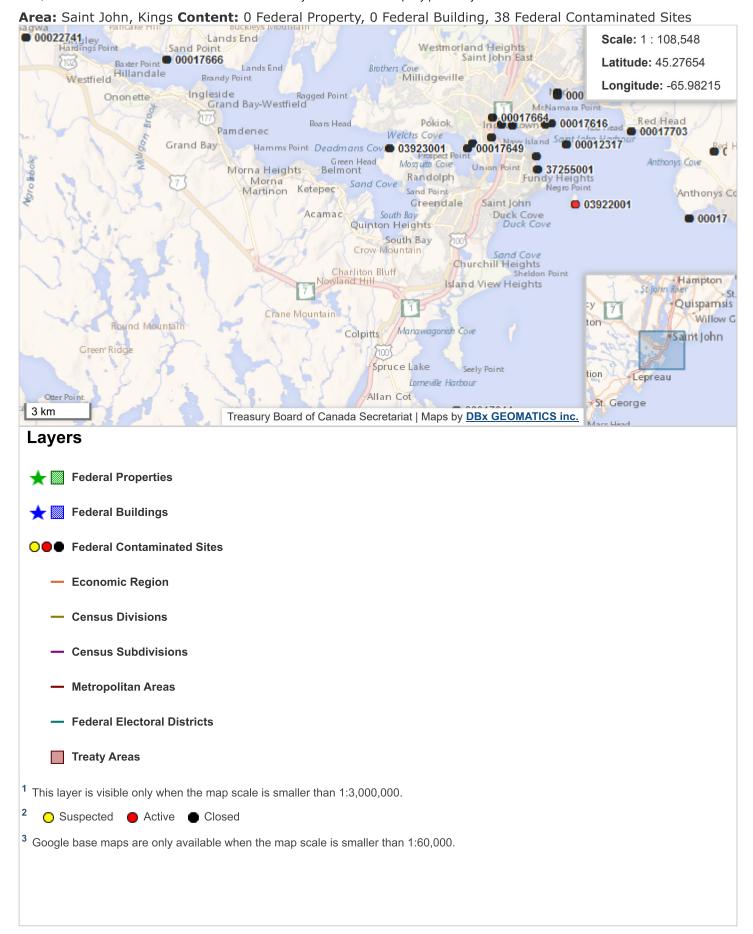
0.1

0.17

5/3/2023, 11:14:39 AM

Property

30 meters


Water Bodies

Water Courses

Treasury Board of Canada Secretariat

Home > OCG > Real Property Management > FCSI > DFRP/FCSI - Map Navigator

DFRP/FCSI - Map Navigator

IMPORTANT NOTE: The tables below are currently not synchronized with the map content.

Please click on the following button if you want to update the tables content: UPDATE TABLES

Federal Properties (0) / Parcels (0)	Federal Buildings (0)	Federal Contaminated Sites (0)
No record found.		

SCHEDULE A-26 ANNEXE A-26

Protected Areas - East And West Musquash Watershed - The City of Saint John

Secteurs Protégés - Bassin Hydrographique Du Musquash Est et Ouest - The City of Saint John

The City of Saint John, N.B.

The City of Saint John (N.-B.)

Legend / Légende

Protected Area A Secteur protégé A

Secteur protégé A

Boundary of a Protected Area B

(Protected Area B does not include any

Protected Area A)

Limites d'un secteur protégé B

(Le secteur protégé B n'englobe aucun secteur

protégé A)

Boundary of a Protected Area C(Protected Area C does not include any

Protected Area A or Protected Area B)

Limites d'un secteur protégé C

(Le secteur protégé C n'englobe aucun secteur protégé A ou secteur protégé B)

Water Intake

Prise d'eau

Municipal Boundary

Limites d'une municipalité

County Boundary

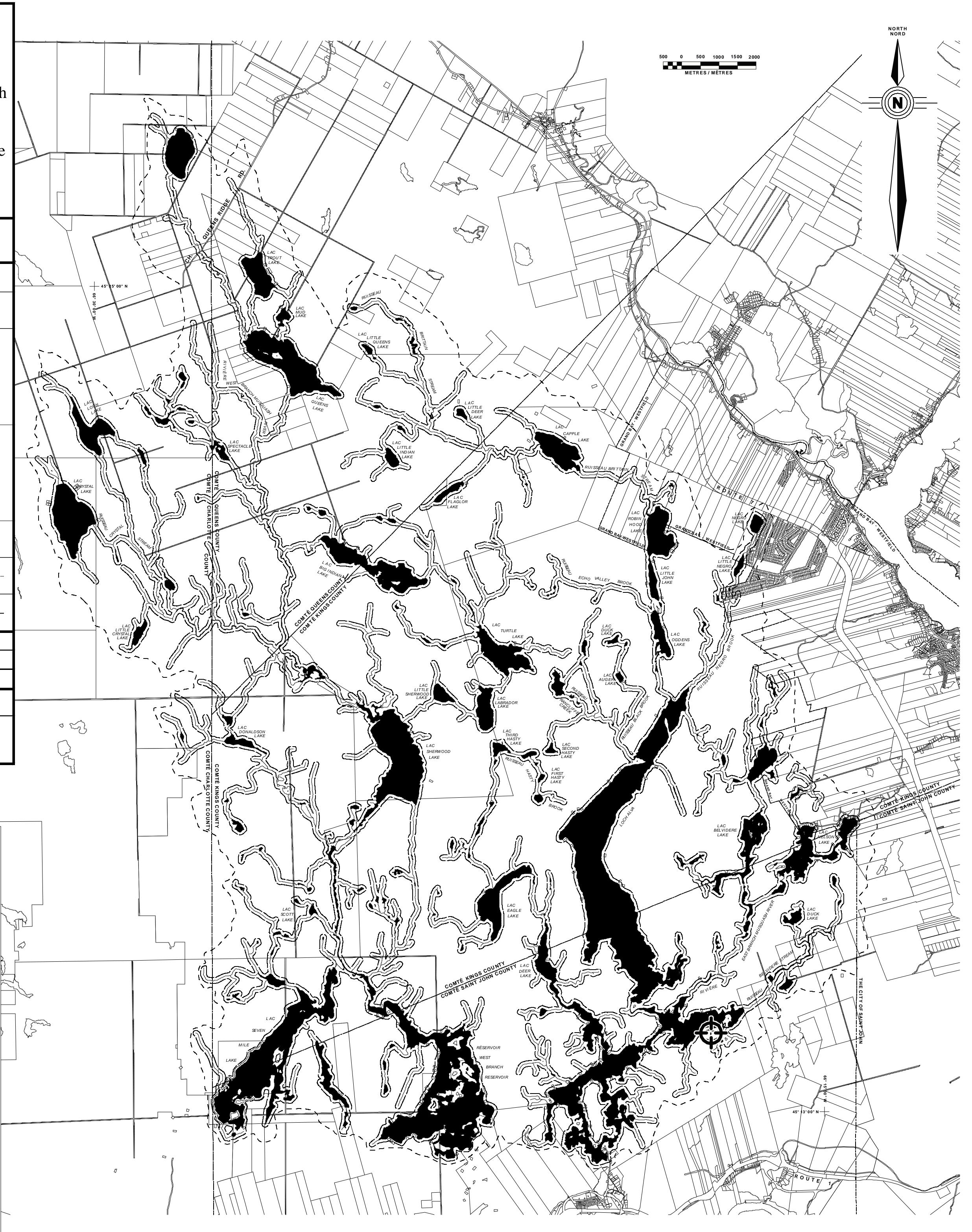
Limites d'un comté

Plan:	A-26
Scale: / Échelle :	1 / 40 000
Date:	2001 / 07 / 12

Department of the Environment and Local Government Ministère de l'Environnement et des Gouvernements locaux

New Brunswick

NOTES:


- 1 The property lines shown on this plan were transferred from Service New Brunswick property maps. The property lines are shown on this plan to aid in the identification of individual properties within the watershed protected areas. Please refer to the actual Service New Brunswick property maps for complete property and ownership information.
- 2 A copy of the *Watershed Protected Area Designation Order* that designates the watersheds or portions of watersheds shown on this plan as protected areas

(a) is filed in the head office of the Department of the Environment and Local Government, and in the regional office of the Department of the Environment and Local Government situated most closely to the protected areas, and (b) is registered in the registry office or registry offices of Service New Brunswick for the county or counties in which the protected areas are situated.

51000000

NOTES:

- 1 Les limites de propriétés figurant sur le présent plan ont été décalquées des cartes foncières de Services Nouveau-Brunswick. Elles y figurent pour faciliter l'identification des propriétés particulières se trouvant à l'intérieur des secteurs protégés du bassin hydrographique. Veuillez vous reporter aux véritables cartes foncières de Services Nouveau-Brunswick pour obtenir des renseignements complets à l'égard des propriétés et des propriétaires.
- 2 Un exemplaire du *Décret de désignation du secteur protégé des bassins hydrographiques* qui désigne les bassins hydrographiques ou des parties des bassins hydrographiques figurant sur ce plan comme secteurs protégés *a)* est déposé au bureau principal du ministère de l'Environnement et des Gouvernements locaux, et au bureau régional du ministère de l'Environnement et des Gouvernements locaux qui est le plus rapproché des secteurs protégés, et *b)* est enregistré au bureau de l'enregistrement ou aux bureaux de l'enregistrement de Services Nouveau-Brunswick du comté ou des comtés où sont situés les secteurs protégés.

PLAN: A-26

May 15, 2018 MON-00235280-A1 / 70.1

Fundy Regional Service Commission P.O. Box 3032 Grand Bay-Westfield NB E5K 4V3

Attention: Marc MacLeod - Executive Director

Re: Final Report Submission - Fundy Regional Service Commission, Development of Numerical Model (Part 2 Study re: Crane Mountain Landfill)

Dear Mr. MacLeod:

EXP Services Inc (EXP) in association with Matrix Solutions Inc. (Matrix) are pleased to provide the **Part 2** Numerical Model Final Report (rev 1) for the above referenced study. This revision updates the original final report issued March 6, 2018 by including EXP/ Matrix's response to the peer review comments provided in WSP's letter dated April 18, 2018. Our response to the review comments is summarized as follows.

- 1) The Executive Summary has been revised to reflect the WSP comment(s) essentially suggesting a more succinct or direct answer to the specific questions in the TOR is warranted. It is our opinion that the Part 2 work and report addressed the questions and objectives outlined in the original TOR. However, to address WSP's review comment(s) regarding this matter, the revised Executive Summary reiterates the individual questions and summarizes the key findings in the report that answer each of these questions.
- 2) Regarding the remaining comments provided in WSP's peer review, it is EXP/ Matrix's opinion that they relate to work beyond that supported and funded within the context and scope of the Part 2 Numerical Model study. The Part 2 Numerical Model and report as currently developed within EXP/ Matrix's scope of work speaks directly to the key questions posed by the FRSC Steering Committee, and will serve as a tool for further refinement as additional information is gathered, or further funding is allotted to refine the model and/or focus on specific items of interest. In this context, it is suggested that the FRSC Steering Committee may wish to revisit the remaining peer review comments in prioritizing and developing possible future scope(s) of work.

We appreciate the opportunity to have assisted in addressing the FRSC Steering Committee's objectives and requirements for this study.

Sincerely,

Jønn Sims, M.Sc., P.Geo., P.Eng.

Project Manager - EXP

EXP Services Inc.

Attach: Final Report (rev 1)

Crane Mountain Landfill Groundwater Flow Model: Part 2 – Numerical Model

Fundy Regional Service Commission

Type of Document:

Final (rev. 1)

Project Name:

FRSC - Part 2 Numerical Groundwater Flow

Project Number:

MON-00235280-A1

Prepared By:

Don Haley, M.Sc.

Fred Baechler, M.Sc., P.Geo

Reviewed By:

John Sims, M.Sc., P.Eng., P.Geo

EXP Services Inc. 40 Henri Dunant Street Moncton, NB E1E 1E5

Canada

T: +1.506.857.8889 F: +1.506.857.8315 www.exp.com

Date Submitted:

2018-05-15

Table of Contents

Table	of Conter	nts		
Lega	Notificati	on	ii	
List c	of Tables –	- Included in Appendix 1	iv	
List c	of Figures	– Included in Appendix 2	V	
Exec	utive Sum	mary	v	
1	Introduction			
2	Project	Objectives	2	
3	Summary of Hydrogeological Conceptual Model Developed During Part 1			
3.1 3.2 3.3 3.4	Topogra Geologic	aphy and Surface Water Drainagecal and Hydrostratigraphic Settingwater Flow Systems	2	
4	Numeri	cal Groundwater Flow Model Development	3	
4.1 4.2 4.3 4.4	Modelling Approach Data Sources FEFLOW Software Description Model Construction			
	4.4.1	Domain and Grid Design	2	
	4.4.2	Hydrostratigraphic Framework and Vertical Discretization	5	
	4.4.3	Parameterization		
	4.4.4	Boundary Conditions	6	
5 5.1 5.2	Model Calibration		7	
6	Sensitiv	vity Analysis	10	
6.1 6.2 6.3	Sensitivi	ch ity Results ry of Sensitivity Analysis	11	
7	Model A	Model Assumptions and Limitations1		
8	Summa	rv and Conclusions	16	

Crane Mountain Landfill Groundwater Flow Model – Part 2 – Numerical Model MON-00235280-A1

9	Recommendations	18
10	Closure	20
11	References	21
Appen	dix 1 – REPORT TABLES	
Appen	dix 2 – REPORT FIGURES	
Appen	dix 3 – ABBREVIATIONS AND ACRONYMS	

Legal Notification

This report was prepared by EXP Services Inc. in association with Matrix Solutions Inc. for the account of Fundy Regional Service Commission.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. and/or Matrix Solutions Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

EXP Quality System Checks		
Project No.: MON-00235280-A1	Date: May 15, 2018	
Type of Document: Final	Revision No.: 1	
Prepared By: Don Haley, M.Sc. Fred Baechler, P.Geo.	Dos M Halry	
Reviewed By: John Sims, M.Sc., P.Geo., P.Eng.	John hu	

List of Tables – Included in Appendix 1

- Table 1: Data Sources Used to Develop the Numerical Flow Model
- Table 2: Hydraulic Parameters and Boundary Conditions Base Case
- Table 3: Water Budget Results Base Case
- Table 4: Description of Sensitivity Scenarios
- Table 5: Hydraulic Parameters and Boundary Conditions Sensitivity Scenarios
- Table 6: Water Budget Results Sensitivity Scenarios

List of Figures – Included in Appendix 2

- Figure 1: Site Location Showing Topography, Surface Drainage and Watershed Boundaries
- Figure 2: Bedrock Subcrop Map and Structural Features
- Figure 3: Surficial Geology
- Figure 4: Interpreted Thickness of Surficial Sediments
- Figure 5: Interpreted Water Table
- Figure 6: Model Domain and Numerical Mesh
- Figure 7: Hydraulic Conductivity Assigned Over Model Layer 1 Surficial Sediments
- Figure 8: Hydraulic Conductivity Assigned Over Model Layer 3 Bedrock
- Figure 9: Hydraulic Conductivity Assigned Over West-East Cross-Sections A-A', B-B' and CC'
- Figure 10: Hydraulic Conductivity Assigned Over Northwest-Southeast Cross-Sections D-D' and E-E'
- Figure 11: Model Boundary Conditions
- Figure 12: Base Case Hydraulic Head Distribution, Groundwater Flow Patterns and Water Budget
- Figure 13: Base Case Hydraulic Head Distribution and Groundwater Flow Patterns W-F Cross-Sections
- Figure 14: Base Case Hydraulic Head Distribution and Groundwater Flow Patterns NW-SE Cross-Sections
- Figure 15: Base Case Pathline Results
- Figure 16: Pathline Results for Sensitivity Scenarios
- Figure 17: Time of Travel to Downstream Drainage Network Boundary Conditions
- Figure 18: Comparison of Particle Time of Travel for All Scenarios

Executive Summary

A Numerical Groundwater Flow Model was developed for the Fundy Regional Service Commission (FRSC) Crane Mountain Landfill, an engineered municipal solid waste containment landfill located in the northwestern part of the City of Saint John near the community of Grand Bay-Westfield, NB.

The Numerical Groundwater Flow Model represents **Part 2** of a two-part process recommended to provide for a better understanding of the landfill site and surrounding area regarding: A) transport pathways if a contaminant was released from the site; B) refine the existing monitoring program to provide the first indication of such a release; C) maximize the time frame to implement remedial protocols; D) the potential to impact down gradient domestic wells; and E) development of long term closure plans. **Part 1** (EXP Services Inc., 2017) consisted of development of the Conceptual Groundwater Flow Model and related GIS database information which was used as the basis to proceed with development of the numerical flow mode.

The conceptual model developed in **Part 1** of the study formed the basis for developing the **Part 2** numerical groundwater flow model using the finite element based FEFLOW groundwater modelling system. A base case model and 8 further scenario analysis simulations were developed that predicted groundwater levels, flow patterns and interaction between the groundwater and surface water systems throughout the model domain. The scenario analyses addressed key areas where uncertainty in model parameters or boundary conditions were thought more likely to exist. Particle tracking analyses were completed for all model simulations to determine the advective transport component of potential leakage from the active landfill cells to potential downstream receptors.

Key findings of the Part 2 Numerical Model included the following:

- 1. RE: GROUNDWATER FLOW RATE: Average groundwater flow velocities within the upper bedrock zone were predicted to range between 0.7 and 1.2 m/year in the area of the landfill. The times of first arrival at the downstream discharge locations from various scenarios were predicted to be on the order of 20 to 100 years. The results from this study suggest that even if there is a leak under the landfill, groundwater seepage rates under and adjacent the landfill are relatively slow. Therefore, there is time to monitor react design implement mitigation measures/remediation schemes.
- 2. RE: FAULTS: Faults are understood to be prevalent within the bedrock in the vicinity of the site. One is interpreted to underlie the site and intersect another in the southwest corner of the site. The model indicates that if these fault zones are hydraulically active, they will play an important role in focusing groundwater flow patterns downstream from the landfill, especially since they are aligned with surface water drainage features. Hence, they are potentially important as "Quick-release-Pathways" in transporting any plume off site. The landfill groundwater monitoring program should be reviewed and refined to incorporate these potential pathways.
- 3. RE: STREAMS: All particles simulating a release of contamination under the landfill exited the groundwater system at stream boundaries downstream of the landfill. The landfill facility monitoring program should be reviewed and possibly revised to incorporate the potential of impacted groundwater discharging to the surface water drainage network.
- 4. RE: DOMESTIC WELLS: Modelling of a wide variety of scenarios indicates that, for the assumptions used in the study, none of the particles which simulate a release of contamination from beneath the landfill liner system, migrate to the domestic wells at Grand Bay. Instead they are diverted into select stream channels in proximity to the landfill.
- 5. RE: ADAPATIVE MANAGEMENT: The numerical model now serves as a tool to allow for future adaptive management of the facility. By incorporating new data from the annual monitoring

programs it will provide for the ability to test the validity of the model results, incorporate new predictions regarding the impact of changing climate and refine as appropriate.

One concern of the FRSC Steering Committee and its stakeholders (e.g. Crane Mountain Enhancement Inc., CMEI, who represent the host community) is the potential for impact on downstream domestic water supply wells in the event of a potential contaminant release from the landfill operation. Pertinent questions related to CMEI's concerns are listed below, along with findings from the numerical modelling study that address them.

Question 1:

How long will it take for leachate within the landfill to move through the liner and enter the bedrock groundwater flow system beneath the landfill?

Seepage of leachate through the engineered liner system was assigned as a model boundary condition and was considered in the scenario analysis to account for uncertainty. Values ranged from 0.2 mm/year (6 L/ha/day) to 34 mm/year (940 L/ha/day). These values were based on values reported in the literature. The time required for the leachate to seep through the underlying till beneath the engineered liner and enter the bedrock groundwater flow system will also depend on the hydraulic conductivity of the till, which was also considered in the scenario analysis. Times ranged between 500 and 80 years for the base case and high till hydraulic conductivity scenarios, respectively.

Question 2:

Which direction (horizontal and vertical) will a potential contaminant plume move given natural flow conditions and pumping operations from on-site landfill facility water supply wells?

All simulations predicted impacted groundwater beneath the landfill would move vertically downward beneath the landfill, then eastward, until eventually moving vertically upward to discharge at surface watercourses downstream of the landfill. Pumping of the landfill's on-site water supply wells was not examined as pumping frequency and yields remain to be confirmed.

Question 3:

Are existing groundwater monitoring wells in the correct locations to a) detect the first signs of plume transport off site and b) to represent background conditions?

Many of the existing monitoring wells are in appropriate locations to detect the first signs of plume transport off site while a small number of wells are located up gradient and are useful for determining background conditions.

Question 4:

Identify if and where additional monitoring wells could be sited to supplement the previous question.

Model results indicate an interpreted fault system near the landfill, if hydraulically active, may play an important role in focusing groundwater flow patterns downstream of the landfill. The south-southeast perimeter of the landfill is an area that should be considered for installing additional monitoring wells. The operator's ongoing data management program, along with the groundwater model results, can be used to re-evaluate the monitoring network and suggest modifications to the system (also see response to the next question).

Question 5:

Identify existing monitoring wells or locations for proposed monitoring wells that would serve as "Trigger Locations" where response to elevated analytical results should warrant remedial actions.

FRSC's on-going data management project, (being completed concurrently with the numerical modelling study reported herein), to compile existing water level and water chemistry data from the site monitoring network will be used to develop appropriate "triggers" that will indicate when significant changes in water chemistry become apparent. Results from the groundwater model can be used along with information from the data management tool to modify the groundwater monitoring network over the life of the landfill, including the identification of potential monitoring wells that could act as "Trigger Locations".

Question 6:

How long would the first conservative tracers from a contaminant plume emanating from the landfill take to reach the domestic wells?

Model simulations and assumptions to date predicted that groundwater originating from the landfill would discharge to surface watercourses east of the facility and would not migrate to the domestic wells.

It is important to realize, however, that although valuable tools for identifying data gaps, designing remediation systems etc. uncertainty remains in all model predictions. Consequently, ongoing monitoring will continue over the long term to validate the model and provide early indication of any off-site migration of impacted groundwater.

The data management tool can be used to assess model performance and the model can be periodically updated with new data and used to inform decisions on how the landfill monitoring network should be modified over time (eg., where new wells should be installed, monitoring frequency etc.).

Question 7:

Are there any short circuits to plume transport through groundwater stream interaction e.g. via springs flowing into nearby streams?

Model results suggest groundwater discharges to the surface watercourses downstream of the landfill. However, travel times to the discharge locations are predicted to be on the order of decades to hundreds of years.

Question 8:

What are the impacts of a changing climate on the above results?

Effects of climate change were assessed in the model by increasing the recharge by 25%. Results were similar to the base case with a slight decrease in the median time of travel to the downstream surface watercourse discharge locations.

It must be appreciated that the conceptual and numerical models of the site and related findings suggested from the work (e.g. as summarized above) are subject to the limitations inherent in characterizing a complex hydrogeological flow system into more simplified models that can be used to aid in understanding site setting and assess sensitivity of input parameters regarding flow and transport within the system. It is the intent that the combined work will serve as a framework for the continued refinement and ongoing application of the conceptual and numerical models as new information is

obtained in order to better understand the physical flow system and related aspects of hydrogeochemical evolution, and potential impacts on subsurface water quality.

Should future refinement of the model proceed, it is recommended that future work include hydrological and groundwater field programs to assist in refining the Base Case Model and constrain model parameters and boundary conditions. Suggested field programs could include measuring flows of watercourses in the model area to improve the understanding and estimate of groundwater baseflow (and thus constrain groundwater recharge applied in the model); and completion of field work (e.g. geophysics to refine fault trace(s), pumping tests of the upper bedrock and the inferred fault zone(s)) to determine if these hydrostratigraphic units may act as preferential groundwater flow paths. It is also recommended that once the landfill site monitoring data compilation tool has been completed that a more comprehensive model calibration exercise be considered to augment the calibration effort that was completed for the current project.

1 Introduction

The Fundy Regional Service Commission (FRSC) operates the Crane Mountain Landfill, an engineered municipal solid waste containment landfill located in a fractured bedrock setting and up gradient of a number of domestic supply wells in the northwestern part of the City of Saint John. Nearby communities downgradient of the landfill include Martinon, Ketepec, Morna, Morna Heights and Belmont. The facility is approved and operated in accordance to the Province of New Brunswick municipal solid waste management framework and regulatory requirements, and includes a regular groundwater and surface water monitoring program. The presence and operation of the landfill is reviewed on an ongoing basis by Crane Mountain Enhancement Inc. (CMEI) who represent the citizens in the host community, and meet on an ongoing basis with the landfill operator. Figure 1.1 shows the location of the landfill, topography, surface drainage features and watershed boundaries.

Based on on-going review and operational considerations, FRSC in cooperation with CMEI determined that additional work was warranted to develop a numerical groundwater flow model to serve as a tool in better understanding the hydrogeological system in which the landfill is located. This would aid the landfill operator in design and operation of the facility, and provide guidance to CMEI in understanding water related environmental risk posed by the landfill during operations and closure.

A request for proposals (RFP) from qualified consulting firms to initiate this work was issued by FRSC in June 2016. The RFP identified the objectives of the modelling to provide a tool to assist both the operator, and CMEI. As indicated in the RFP document, the development of the numerical model was to be implemented through a two-step process:

- Part 1 requires the development of a Geospatial Database using Geographic Information System (GIS) technology to consolidate all relevant data, to provide thematic mapping to support analysis, and to perform spatial analysis in support of development of a 3-D Conceptual Flow Model.
- 2) Part 2 (future work) develops a Numerical Model based upon the Conceptual Model.

Subsequent to the RFP evaluation process, FRSC retained EXP Services Inc. (EXP) to complete the above noted GIS work and develop a 3-D conceptual model of groundwater flow of the study area. This work was presented in a **Part 1** report (EXP, 2017). Following review of that report the FRSC retained EXP in association with personnel from Matrix Environmental Solutions Inc.(Matrix) to proceed with the Part 2 Numerical Groundwater Flow Model. Results of the Part 2 work are summarized herein.

Project objectives are outlined in **Section 2** and the most pertinent elements of the conceptual model developed in Part 1 of the project for developing the numerical model are summarised in **Section 3**. **Section 4** describes the modelling approach, data sources and construction of the numerical model. The approach taken for calibration of a Base Case model and groundwater flow and pathline analysis results are presented in **Section 5**. The sensitivity analysis completed for the project is described in **Section 6** and model assumptions and limitations summarised in **Section 7**. A summary of results and conclusions from the study are discussed in **Section 8** and recommendations presented in **Section 9**. Closing statements and project references are provided in **Section 10** and **Section 11**, respectively.

2 Project Objectives

The project objective was to develop a numerical groundwater flow modelling tool that would provide for a better understanding of the landfill site and surrounding area regarding: A) transport pathways if a contaminant was released from the site, B) refine the existing monitoring program to provide the first indication of such a release, C) maximize the time frame to implement remedial protocols, D) the potential to impact down gradient domestic wells, and E) development of long term closure plans.

3 Summary of Hydrogeological Conceptual Model Developed During Part 1

The main elements of the hydrogeological conceptual model developed during Phase 1 of the study are summarized in this section. This summary focuses on elements most pertinent to developing the numerical model. Additional details are provided in the Part 1 report (EXP Services Inc., 2017).

3.1 Climate

Precipitation in the study area is estimated to be on the order of 1,300 mm/year.

3.2 Topography and Surface Water Drainage

The landfill facility is located within the New Brunswick Highlands physiographic region. Topographic elevations within the study area are shown on Figure 1 and range from sea level, at Grand Bay on the east side of the study area) to 180 masl in upland areas of watersheds. Ground elevations range between 60 and 80 masl in the area of the landfill facility (shown in the centre of Figure 1). There are several lakes situated at various elevations ranging from approximately 80 masl to 20 masl. Lakes are connected to a network of streams that generally flow from the west to the east (toward Grand Bay).

3.3 Geological and Hydrostratigraphic Setting

The interpreted bedrock hydrostratigraphic units (HUs) are shown on Figure 2. In the north half of the study area bedrock is comprised of lower hydraulic conductivity igneous-plutonic rock, with metamorphic rock present to the south. The contact between these units was inferred to dip approximately 60 to 70 degrees to the south. The figure also shows fault lines and the inferred structural HUs that extend 100 m on either side of the faults. The northern faults are strike-slip faults that were assumed to be vertical. The southern faults are thrust faults that were assumed to dip 45 degrees to the south.

Figure 3 shows the surficial geology of the study area. Most of the area is covered with low permeable glacial till of varying thickness. Bedrock outcrops are present in places where the till cover pinches out. Glaciomarine littoral and nearshore sediments are found along the coast to the southeast and northeast. More permeable alluvial sediments are generally found along the surface water drainage network and glaciofluvial subaqueous outwash fan deposits are present near the mouth of Henderson Brook in the northeast part of the study area.

A thickness map of the surficial materials was developed from provincial surficial geology data and is shown on Figure 4. Most of the study area is inferred to be covered by less than 2 m of Quaternary sediments, with thicker deposits occurring in the sub-aqueous outwash fan to the northeast and thicker glacial till present beneath the landfill. The presence of thicker till beneath the landfill is based on

examination of borehole records of the site. It is currently unknown how far from the facility these thicker till deposits might extend, so the extent shown on Figure 4 is conjectural.

3.4 Groundwater Flow Systems

The conceptual model developed in Part 1 of the study describes four major hydrostratigraphic units (HUs), namely:

- Till HU till is the most predominant material covering the study area
- Igneous-Plutonic HU this bedrock unit occurs over the north part of the study area
- Metamorphic HU this bedrock unit occurs over the south part of the study area
- Structural HU these units consist of zones along either strike-slip or thrust faults

Additionally, the conceptual model includes an upper bedrock hydrostratigraphic rock domain (HRD) which may potentially be more permeable than the deeper bedrock zones.

The Structural HUs are envisioned as being a potentially important control on the groundwater flow system in the vicinity of the landfill.

The water table is interpreted to be relatively close to surface. Figure 5 shows a conceptual map of the depth to the water table over the study area provided by University of New Brunswick Wet Area Mapping.

4 Numerical Groundwater Flow Model Development

This section describes the construction of the groundwater flow model, including: the modelling approach, data sources, the numerical groundwater modelling software used, and model construction. Model calibration is described in Section 7 and sensitivity analysis in Section 6.

4.1 Modelling Approach

The numerical flow model was constructed based on the conceptual hydrogeological model developed during Part 1 of the project. A Base Case model was developed that used the middle of hydrogeological parameter ranges from Part 1. Suggested recharge rates from Part 1 were initially applied and adjusted during model calibration of the Base Case until a reasonable match to the calibration targets was obtained.

Once the Base Case model was calibrated, a set of sensitivity scenarios was completed to determine how changing parameter values and boundary conditions affect model results, including:

- changes to the model water budget;
- changes to how the groundwater and surface water systems interact;
- changes to groundwater flow patterns; and,
- changes to the time of travel of particles released beneath the landfill to downstream groundwater discharge locations.

Rather than simply changing hydraulic conductivity values for a particular sensitivity scenario and processing the results, effort was spent adjusting the recharge rates applied over the model in order to

reasonably reproduce the calibration target in the area of the landfill. The rationale for this approach was to obtain a set of sensitivity scenarios where model parameters were varied but the result was still supported by the measured hydraulic head data.

All simulations were completed in steady-state mode. The data loggers that have recently been installed in landfill monitoring wells will measure any temporal changes in water levels (i.e., seasonal effects, future pumping tests etc.) that could be investigated with transient versions of the existing model.

4.2 Data Sources

Data compiled for the Part 1 GIS map were the main sources for constructing the numerical model. These data were supplemented with information on the design of the landfill liner system, recently completed provincial surficial geology mapping and additional reports received since the completion of Part 1. Table 1 summarises the data sources, with highlighted rows indicating data of particular importance in developing the numerical model.

4.3 FEFLOW Software Description

The three-dimensional numerical groundwater flow model for the project site was constructed using FEFLOW 7.0, a finite element modelling package developed by the WASY Institute in Germany (Diersch, 2014). FEFLOW is capable of simulating steady-state or transient groundwater flow and solute and heat transport in three-dimensional heterogeneous and anisotropic media under a variety of hydrogeologic boundaries and stresses. It is extensively used throughout the world and is an industry standard groundwater modelling software package.

4.4 Model Construction

4.4.1 Domain and Grid Design

Figure 6 shows the extent of the model domain and the numerical mesh. The domain corresponds to the study area delineated in Part 1 of the project and consists of the Grand Bay shoreline along the eastern perimeter and watershed divides along the south, west and northeast perimeters. Ground surface topography defines the upper surface of the model except over the landfill where the base of the landfill liner system is the top of the model. The base of the model was set to 300 m below topography.

Local refinement of the 3D triangular prism mesh was completed over the landfill facility and along the Structural HUs, as illustrated on Figure 6. The inset figure shows a zoomed in view of the mesh at the landfill and the delineation of the active landfill cells over the northern half of the facility. Mesh refinement was completed in these areas to provide higher resolution of the calculated flow field where particles are released at the landfill and along the zones of higher hydraulic conductivity contrasts, i.e., between the Structural HUs and the bedrock HUs. The higher mesh resolution over the landfill area will also facilitate future model revisions that may want to investigate changes to the landfill configuration over time and near field transient hydraulic design changes such as incorporating pumping wells, ditching etc. Telescopic mesh coarsening was used between the high-resolution zones and regions progressively more distant.

Each grid slice and model layer consisted of 13,129 nodes and 25,923 elements, respectively. Over the entire 13 slices and 12 layers of the model, there were 170,677 nodes and 311,076 elements, respectively. Elemental diameters over the refined landfill area ranged from 20 m to 48 m, with an average diameter of 31 m and standard deviation of 4.5 m. The Structural HUs had elemental diameters ranging from 20 m to 140 m with an average diameter of 38 m and a standard deviation of 7.3 m.

Elements outside the refined mesh areas had elemental diameters that varied between 70 m and 220 m, with an average diameter of 140 m and a standard deviation of 23 m.

4.4.2 Hydrostratigraphic Framework and Vertical Discretization

The hydrostratigraphic framework was based on the conceptual model developed in Part 1 (refer to Table 4.1 of that report (EXP Services Inc., 2017)) and consisted of the following model mesh/hydrostratigraphic layers:

Layer 1: Till Hydrostratigraphic Unit (HU) and Other Surficial Materials

This layer consists of the unconsolidated surficial materials that overlie the bedrock, as shown on Figure 3. The thickness of this layer was developed using the surficial sediments thickness map, presented on Figure 4. The layer occupies the vertical interval from ground surface to the top of bedrock, except under the landfill where it includes the native till material that underlies the landfill liner system.

Layer 2: Exfoliation/Exhumation Hydrostratigraphic Rock Domain (HRD)

This layer consists of a uniformly thick 5 m interval at the top of the bedrock that accounts for a potentially weathered upper bedrock zone that has higher hydraulic conductivity than the deeper bedrock.

Layers 3 to 12: Igneous-Plutonic/Metamorphic Bedrock HUs and Structural HUs

These layers consist of the deeper bedrock with the Igneous-Plutonic HU present in the north, the Metamorphic HU in the south and the Structural HUs cutting through the model along interpreted fault lines, as shown on Figure 2.

Layers 3 to 7 are 20 m thick and layers 8 to 12 are 40 m thick, resulting in a total thickness of 300 m of the deeper bedrock units. Vertical mesh discretization is illustrated on cross-section AA' of Figure 9. The thickness selected for these HUs was chosen to allow for potential deep groundwater seepage predicted with the model from upland areas to Grand Bay.

4.4.3 Parameterization

Hydraulic conductivity parameter values assigned for the Base Case model were generally selected so the most conductive component of the hydraulic conductivity was in the mid-range of values presented in Table 4.1 of the Part 1 report (EXP Services Inc., 2017). The least conductive component of the hydraulic conductivity was selected to honour any suggested values of the anisotropy parameter (the hydraulic conductivity anisotropy is the ratio between the horizontal and vertical components of this parameter). If the Part 1 suggested anisotropy was listed as either much less than 1 (<<1) or much greater than 1 (>>1) a factor of 100 was used. Table 2 presents the suggested range of values from Table 4.1 of the Part 1 report and the Base Case model values selected for this study.

The horizontal and vertical hydraulic conductivity distributions for the Base Case model layer 1 are presented on Figure 7. Note that the figures show the numerical value of the hydraulic conductivity parameter and not distinct lithology zones. The reason the horizontal and vertical component images differ, therefore, is because the vertical component of the hydraulic conductivity for the glaciomarine sediments is the same value as for the till $(1x10^{-7} \text{ m/s})$, whereas the glaciomarine horizontal component of hydraulic conductivity is an order of magnitude higher than the till value (i.e., $1x10^{-6} \text{ m/s}$ versus $1x10^{-7} \text{ m/s}$).

The horizontal and vertical components of the hydraulic conductivity were assigned uniform values over the Exfoliation/Exhumation zone (model layer 2).

The hydraulic conductivity distribution for the uppermost bedrock layer below the Exfoliation/Exhumation zone in the Base Case model is shown on Figure 8. The lines shown on the figure refer to locations of cross-sections shown on subsequent figures. Note that the contact between the Igneous-Plutonic and Metamorphic HUs was conceptualized to dip approximately 70 degrees to the south and the thrust faults conceptualized to dip 45 degrees to the south. Consequently, if a deeper horizontal plane through the 3D hydraulic conductivity field was presented, the contact between the two bedrock HUs and the trace of the thrust fault zones would both be shifted southward but by different amounts.

For the Base Case model, both bedrock HUs have the same value for the horizontal component of hydraulic conductivity, whereas the vertical component of hydraulic conductivity for the Metamorphic HU is a factor of 100x greater than the Igneous-Plutonic value. The thrust faults are more conductive than the strike-slip faults in the horizontal direction but the reverse is true for the vertical component of hydraulic conductivity.

Figure 9 shows west to east cross-sections through the vertical component of the hydraulic conductivity field and Figure 10 shows south to north cross-sections. The figures illustrate the complex interaction of the Structural HUs conceptualized in the vicinity of the landfill. Note there is a vertical exaggeration of 3x in these cross-section figures, which is why the thrust faults do not appear to be dipping 45 degrees to the south. Additionally, the thrust fault does not cut through the entire vertical model domain on Figure 9 b) because cross-section location BB' is not sufficiently south to capture where this occurs.

4.4.4 Boundary Conditions

Boundary conditions were applied to the model to introduce and remove water to the groundwater system consistent with the conceptual model developed in Part 1, and consisted of no flow, recharge, surface water and landfill flux boundaries.

No Flow Boundaries

No flow boundaries exist along the northeast, west and southern model perimeters. These boundaries represent watershed divides, which implies negligible groundwater seepage moves across these boundaries compared to the amount of groundwater recharge, derived from precipitation, that enters through the top of the model domain. The base of the model (set at 300 m below the top of the bedrock surface) was also assumed to be a no flow boundary, implying the active groundwater flow zone occurs above this depth.

Groundwater Recharge

A specified areal recharge flux boundary is applied over the uppermost layer of the model to simulate recharging water derived from precipitation. Figure 11 shows the recharge distribution for the Base Case model. The recharge distribution was developed by first assigning recharge values based on the different surficial materials (refer to Figure 3) and then adding additional zones during model calibration (discussed in the next section). Ranges of recharge rates for the different surficial materials incorporated into the Base Case model are included in Table 2.

Surface Water Boundaries

Lakes and streams were simulated using specified head boundaries at nodes inferred to form part of the surface water drainage network. These boundary nodes determine how the surface water and groundwater systems interact with each other. This type of boundary fixes the hydraulic head at assigned elevations, representative of lake water levels or river stage elevations. The elevations assigned to these boundary nodes were extracted from the digital elevation model developed for the project in Part 1. Ideally, surveyed elevations along the surface water drainage network would be used

to assess the accuracy of the digital elevation model. However, this data was not available at the time the numerical model was developed.

Two variations of the specified head boundary were used for lakes and streams, respectively. Lake boundary nodes were "unconstrained", meaning these nodes could introduce or remove water from the groundwater system as required to maintain the specified water level. Consequently, lakes could either be "gaining" (groundwater discharges to the lake) or "losing" (the lake feeds water into the groundwater system). Lakes can also be gaining over one area and losing over another area, depending on the relative values of the simulated hydraulic heads of surrounding nodes in the groundwater system compared to the specified surface water boundary node hydraulic heads.

Lake boundaries included in the model are shown on Figure 11, where their water levels are also tabulated. Lake levels range from 77 masl (Patchell Lake at the extreme southwest corner of the model) to 20 masl (Red Bridge Lake close to Grand Bay in the east). No special lake bed "impedance" zone was incorporated into the model to simulate possible biofilms or other low conductivity "skins" that may form beneath a lake. Consequently, leakage into or out of the lake boundary conditions is entirely determined by the hydraulic conductivity of the material beneath the lakes and the difference between the specified lake levels and the simulated hydraulic heads at adjacent groundwater system nodes. The model could be easily refined in the future to include such effects if data is collected through stream gauging field programs to support such a decision.

Stream boundary nodes were "constrained" so these nodes could only drain water from the groundwater system. If the simulated hydraulic heads at surrounding groundwater system nodes are lower than the simulated surface water level, the boundary condition is inactive and does not alter groundwater flow conditions. The choice of adding constraints to the stream boundaries was based on the lack of detailed stream elevations at spot elevations throughout the domain. It was felt that using unconstrained stream boundaries could potentially introduce unrealistic volumes of water into the groundwater flow system, given the uncertainty that may exist in the underlying digital elevation model data.

Landfill Cells Flux Boundary

Consistent with the approach outlined in Section 3.6.3 of the Part 1 report (EXP Services Inc., 2017), the internal workings of the landfill liner and collection system were not incorporated into the numerical model. Instead, the top of the model under the landfill represents the base of the liner system and the thickness of model layer 1 under the landfill corresponds to the thickness of till that underlies the landfill facility. Areal recharge was applied over the footprint of the landfill cells (refer to Figure 11) at the Best Estimate rate suggested in the Part 1 report (6 litres/hectare/day). One of the sensitivity scenarios discussed in Section 6 considers the upper end of the range discussed in the Part 1 report.

5 Model Calibration

5.1 Approach

Ideally when calibrating a numerical model, hydraulic testing programs have been carried out on the key hydrostratigraphic units and hydrological field programs completed to gauge stream flows and make estimates of groundwater baseflow to the surface water drainage network. With these data, appropriate bounds can be placed on:

the range of hydraulic conductivity values of the various aquifer units; and,

the range of recharge rates applied over each of the different watersheds that have gauges installed at their mouths of the watersheds.

For the project site, however, no stream flow measurements (and corresponding estimates of groundwater baseflow to the stream network) were available. Hydraulic testing data of the upper bedrock (i.e., the Exfoliation/Exhumation HRD), in the form of 22 slug tests conducted at 16 different monitoring well locations (6 of the locations tested both shallow and deeper intervals into the bedrock) were available (GEMTEC Ltd., 2006). However no hydraulic testing data for the other main hydrostratigraphic units (Till, Igneous-Plutonic bedrock, Metamorphic bedrock and Structural) were available. The results of hydraulic testing in the shallow bedrock gave a geometric mean for the hydraulic conductivity of 1.5x10⁻⁶ m/s with a range between 2.5x10⁻⁸ and 5.3x10⁻⁵ m/s. These data were collected during field programs conducted in November 1993 (2 tests), June 1994 (6 tests) and August 2006 (14 tests).

A robust calibration exercise uses multiple calibration targets consisting of measured hydraulic head data (i.e., water levels) from all the key hydrostratigraphic units, augmented by baseflow estimates derived from stream gauge data collected over the various watershed contained within the model domain. Ideally, the hydraulic head measurements would be from monitoring wells scattered throughout the model domain. Unfortunately, these ideal conditions are often not met in practice. For the present study, hydraulic head data were only available from the same field programs discussed above. The GEMTEC report includes a map of the interpreted hydraulic head distribution in the upper bedrock (Figure 4 of that report). This map was the main calibration target used for the present study. The other calibration target included simulating the water table to be reasonably close to ground surface, consistent with Figure 5.

It is our understanding that a program of installing data loggers in the landfill monitoring wells has recently been completed and a database is being developed to house these transient hydraulic head data. The availability of these data, hopefully augmented with data collected from additional field programs discussed in Section 11 (Recommendations) will greatly improve the robustness of future model calibration efforts as the model is refined in the future.

Given the limitations discussed above, the following approach was taken during the model calibration exercise:

- The hydraulic conductivity was assigned as described in Section 4.4.3, generally using the midrange values suggested from the Part 1 report, Table 4.1 (EXP Services Inc., 2017) but the geometric mean determined from the GEMTEC study (GEMTEC Ltd., 2006) for the upper bedrock Exfoliation/Exhumation HRD. Table 2 presents the suggested ranges of the hydraulic conductivity parameters and the values selected for the Base Case scenario.
- The recharge distribution was adjusted using a trial-and-error approach until a reasonable match was obtained to the interpreted hydraulic head map presented in the GEMTEC report over the landfill area.

Preliminary simulation results showed leakage from the landfill discharged to downstream surface water features and did not migrate all the way to Grand Bay. For this reason, and also because measured data were not available from more distal locations, the main calibration effort was focused on achieving a reasonable fit in the immediate area of the landfill.

Although outside the scope of the present study, it is noted that water quality results collected as part of the landfill monitoring program could also be used as a future calibration target. If elevated concentrations of solutes are detected in monitoring wells or surface water samples, pathline analysis

results (or alternatively mass transport simulation results) should indicate some seepage emanating from the landfill should reach these locations over the period that the landfill has been operating. The converse, however, is not true. The fact that no water quality sample test results indicate the presence of landfill-impacted seepage does not necessarily mean a contaminant plume emanating from the land has not reached the sampling location – it could simply be the case that heterogeneity inherent in any groundwater flow system results in the plume "missing" the sampling location.

5.2 Base Case Model Results

A comparison of the simulated Base Case hydraulic heads and the interpreted GEMTEC hydraulic head distribution is presented on Figure 12. The figure shows both the simulated and interpreted range of hydraulic heads over the landfill facility is between 65 and 75 masl. The simulated head distribution shows a distortion of the contours around the surface water boundary nodes, which is expected if groundwater is discharging to surface in this area. It is possible that elevations along the streams shown on the GEMTEC figure were not used to constrain the interpreted hydraulic head distribution on the figure. Simulated horizontal hydraulic head gradients ranged between 1.3% and 2.3%, consistent with what is reported in the GEMTEC report. The model also simulates upward vertical gradients at the MW48 and MW49 locations, consistent with what is reported by GEMTEC. Vertical hydraulic head distributions overlain on the vertical component of hydraulic conductivity distribution for the four cross-sections presented earlier are shown on Figures 13 and 14.

Water budget results for the Base Case are presented in Table 3. The lake boundary nodes introduce twice as much water into the groundwater system than they remove. Lakes located along the southern thrust fault HU (Carr, Kelly and Red Bridge) together contribute 70% of all the water introduced into the groundwater system from the lakes. The Grand Bay boundary nodes remove approximately half as much water from the groundwater system as the combined stream drainage network. This indicates the model simulates multiple local scale flow systems where recharge over an area moves through the groundwater system and discharges to local streams, as opposed to moving deep into the bedrock and travelling far greater distances to discharge at Grand Bay. The hydrology program recommended in Section 9 would provide data to constrain simulated groundwater baseflow rates discharging to the different streams.

Recharge rates applied over the model domain range from 17 mm/year over till blanket areas at lower elevations to 128 mm/year over the higher elevation till area in the south of the model (Figure 11). The total recharge flux introduced over the entire model footprint averages to 37 mm/year, or approximately 3% of the estimated 1300 mm/year precipitation for the area. This percentage is 40% of the lower end of the range suggested in the Part 1 report. Possible reasons for the simulated recharge being lower than anticipated include:

- Assigned hydraulic conductivities for the Till and Exfoliation/Exhumation HRD units are lower than
 they actually are. If so, higher recharge rates would need to be applied to achieve a reasonable
 calibration. This effect was investigated in the sensitivity scenarios discussed below.
- Recharge rates could be further adjusted in the model, especially under topographic highs to
 produce more water table mounding in these areas. Additional calibration effort in future model
 refinements could investigate this factor.

These factors would increase the overall average recharge rate over the model to be consistent with the range presented in the Part 1 report.

Results of the pathline analysis for the calibrated Base Case model are shown on Figure 15. The upper image shows the pathline traces of particles released over the active landfill cells, coloured by the time

travelled along the particle's path. The colour scale is truncated at 500 years for visualization purposes. Significant numbers of particles travel for much longer times until reaching downstream discharge locations. This is illustrated with the histogram shown on the figure, which shows the frequency of particle travel times to reach the stream boundary nodes. The first particles arrive at the stream between 50 and 75 years. The median travel time is approximately 500 years. Some particles travel for more than 1,800 years before discharging to the stream boundary nodes.

The lower image shows a 3D view looking north of the particle pathlines. The cross-section shown on the figure is a slice through the vertical hydraulic conductivity field along cross-section AA', which goes through the landfill cells (refer to Figure 8). The figure illustrates how many of the particles are migrating close to surface – through the Till HU and the Exfoliation/Exhumation HRD. The influence of the Structural HU is clearly shown on the figure where significant numbers of the pathlines initially bend downward but then reverse direction and go to surface. These particles are initially moving through the Igneous-Plutonic HU but then are focused toward the Structural HU through which they migrate vertically upward to discharge at the stream boundary nodes which are aligned along the Structural HU. This same process is observed in the upper plan view image, where particle traces are seen to deflect toward the Structural HUs and then migrate along the fault zones until coming to surface to discharge at the surface water boundary nodes. Some of the particles bypass the Structural HU and move through the low hydraulic conductivity, deeper bedrock HUs. These particles require many hundreds of years to move through the groundwater system until discharging to stream boundary nodes further downstream from the landfill.

6 Sensitivity Analysis

6.1 Approach

A sensitivity analysis was completed to investigate the sensitivity of model results from changing different elements of the conceptual model. Table 4 summarises the eight different sensitivity scenarios completed, providing the rationale for each scenario and a description of how the model was changed from the Base Case. Table 5 lists values of the hydraulic conductivity and ranges of recharge values applied for each scenario, along with the Base Case values and the ranges suggested in Table 4.1 of the Part 1 report (EXP Services Inc., 2017). The choice of values assigned to the hydraulic conductivity parameters for the different scenarios was guided by the ranges provided in the Part 1 report. Table 6 summarises the water budget results for the sensitivity scenarios, along with the Base Case results for comparison. Pathline traces for the different scenarios are illustrated on Figure 16. Figure 17 shows frequency histograms of when particles reach downstream surface water drainage boundary nodes for each of the scenarios. Lastly, Figure 18 compares the time of travel to surface water boundaries for the Base Case and all sensitivity scenarios.

As discussed in Section 4.1, rather than simply changing hydraulic conductivity values for a particular sensitivity scenario and processing the results, effort was spent (where appropriate) adjusting the recharge rates applied over the model in order to reasonably reproduce the inferred hydraulic head distribution developed by GEMTEC (GEMTEC Ltd., 2006) in the area of the landfill. The rationale for this approach was to obtain a set of sensitivity scenarios where model parameters were varied but the result was still supported by the measured hydraulic head data. Exceptions to this general rule were for scenarios:

 SENS-7 where the landfill source flux term was increased (by a factor of 170 times) to the upper range cited in the Part 1 report as a worst-case scenario. For this scenario, the Base Case recharge distribution was left unchanged, which resulted in simulated heads in the landfill area being approximately 5 m higher than the GEMTEC interpreted result.

• SENS-8 which simulated possible effects of climate change by uniformly increasing the recharge rates across the model by 25%.

6.2 Sensitivity Results

Sensitivity Scenario SENS-1: Increased Till Hydraulic Conductivity

Scenario SENS-1 increases the hydraulic conductivity of the Till HU by a factor of 10 from the Base Case in both the horizontal and vertical directions. The purpose of this scenario was to assess uncertainty of the Till hydraulic conductivity because slug test data are not available for this unit and this parameter will be a key factor in determining leakage rates through these surficial materials.

After adjusting recharge to improve the match to the interpreted head map developed by GEMTEC, the applied recharge over the model increased by 17% from the Base Case. The groundwater recharge supplied from the lakes decreased while more groundwater discharged to the lakes and streams. Groundwater discharge to Grand Bay increased marginally.

Review of the pathline traces showed more particles discharged to stream boundaries that were closer to the landfill (Figure 16(a)) relative to the Base Case. The time of travel histogram shows that the particles reach the stream boundaries within a much tighter time interval than for the Base Case, with more particles arriving earlier. The median arrival time to downstream boundaries was in the range of 200 years for the SENS-1 scenario compared to between 500 and 600 years for the Base Case. These results indicate the Till HU not only allows more leakage through to the Exfoliation/Exhumation HRD, but becomes an important lateral seepage pathway connecting the area beneath the landfill to the downstream surface water boundaries.

Sensitivity Scenario SENS-2: Fractured Till Anisotropy

Scenario SENS-2 increases the vertical component of the Till HU hydraulic conductivity (K_v) by a factor of 10 while keeping the horizontal component (K_h) fixed at the Base Case value. Consequentially, the Till material changes from isotropic ($K_h = K_v$) for the Base Case to anisotropic with $K_h < K_v$. This scenario simulates fractured till conditions where the vertical fractures allow more seepage down through the till. Similar to scenario SENS-1, the purpose of this scenario was to assess uncertainty of the Till hydraulic conductivity.

After adjusting recharge to improve the match to the interpreted head map developed by GEMTEC, the applied recharge over the model increased by 12% from the Base Case. The groundwater recharge supplied from the lakes decreased while more groundwater discharged to the lakes and streams, similar to scenario SENS-1. Groundwater discharge to Grand Bay increased marginally.

Review of the pathline traces showed a very similar pattern to the Base Case (Figure 16(a)). The time of travel histogram for this scenario is similar to that of the Base Case with the median times of travel being similar (500 to 600 years). These results indicate that increasing only the vertical component of the Till HU hydraulic conductivity does not materially affect the behaviour of how groundwater originating from beneath the landfill discharges to downstream boundaries. It is inferred that the Exfoliation/Exhumation HRD is the limiting hydrostratigraphic unit controlling lateral flow from the landfill. This is in contrast to scenario SENS-1 where the till horizontal hydraulic conductivity (1x10-6 m/s is of the same order of magnitude as the Exfoliation/Exhumation HRD (1.5x10-6 m/s).

Sensitivity Scenario SENS-3: Increased Upper Bedrock Hydraulic Conductivity

Scenario SENS-3 increases both the horizontal and vertical components of the Exfoliation/Exhumation zone hydraulic conductivity by a factor of 10 from the Base Case (i.e., 1.5x10⁻⁵ m/s). The purpose of this scenario was to assess uncertainty in this hydraulic conductivity parameter because slug test data presented in the GEMTEC report (GEMTEC Ltd., 2006) indicate an upper range of test results of 5.3x10⁻⁵ m/s.

After adjusting recharge to improve the match to the interpreted head map developed by GEMTEC, the applied recharge over the model increased by 370% from the Base Case, by far the largest change of all the sensitivity scenarios considered. The groundwater recharge supplied from the lakes did not materially change from the Base Case while groundwater discharged to the lakes and streams increased by a factor of 4.5. Groundwater discharge to Grand Bay decreased marginally.

Review of the pathline traces show the Structural HUs play a much less important role in focusing groundwater seepage into these zones (Figure 16(b)). Particles are essentially staying within the Exfoliation/Exhumation zone until coming to surface to discharge at the stream boundaries.

This scenario showed the fastest times of arrival to the downstream boundaries, with the first particles discharging to surface after approximately 20 years. The median time of travel was between 100 and 200 years, or less than half the Base Case value. The bi-modal nature of the time of travel histogram is caused by some particles terminating at stream boundaries that are significantly closer to the landfill while other particles (those moving through the area between the two Structural HUs) have much longer flow paths and consequently take significantly more time to discharge at surface.

Sensitivity Scenario SENS-4: No Active Fault Zones

Scenario SENS-4 removes the Structural HUs from the conceptual model by reassigning the hydraulic conductivity parameter over these zones to either the Igneous-Plutonic or Metamorphic HU values, depending on where the fault zone is located. The purpose of this scenario was to assess how the groundwater flow behaviour might change if the Structural HUs are not significantly different from the background bedrock HUs.

After adjusting recharge to improve the match to the interpreted head map developed by GEMTEC, the applied recharge over the model decreased by 40% from the Base Case, indicating these zones play an important role in collecting seepage from surrounding HUs and directing it to the surface water discharge locations. The groundwater recharge supplied from the lakes decreased by 90% from the Base Case while groundwater discharged to the lakes and streams decreased by 40%. Groundwater discharge to Grand Bay decreased by 75%.

As expected, the pathline traces for this scenario show a smooth downgradient pattern with particles now discharging only to the stream to the northeast of the landfill when the Structural HUs are not present to focus flow north and south (Figure 16(c)). This scenario showed the slowest times of arrival to the downstream boundaries, with the first particles discharging to surface after approximately 100 years. The median time of travel was approximately 900 years, or less than double the Base Case value.

Sensitivity Scenario SENS-5: Increased Bedrock Hydraulic Conductivity

Scenario SENS-5 increases the hydraulic conductivity of the Igneous-Plutonic and Metamorphic HUs by a factor of 10 from the Base Case in both the horizontal and vertical directions. The purpose of this scenario was to assess uncertainty of the bedrock hydraulic conductivity because hydraulic test data were not available for the deeper bedrock.

After adjusting recharge to improve the match to the interpreted head map developed by GEMTEC, the applied recharge over the model increased by 43% from the Base Case. The groundwater recharge supplied from the lakes was essentially unchanged while groundwater discharged to the lakes and streams increased by 55% and 40%, respectively. Groundwater discharge to Grand Bay increased by 18%.

Review of the pathline traces showed essentially no deflection of the flow paths toward the strike-slip fault that trends southwest-northeast from the landfill (Figure 16(d)) relative to the Base Case. For this scenario, the hydraulic conductivity of the strike-slip fault zone and the Metamorphic HU are the same. There is still significant deflection of the flow paths toward the west-east trending thrust fault zones that run along the southern edge of the landfill because the horizontal component of hydraulic conductivity for the thrust fault zones is still two orders of magnitude higher than for the Metamorphic HU.

The time of travel histogram for the SENS-5 scenario is more spread out than for the Base Case and the median time of travel to downstream boundaries is actually longer (approximately 700 years) than for the Base Case. This is interpreted to be due to the fact that the northern strike-slip fault is not focusing seepage toward this zone and particles that migrate northward take longer flow paths through the bedrock HUs (refer to Figure 16 (b)).

Sensitivity Scenario SENS-6: Reduced SW-GW Hydraulic Connection

Scenario SENS-6 decreases the hydraulic conductivity of the surficial material that underlies the surface water drainage system by a factor of 10 from the Base Case. The purpose of this scenario was to assess if the presence of low permeability streambed sediments might impede groundwater discharge sufficiently to alter where groundwater sourced from beneath the landfill might discharge at surface.

Recharge did not have to be adjusted for sensitivity scenario in order to reasonable match the GETMTEC interpreted head map. The groundwater recharge supplied from the lakes decreased by 33% while discharge to the lakes remained essentially the same. Discharge to streams decreased by 14% to compensate for the reduced recharge from the lakes. Groundwater discharge to Grand Bay was unaffected.

Review of the pathline traces showed a small number of particles did discharge to stream boundaries further downstream compared to the Base Case (Figure 16 (e)), but generally the pathline traces were fairly similar to the Base Case. The time of travel histogram also illustrates how some of the particles are taking longer to discharge at surface. The median arrival time to downstream boundaries was in the range of 550 to 600 years, slightly higher than for the Base Case. These results indicate that a streambed impedance layer would have to be very much lower than the nearby in situ sediments in order to significantly affect where groundwater originating from beneath the landfill discharges to surface.

Sensitivity Scenario SENS-7: Landfill Source Flux

Scenario SENS-7 increases the landfill source flux to the high end of the range presented in the Part 1 report (EXP Services Inc., 2017), i.e., 34 mm/year. This scenario was completed to assess if a higher leakage flux from the landfill might cause groundwater to migrate through deeper seepage pathways and discharge to surface close to Grand Bay.

Recharge was not adjusted for this scenario and hydraulic heads were found to be approximately 5 m higher than what is shown on the interpreted head map prepared by GEMTEC (GEMTEC Ltd., 2006). Components of the water budget were not materially changed for this scenario.

Review of the pathline traces showed a small number of particles discharging to stream boundaries further downstream compared to the Base Case (Figure 16 (f)), but generally the pathline traces were fairly similar to the Base Case. The time of travel histogram, however, showed a significant increase in the number of particles that arrive at downstream surface water boundaries sooner; in the range of 50 to 75 years. A small number of particles arrive at stream discharge locations later than for the Base Case. These are inferred to be migrating longer through the bedrock HUs before they are deflected toward either of the Structural HUs before eventually discharging to surface (Figure 16 (f)). The median arrival time to downstream boundaries was in the range of 200 years, compared to a median time of arrival for the Base Case of 500 years. These results indicate that if leakage from the landfill is higher, the current Base Case conceptual model suggests travel times to downstream surface water receptors will be shorter (although still spanning decades) but the location of the discharging groundwater will not be materially different from the Base Case.

Sensitivity Scenario SENS-8: Climate Change (Increased Recharge)

Scenario SENS-8 increases recharge across the site by 25% to assess the potential effects of climate change.

Recharge was not adjusted for this scenario and hydraulic heads were found to be approximately 5 m higher than what is shown on the interpreted head map prepared by GEMTEC (GEMTEC Ltd., 2006). The groundwater recharge supplied from the lakes decreased by 9% while groundwater discharged to the lakes and streams increased by between 22% and 24%. Groundwater discharge to Grand Bay increased by 5%.

Review of the pathline traces showed a very similar pattern to the Base Case, but with particles not migrating as far along the strike-slip fault zone to the northeast (Figure 16 (a)). The time of travel histogram is also similar to that of the Base Case, with a small number of particles arriving at downstream surface water boundaries sooner. The median arrival time to downstream boundaries was slightly shorter than for the Base Case.

6.3 Summary of Sensitivity Analysis

Times of travel to downstream surface water boundaries results for all scenarios are shown on Figure 18. The upper figure shows the frequency of when particles arrive at the stream nodes and the lower figure shows the cumulative percent of when particles arrive. Sensitivity scenarios SENS-2 (fractured till anisotropy) and SENS-8 (climate change) are most similar to the Base Case. Scenario SENS-6 is also very similar to the Base Case except for this case there are a small number of particles that take very long times to discharge to surface water nodes, as evidenced by the lag in in the cumulative percent graph to reach 100%.

Scenarios SENS-1 (increased till conductivity), SENS-3 (increased upper bedrock conductivity) and SENS-7 (higher landfill source flux) exhibited the shortest median times of travel to downstream discharge locations; a time of approximately 100 years. The increased till conductivity scenario (SENS-1) showed the narrowest range of arrival times, indicating the most uniform flow paths taken by the particles as they migrate from beneath the landfill to the stream boundary discharge locations. This is inferred to be due to most of the particles migrating laterally through the higher permeability till which blankets the landfill area.

The increased upper bedrock conductivity scenario (SENS-3) showed the quickest breakthrough of particles at the discharge locations; approximately 20 years. This scenario also exhibited a bi-modal pattern to both the frequency and cumulative percent curves. Approximately 30% of the particles discharge between 20 and 50 years while the remainder discharge between 100 and 500 years. This behaviour is attributed to the upper bedrock zone becoming a more effective under drain in the hydraulic system, conveying some of the seepage laterally through this zone to discharge locations. For the other particles, there is sufficient driving head to push the particles deeper, into the bedrock HUs, where seepage is eventually directed to the either of the Structural HU fault zones to eventually discharge to the stream networks that are aligned with the faults.

Scenarios SENS-4 (no active fault zone) and SENS-5 (increased bedrock conductivity) exhibited the longest interval over which particles discharge to streams, from approximately 100 years to 1,600 years, with median arrival times of 700 years (SENS-5) and 900 years (SENS-4). Both of these scenarios decrease the impact of the Structural HUs on the hydraulics of the groundwater system. The results from these scenarios demonstrate the importance of understanding how different the hydraulic nature of the Structural HUs is from the surrounding bedrock HUs.

7 Model Assumptions and Limitations

The following assumptions and limitations are implicit in the development and application of the numerical model developed for this study:

- Groundwater flow was simulated using the "equivalent porous media" approach. Flow is assumed
 to be laminar and steady, and governed by Darcy's Law. Although Structural HUs were
 incorporated into the numerical model, consistent with the conceptual model developed in Part 1
 of the study, no discrete fracture network modelling was attempted because no data currently
 available support this type of modelling effort.
- Horizontal mesh discretization was considered to provide good mesh refinement for simulating groundwater flow and pathline analysis. If mass transport simulations are completed in the future the mesh resolution should be re-evaluated and possibly refined.
- Vertical discretization was based on the conceptual hydrostratigraphy, with no internal subdivision of the mesh within Till HU and the Exfoliation/Exhumation HRD units.
- The model was calibrated against the interpreted upper bedrock hydraulic head map presented in the GEMTEC report (GEMTEC Ltd., 2006). Dataloggers have recently been installed, or are being installed, in the landfill monitoring wells. However, the Base Case model results presented herein were not able to be compared against these data.
- No water level data from a regional monitoring well network was available for calibration at the time this report was prepared. Consequently, calibration focused on using the GEMTEC interpretation which is limited to the vicinity of the landfill.

8 Summary and Conclusions

The key findings from the study are presented below, grouped by conceptual model element.

Surface Water Drainage Network

- Stream boundary nodes had to be extended further upstream, closer to the landfill, than what is shown in the Watercourse GIS data layer in order to get a reasonable match to the GEMTEC hydraulic head map.
- A sensitivity scenario was attempted where the boundary conditions along the extended surface drainage network were removed, but this dramatically altered the entire hydraulic head contour pattern and this scenario was dropped from further consideration.
- Note that the surface drainage network shown in the GEMTEC report also extends much closer to the landfill than what is indicated in the New Brunswick watercourse GIS data layer.
- All particles released beneath the landfill exited the groundwater system at stream boundaries downstream of the landfill. The landfill facility monitoring program should be reviewed and possibly revised to incorporate the potential of impacted groundwater discharging to the surface water drainage network.

Grand Bay/Domestic wells

- As discussed above, the pathline analysis predicted none of the particles released beneath the landfill liner system exit the groundwater system at Grand Bay, and consequently the model results predict no water quality impacts to the domestic wells clustered along the shore.
- It is important to note, however, that the model uses an equivalent porous media approach. Although the conceptual model for the site has been extensively revised by the inclusion of higher

hydraulic conductivity Structural HUs, a discrete fracture network modelling approach has not been simulated with the current model because current data does not warrant such an approach. There is, however, the possibility that an, as yet undetected, discrete fracture network is present that could act as a preferential flow path hydraulically connecting the landfill area with Grand Bay.

• Consequently, it is prudent to continue existing monitoring programs that test water quality of wells in the Grand Bay area.

Upper Bedrock Exfoliation Zone

- The hydraulic conductivity of the upper bedrock zone is a sensitive parameter, and resulted in by far the largest increase in the simulated recharge required to approximately match heads in the area of the landfill when this parameter was increased.
- This scenario also predicted the fastest time of travel to downstream boundaries. Significant numbers of particles reached the stream boundaries between 20 and 50 years and the median arrival time was 200 years, compared to 500 years for the Base Case.

Structural Hydrostratigraphic Unit (Fault Zones)

- Comparing the Base Case to the no-active-faults scenario indicates if fault zones are hydraulically
 active, they may play an important role in focusing groundwater flow patterns downstream from the
 landfill and determining where groundwater potentially impacted from the landfill discharges to
 surface.
- This is because the faults are aligned with the surface water drainage features, and the model
 predicts the fault zones act to drain the surrounding bedrock HUs and convey the collected
 groundwater to the surface drainage network.
- The no-active-fault scenario (SENS-4) predicted median time of travel almost double the Base Case, which includes higher hydraulic conductivity Structural HUs.
- Several monitoring wells are located along the inferred southwest-northeast trending strike-slip fault and along the west-east trending thrust faults (refer to Figure 12). Logs from these wells should be reviewed prior to any hydraulic testing programs to determine if they are good candidates for future hydraulic testing programs targeting the Structural HUs, either as monitoring wells for the testing program or as locations for installing pumping wells.
- Many of the monitoring wells that are within the Structural HU (refer to Figure 12) are not downstream of the landfill. Particular attention should be paid to those wells that are downstream when considering which wells to test for water quality.

Till Hydrostratigraphic Unit

- Increasing both the horizontal and vertical components of the Till hydraulic conductivity significantly reduced the time of travel to downstream boundaries and resulted in a narrower range of travel times. Median time of travel to downstream boundaries was more than halved compared to the Base Case.
- However, increasing only the vertical component of the Till hydraulic conductivity resulted in only
 minor changes from the Base Case. These results are inferred to be due to increased lateral
 migration through the Till when both components of conductivity are increased, whereas when only
 the vertical component of the Till conductivity is increased the conductivity of the upper bedrock
 becomes the controlling factor affecting off-site seepage.

Groundwater Flow Rates and Times of Travel

• Specific discharge rates (Darcy velocity) within the upper bedrock zone were predicted to be in the range of 0.7 to 1.2 m/year for the Base Case. Assuming an effective porosity of 0.02, this translates to an average linear groundwater velocity (the velocity a solute plume would migrate) of between 35 and60 m/year.

- With the exception of the increased hydraulic conductivity of the upper bedrock sensitivity scenario (SENS-3), times of first arrival at the downstream discharge locations were predicted to be on the order of 50 to 100 years.
- Times of first arrival for the SENS-3 scenario were predicted to range between 20 to 30 years.
- Based on model assumptions the results from this study indicate that even if there is a leak under the landfill, groundwater seepage rates under and suggest adjacent the landfill are relatively slow. Therefore, there is time to monitor – react – design – implement mitigation measures/remediation schemes.

9 Recommendations

Based on the key findings discussed above, the following recommendations are presented for the FRSC's consideration.

Future Hydrological Field Program(s):

- Ground truthing of groundwater discharge conditions immediately downstream (east) of the landfill. The objective of this portion of the field program would be to collect data that would aid in answering the question: could groundwater sourced from the landfill be daylighting in this area? The answer to this question will dictate possible changes to the monitoring network of the landfill.
- Collecting surveyed spot elevation measurements of the streambeds in the area taken during the field program could be used to refine the boundary conditions assigned in the model.
- Observations of the lithological type and thickness of sediments and collection of soil samples for geotechnical analysis would help refine the distribution of surficial materials and appropriate values of hydraulic conductivity to use in a refined model for this area.
- Install stream gauges in sub-watersheds in the area and make estimates of baseflow. This information will help constrain estimates of groundwater recharge and, through future model calibration effort, along with hydraulic conductivity testing, provide insight into the regional nature of the till and upper bedrock hydraulic conductivity.

Future Groundwater Field Program(s):

- Pumping test program for the upper bedrock. The sensitivity analysis identified the hydraulic conductivity of this zone as being a particularly important parameter. A properly designed pumping test with hydraulic response measured at multiple monitoring wells situated at different distances and along different directions from the pumping well (which is screened over the upper bedrock zone). Detailed examination of existing borehole records should be used to identify the best options for placing the pumping well. The numerical model could be used to aid in designing a range of suitable pumping rates, pumping durations and good candidates for monitoring well selection.
- Pumping test program for the inferred fault zones. The sensitivity analysis suggests the interpreted
 faults can influence groundwater flow patterns, focusing groundwater flow from beneath the landfill
 toward the faults. A key question for designing future modifications to the monitoring program is
 therefore to determine if the interpreted fault zones are present and if so, are they hydraulically
 significant.

Future Modelling Studies:

Model refinements are suggested to further investigate seepage through the Till HU, based on the results of the SENS-1 sensitivity scenario presented herein. Seepage through the till groundwater pathway will be sensitive to till thickness, recharge rates through the till, landfill seepage flux, distance to the nearest surface water drainage features, the thickness and hydraulic conductivity of the sediments underlying the drainage features and the elevations of stream beds where groundwater is

expected to discharge. It is recommended these model refinements be completed after additional data is collected during the recommended hydrological field program discussed above. Additional vertical discretization of the till HU is also recommended for this future modelling study so the flow field can be resolved vertically across the till unit.

10 Closure

This report was prepared by Don Haley, B.Math, M.Sc. and Fred Baechler, M.Sc., P.Geo and reviewed by John Sims, M.Sc., P. Geo., P. Eng. (hydrogeology).

11 References

Diersch. (2014). FEFLOW - Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer.

EXP Services Inc. (2017). *Development of GIS Map and Conceptual Hydrogeological Model.* Report prepared for the Fundy Regional Services Commission.

GEMTEC Ltd. (2006). *Update of Bedrock Hydrogeology - Crane Mountain Landfill, Saint John, New Brunswick.* Report prepared for the Fundy Regional Services Commission.

Appendix 1 – REPORT TABLES

ID Data Class	Type	File Name	Notes
1 Base Map	Vector	CM_civic_addresses_U19_w84.shp	
2 Base Map	Vector	CM_Domestic_wells_u19_w84.shp	
3 Base Map	Vector	CM_rail_u19_w84.shp	
4 Base Map	Vector	CM_roads_major_u19_w84.shp	
5 Base Map	Vector	CM_roads_u19_w84.shp	
6 Bedrock Geology/Hydrogeology	PDF	Update of Bedrock Hydrogeology Nov 2006 Final.pdf	Report discusses bedrock geology, slug test results and water levels near the landfill facility. Slug test results used to assign conductivity of the upper bedrock and the interpreted water level surface used as the main calibration target near the landfill.
7 Digital Elevation Model		CM_elevation_20m_grid_u19_w84.tif	
8 Digital Elevation Model		CM_geology_20k_lidar_merge_8bit_u19_w84.tif	
9 Digital Elevation Model		CM_LiDAR_detail_u19_w84.tif.tif	
10 Digital Elevation Model		CM_LiDAR_Large_u19_w84 DEM_Hillshade.tif	
11 Digital Elevation Model	Raster	CM_LiDAR_Large_u19_w84.tif.tif	
12 Digital Elevation Model	Raster	CM_TIN_convert_topo_grid_20m_u19_w84.tif	
13 Digital Elevation Model	Raster	CM_topo_rev1_NN20_u19_w84.tif	
14 Digital Elevation Model	Vector	CM_contour_10m_u19_w84.shp	
15 Digital Elevation Model	Vector	CM_elevation_20m_grid_u19_w84.shp	
16 Digital Elevation Model	Vector	CM_SNB_Elevation_points_u19_w84_Feb_5_2018.shp	Revised DEM refining elevation along the shore of Grand Bay. Used to define ground surface in the model.
17 Digital Elevation Model	Vector	revised_DEM_breaklines_shift_u19_w84.shp	Shore breakline used in developing revised DEM
18 Geology - Bedrock		CM_Bedrock_Elevation_NN2m_u19_w84.tif	Interpreted elevation of bedrock calculated from DEM, surficial geology thickness and site specific data from the landfill. Defines top of bedrock in the model.
19 Geology - Bedrock	Raster	CM TIN convert bedrock surface 20m u19 w84.tif	
20 Geology - Bedrock	Raster	Crane_mtn_aeromag_correct_u19_w84.tif.tif	
21 Geology - Bedrock		CM_1_20k_Geology_outcrops_u19_w84.shp	
22 Geology - Bedrock		CM_Bedrock_Elevation_NN2m_points_u19_w84.shp	Extracted top of bedrock surface points from the raster data set for importing into the numerical modelling software.
23 Geology - Bedrock		CM_bedrock_geology_1_20k_revised_McCloud_2106_u19_w84.shp	
24 Geology - Bedrock		CM_Geology_structure_Faults_u19_w84.shp	Interpreted strike-slip and thrust fault lines used to define hydraulic zones along major faults in the model.
25 Geology - Bedrock		CM_Geology_structure_Strike_dip_u19_w84.shp	The process of the stip and thrust waterines about to define the annual period at the model.
26 Geology - Bedrock		CM_Interpreted_Lineaments_u19_w84.shp	
27 Geology - Bedrock		CM_Outcrops_Field_mapping_2016_u19_w84.shp	
28 Geology - Bedrock		CM_Structural_Hydrogeological_Units_Baechler_2016_u19_w84.shp	Intrepreted zones of higher hydraulic conductivity along the main faults. Used to assign fault zone hydraulic conductivity in the model.
29 Geology - Surficial		CM_Liner_minus_Bedrock_elevation_points_u19_w84.shp	Extracted Till thickness points under the landfill liner system from the raster data set.
30 Geology - Surficial		CM_Surficial_Geology_Lines.shp	Extracted fill thickness points under the landing liner system from the faster adda set.
31 Geology - Surficial		CM surficial Geology Polygons.shp	Zones of different sediments at surface. Used to assign initial groundwater recharge distribution in the model (recharge distribution refined during model calibration).
32 Geology - Surficial		CM_Liner_minus_Bedrock_elevation_u19_w84.tif	Thickness of Till beneath landfill liner system. Used to locally refine till thickness at the landfill facility.
33 Geology - Surficial		Surficial_geology_depth_clip_Feb_9_2018.tif	Interpreted thickness of surficial sediiments. Used to develop top of bedrock surface used in the model.
		CM_Hydrogeological_units_Baechler_2016_u19_w84.shp	Interpreted delineation of different bedrock HUs used to assign bedrock hydraulic conductivity zones in the model.
35 Hydrogeology		CM_wet_areas_mapping_Depth_to_Watertable_u19_w84.shp CM Regulated Wetlands NB Environment u19 w84.shp	Interpreted depth to water used as a guide during model calibration.
36 Hydrology			Wetland areas used as a guide during model calibration to infer areas where the water table is at or above ground surface.
37 Hydrology		CM_Waterbodies_NBHN_u19_w84.shp	Locations of lakes used to assign lake boundary conditions in the model.
38 Hydrology		CM_watercourses_NBHN_u19_w84.shp	Locations of streams/creeks used to assign surface water drainage features in the model.
39 Hydrology		CM_watersheds_u19_w84.shp	Watershed boundaries used to define the conceptual study area in Phase 1 and the extent of the numerical model.
40 Landfill Facility		Various files containing information on borehole logs etc.	
41 Landfill Facility		cad_90421506_cad_liner_contours_2m_grid_u19_w84	Used to interpret the Till thickness beneath the landfill liner system.
42 Landfill Facility		90421507-AS BUILT SUBDRAINS.dwg	
43 Landfill Facility		AS BUILT GEOMEMBRANE CELL 7-23-09-2015.xml	
44 Landfill Facility		BASE PLAN .dwg	
45 Landfill Facility		cad_90421506_cad_liner_contours_2m_grid_points_u19_w84.shp	Used to interpret the Till thickness beneath the landfill liner system.
46 Landfill Facility		CM_Landfill_Facility_u19_w84.shp	
47 Landfill Facility		CM_Landfill_Property_parcels_u19_w84.shp	
48 Landfill Facility		CM_Landfill_Site_Wells_temp_u19_w84.shp	
49 Landfill Facility		CM_monitoring_wells_u19_w84.shp	
	11	HDPE LINER - CELL 1-final grade.xml	
50 Landfill Facility 51 Numerical Model		CM Numerical Model Domain u19 w84.shp	Study area defined in Phase 1, used to define the extent of the numerical model domain.

Notes

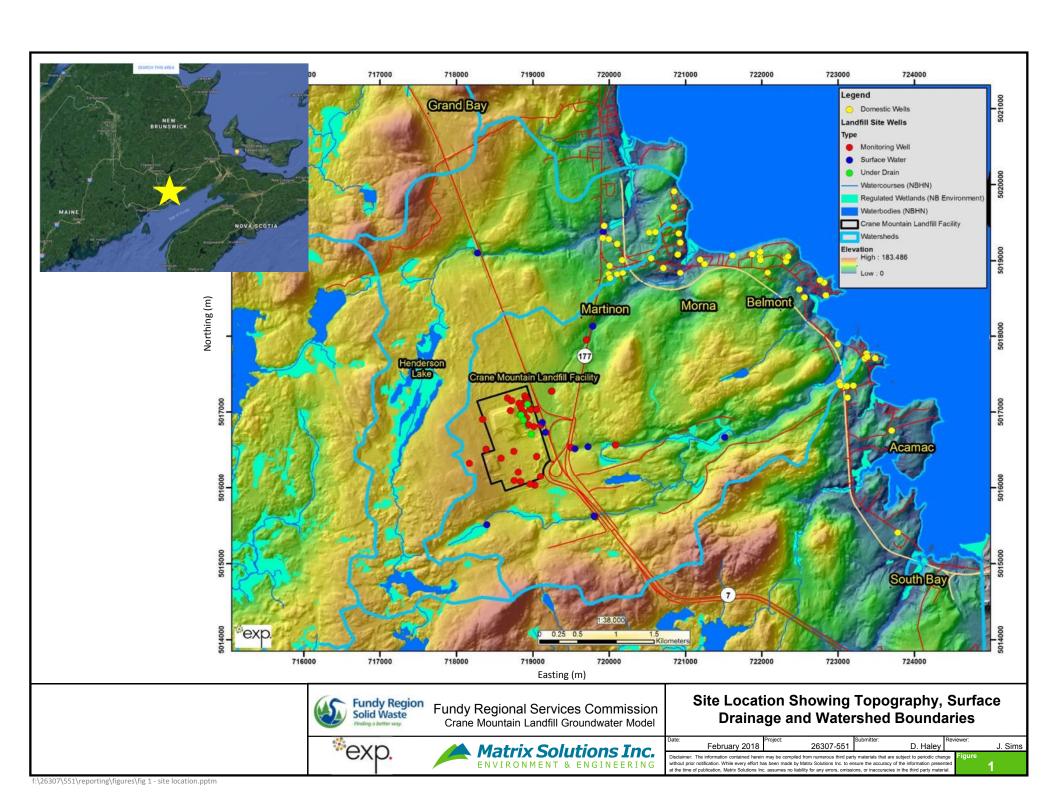
1. Highlighted rows indicate primary data sources used to construct and calibration the numerical model. Other data listed here would have been used during Phase 1 to develop the conceptual model; for example, the strike and dip information compiled during the geological mappping program carried out during Phase 1 (refer to Table 4.1 of the Phase 1 report).

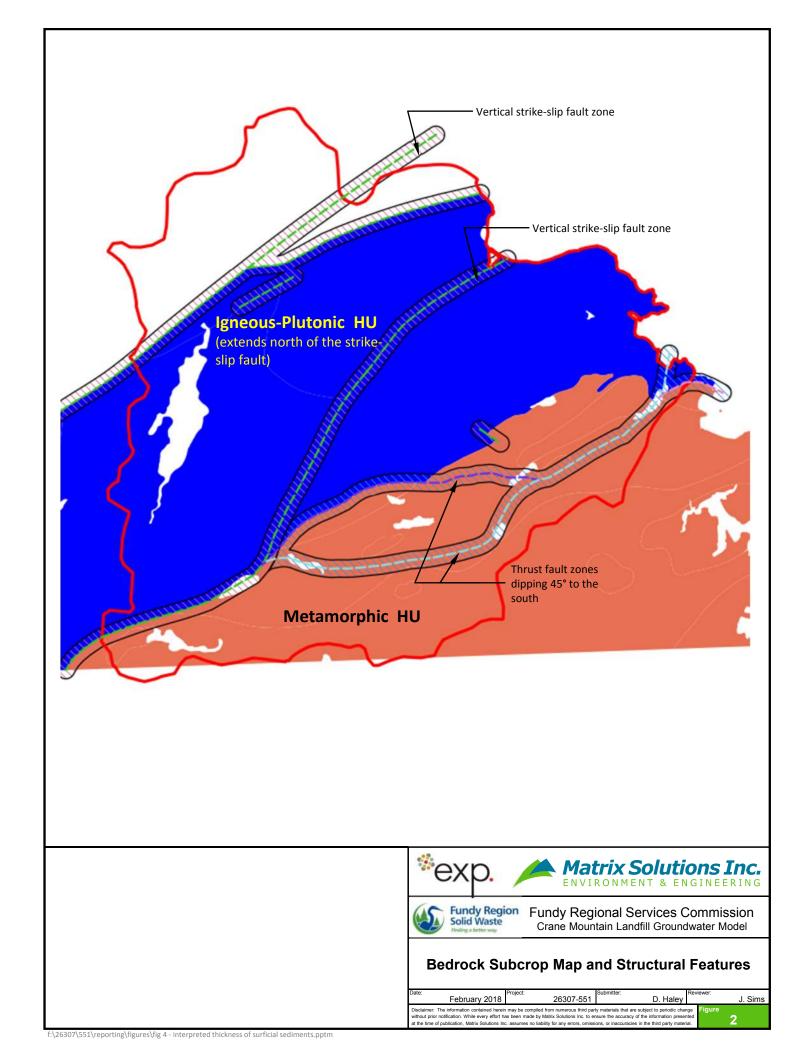
		Effective	Porosity	Hydrau	Hydraulic Conductivity Parameters [m/s]				
Hyd	rostratigraphic	Suggested		Hydraulic	Phase 1, Table				
	Unit	Range from	Base Case	Conductivity	4.1 Suggested	Base Case Model			
-		Phase 1		Parameter Kh	Ranges 1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7			
	The Till blooked	0.2.02	0.25						
	Tb: Till blanket	0.2 - 0.3	0.25	Kv	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7			
				Ratio (Kh/Kv)	1.0	1.0			
				Kh	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7			
Ş	Tv: Till veneer	0.2 - 0.3	0.25	Kv	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7			
Quaternary Units				Ratio (Kh/Kv)	1.0	1.0			
<u> </u>	GMn:			Kh	Only Till unit	1.0E-6			
i i	Glaciomarine		0.15	Kv	discussed in	1.0E-7			
late	Giacionianne			Ratio (Kh/Kv)	Phase 1 report.	10.0			
ď		Only Till unit		Kh	Only Till unit	1.0E-4			
	GFf: Glaciofluvial	Phase 1	0.3	Kv	discussed in	1.0E-5			
		report		Ratio (Kh/Kv)	Phase 1 report.	10.0			
	A:	·	0.3	Kh	Only Till unit	1.0E-4			
	Undifferentiated			Kv	discussed in	1.0E-5			
	Alluvial Deposits			Ratio (Kh/Kv)	Phase 1 report.	10.0			
	Upper Bedrock	0.01 - 0.03	0.02	Kh	1x10 ⁻⁶ to 1x10 ⁻⁴	1.5E-6			
	Exfoliation Zone			Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.5E-6			
				Ratio (Kh/Kv)	> 1	1.0			
	Igneous Plutonic	0.001 - 0.01	0.01	Kh	1x10 ⁻¹⁰ to 1x10 ⁻⁷	1.0E-8			
	Bedrock HU			Kv	1x10 ⁻¹⁰ to 1x10 ⁻⁷	1.0E-8			
ţţ				Ratio (Kh/Kv)	1.0	1.0			
drock Units	Metamorphic			Kh	1x10 ⁻⁷ to 1x10 ⁻⁵	1.0E-8			
쓩	Bedrock HU	0.001 - 0.01	0.01	Kv	1x10 ⁻⁷ to 1x10 ⁻⁵	1.0E-6			
Bedr				Ratio (Kh/Kv)	<< 1	0.01			
Φ				Kh	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-7			
	Strike-Slip Faults	0.01 - 0.05	0.03	Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-5			
				Ratio (Kh/Kv)	<< 1	0.01			
				Kh	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-5			
	Thrust Faults	0.01 - 0.05	0.03	Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-7			
				Ratio (Kh/Kv)	>> 1	100.0			
		Till Blanke	t (Tb)		100 to 400	17 to 85			
Recharge [mm/year]		Till Venee	r (Tv)		mm/year	50 to 128			
Recharge mm/year		Glaciomarin	e (GMn)		/00/ += 240/ 54 222	17			
Rec		Glaciofluvia	al (GFf)		(8% to 31% of 1,300 mm of	68			
		Alluvial	(A)		precipitation)	85			
	Landfi	ll Source Flux ((mm/yr)		0.2 to 34	0.2			

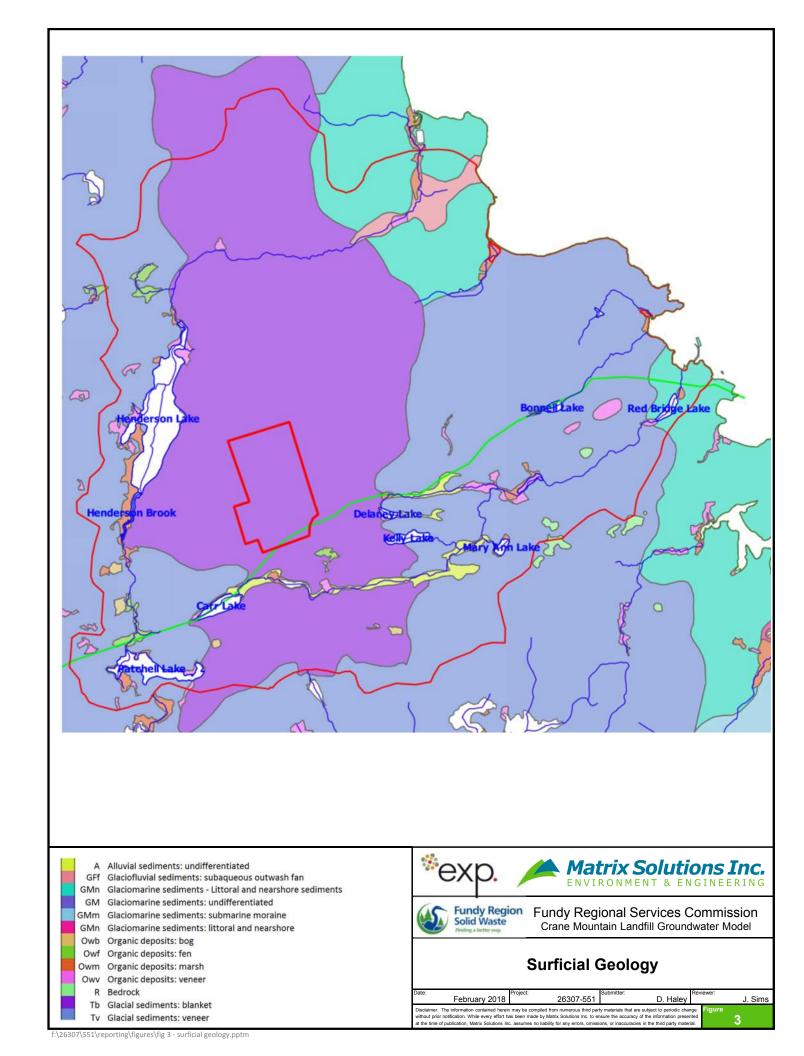
Table 3: Water Budget Results - Base Case

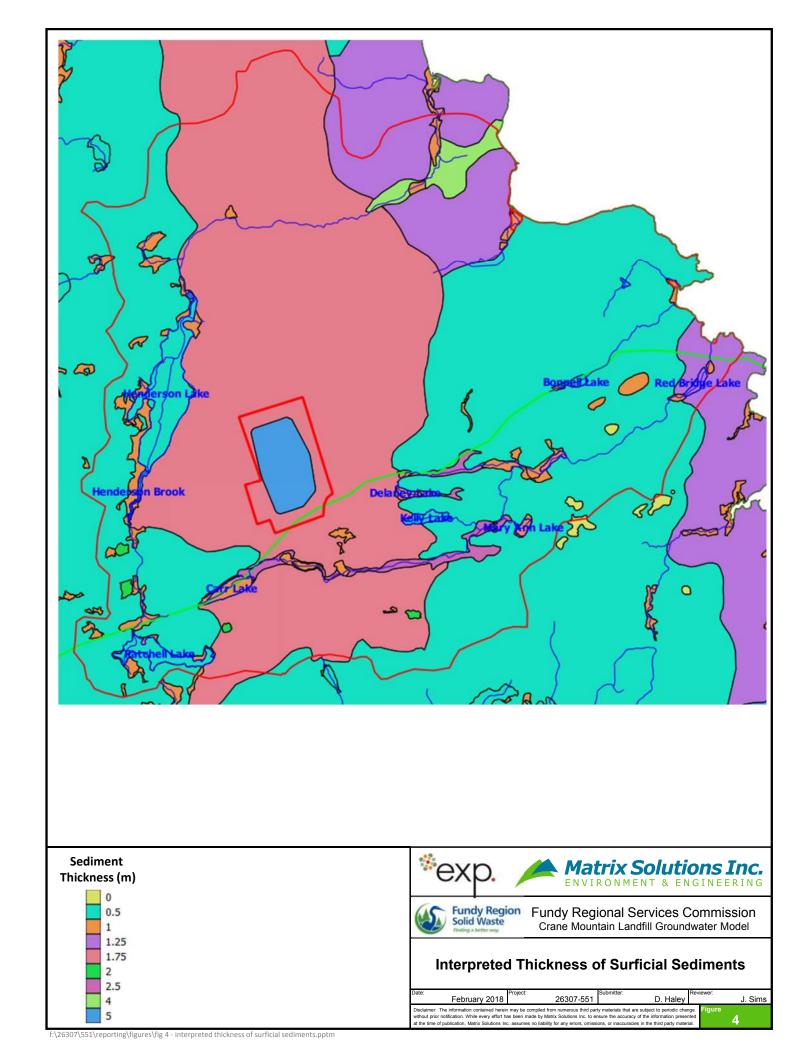
	Water Budget Selection	Constant Heads			Recharge					NET IN as	Imbalance	Global
RUN		INPUT	ОИТРИТ	Net IN (+) / Net OUT (-)	Vol. Flux	Areal Flux	% of Precip.	Landfill Leakage	Total IN ¹	NET IN as Fraction of Total IN	IN (+)/OUT (-)	Percent Discrepancy
		m³/d	m³/d	m³/d	m³/d	mm/yr	%	m³/d	m³/d	%	m³/d	
	Domain	1,078	4,022	-2,944	2,944	37	3%	0.14	4,022	NA	0	0.0%
Pasa Casa	Lakes	982	470	512						13%		
Base Case	Streams		2,249	-2,249			Not Appli	cable		-56%		
	Grand Bay	96	1,302	-1,206					-30%			

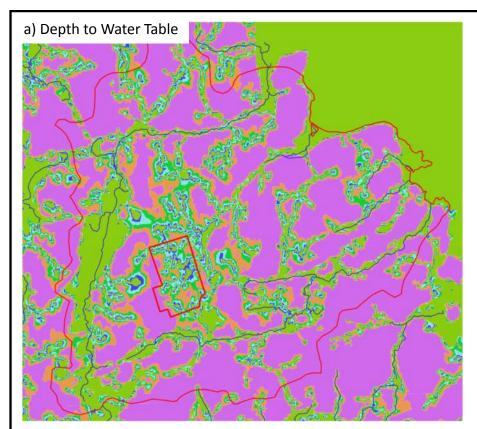
Conceptual Model Element	ID	Short Description	Long Description	Rationale
TILL	SENS-1	Increased Till Conductivity	Increase vertical and horizontal components of the Till hydraulic conductivity (K) by a factor of 10 from the Base Case.	Lack of slug test results in the till unit mean relatively large uncertainty in this parameter. We are treating the till as an undifferentiated unit whereas in reality it will be variable with sand lenses acting as preferential pathways for infiltration. Increased hydraulic conductivity of the till will allow for more recharge to the groundwater system.
TILL	SENS-2	Fractured Till Anisotropy	, , , , , , , , , , , , , , , , , , , ,	The nature of till anisotropy is unknown. Vertical fracturing may act to enhance infiltration, resulting in steeper gradients in the bedrock and fault HUs, resulting in fast plume migration and shorter time of travel to downstream wells and/or receiving surface waters. Use the same increase factor as for SENS-1.
UPPER BEDROCK	SENS-3	Increased Conductivity of Upper Bedrock		Increasing the hydraulic conductivity of the upper bedrock unit will result in a more effective under drain below the relatively low permeability surficial Tills.
FAULTS	SENS-4	No Active Fault Zones	Set hydraulic properties of the fault zones to the corresponding bedrock HU values.	To assess how results would differ if the faults do not act as preferential flow zones.
BEDROCK	SENS-5	Increased Bedrock Conductivity	Increase the two bedrock HU conductivities by a factor of 10 from the base case, maintaining the anisotropy ratio.	Increasing the hydraulic conductivity of the bedrock units will result in a more homogenous hydraulic conductivity field compared to the Base Case (i.e., bedrock and fault conductivities are more similar).
GW-SW INTERACTION	SENS-6	Reduced SW- GW Hydraulic Connection	Decrease the hydraulic conductivity of the surficial materials under lakes and stream beds by a factor of 10x from the base case values.	If surface drainage features are underlain by a lower hydraulic conductivity zone, seepage between the surface water and groundwater regimes will be impeded, resulting in impacted groundwater from the landfill potentially migrating further downstream.

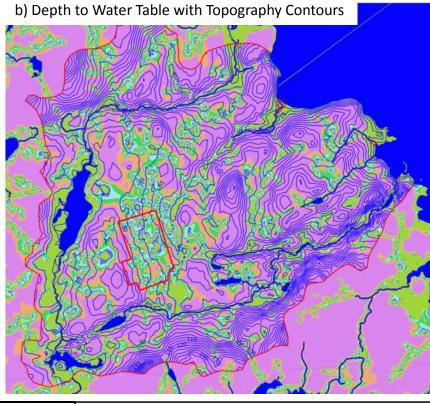

Conceptual Model Element	ID	Short Description	Long Description	Rationale
LANDFILL SOURCE TERM	SENS-7	Landfill Source Flux	6 litres/hectare/day (the Base Case, or Best Estimate) to 940 litres/hectare/day (the upper end of the range reported in Section 3.6.3. of	I Estimate) and 3/1 mm/vr (Worst Case). The hest estimate inased on liner I
CLIMATE CHANGE	SENS-8	Enhanced Infiltration	lincrease recharge rates by 15% to	Although climate change effects is an area of on-going research, it is generally agreed that precipitation will increase in the New Brunswick region and this scenario accounts for climate change by increasing the recharge that occurs to the groundwater system.

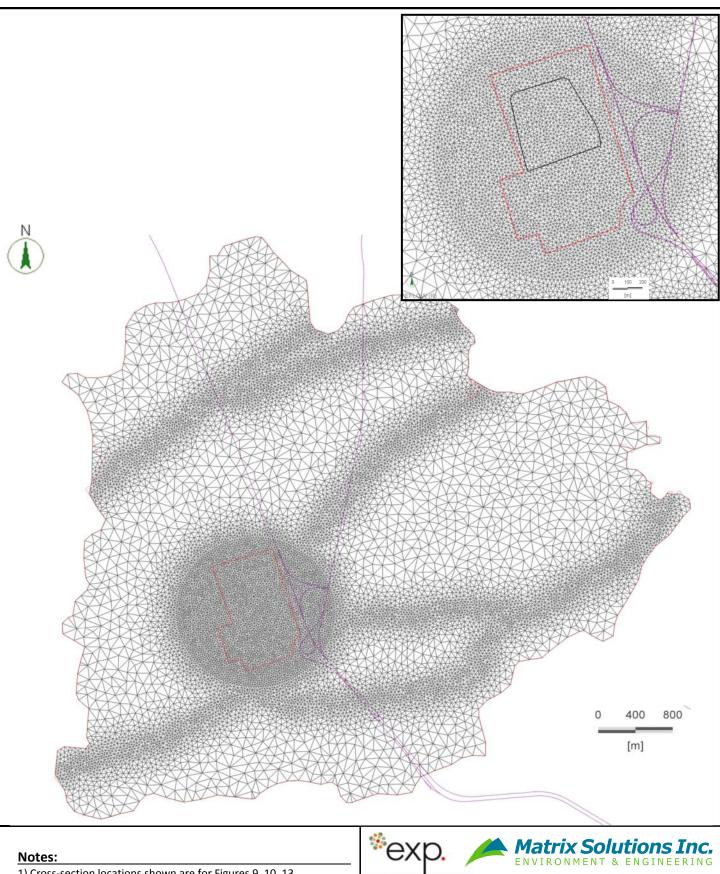

	Effective Porosity Hydraulic Conductivity Parameters [m/s]													
Hyd	lrostratigraphic Unit	Suggested Range from Phase 1	Base Case	Hydraulic Conductivity Parameter	Phase 1 Table 4.1 Suggested Ranges	Base Case	SENS-1 (more permeable Till)	SENS-2 (fractured Till)	SENS-3 (more permeable upper bedrock)	SENS-4 (no active fault zones)	SENS-5 (more permeable bedrock)	SENS-6 (reduced SW-GW connection)	SENS-7 (landfill source flux)	SENS-8 (climate change)
				Kh	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7	1.0E-6	1.0E-7	1.0E-7	1.0E-7	1.0E-7		1.0E-7	
	Tb: Till blanket	0.2 - 0.3	0.25	Kv	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7	1.0E-6	1.0E-6	1.0E-7	1.0E-7	1.0E-7		1.0E-7	
				Ratio (Kh/Kv)	1.0	1.0	1.0	0.1	1.0	1.0	1.0		1.0	
				Kh	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7	1.0E-6	1.0E-7	1.0E-7	1.0E-7	1.0E-7		1.0E-7	
	Tv: Till veneer	0.2 - 0.3	0.25	Kv	1x10 ⁻⁸ to 1x10 ⁻⁶	1.0E-7	1.0E-6	1.0E-6	1.0E-7	1.0E-7	1.0E-7		1.0E-7	
Quaternary Units				Ratio (Kh/Kv)	1.0	1.0	1.0	0.1	1.0	1.0	1.0		1.0	
	CNA			Kh	Only Till unit	1.0E-6	1.0E-6	1.0E-6	1.0E-6	1.0E-6	1.0E-6		1.0E-6	
rna	GMn: Glaciomarine		0.15	Kv	discussed in Phase 1	1.0E-7	1.0E-7	1.0E-7	1.0E-7	1.0E-7	1.0E-7]	1.0E-7	
ıate	Giaciomarine			Ratio (Kh/Kv)	report.	10.0	10.0	10.0	10.0	10.0	10.0	All hydraulic	10.0	
ď		Only Till unit		Kh	Only Till unit	1.0E-4	1.0E-4	1.0E-4	1.0E-4	1.0E-4	1.0E-4	conductivity parameters	1.0E-4	
	GFf: Glaciofluvial	discussed in Phase 1	0.3	Kv	discussed in Phase 1	1.0E-5	1.0E-5	1.0E-5	1.0E-5	1.0E-5	1.0E-5	the same as	1.0E-5	All hydraulic
		report		Ratio (Kh/Kv)	report.	10.0	10.0	10.0	10.0	10.0	10.0	the Base Case	10.0	conductivity
	A:	·		Kh	Only Till unit	1.0E-4	1.0E-4	1.0E-4	1.0E-4	1.0E-4	1.0E-4	except that	1.0E-4	parameters the same as
	Undifferentiated		0.3	Kv	discussed in Phase 1	1.0E-5	1.0E-5	1.0E-5	1.0E-5	1.0E-5	1.0E-5	the	1.0E-5	the Base Case.
	Alluvial Deposits	ts		Ratio (Kh/Kv)	report.	10.0	10.0	10.0	10.0	10.0	10.0		10.0	
	Upper Bedrock	0.01 - 0.03	0.02	Kh Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.5E-6	1.5E-6	1.5E-6	1.5E-5	1.5E-6	1.5E-6	material	1.5E-6	Recharge
	Exfoliation Zone		0.02	Ratio (Kh/Kv)	1x10 ⁻⁶ to 1x10 ⁻⁴ > 1	1.5E-6 1.0	1.5E-6 1.0	1.5E-6 1.0	1.5E-5 1.0	1.5E-6 1.0	1.5E-6 1.0	underneath surface water features are	1.5E-6 1.0	rates are increased by 25%.
		0.001 - 0.01	0.01	Kh	1x10 ⁻¹⁰ to 1x10 ⁻⁷	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-7		1.0E-8	
	Igneous Plutonic			Kv	1x10 ⁻¹⁰ to 1x10 ⁻⁷	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-7		1.0E-8	
γ	Bedrock HU			Ratio (Kh/Kv)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	reduced by a	1.0	
Units	D.A. ata was a walk is			Kh	1x10 ⁻⁷ to 1x10 ⁻⁵	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-8	1.0E-7	factor of 10x.	1.0E-8	
~	Metamorphic Bedrock HU	0.001 - 0.01	0.01	Kv	1x10 ⁻⁷ to 1x10 ⁻⁵	1.0E-6	1.0E-6	1.0E-6	1.0E-6	1.0E-6	1.0E-5		1.0E-6	
Bedroc	Dedrock 110			Ratio (Kh/Kv)	<< 1	0.01	0.01	0.0	0.01	0.0	0.01		0.0	
ĕ				Kh	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-7	1.0E-7	1.0E-7	1.0E-7		1.0E-7		1.0E-7	
	Strike-Slip Faults	0.01 - 0.05	0.03	Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-5	1.0E-5	1.0E-5	1.0E-5	Assigned the	1.0E-5		1.0E-5	
				Ratio (Kh/Kv)	<< 1	0.01	0.01	0.01	0.01	bedrock HU	0.01		0.01	
			2.00	Kh	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-5	1.0E-5	1.0E-5	1.0E-5	values	1.0E-5		1.0E-5	
	Thrust Faults	0.01 - 0.05	0.03	Kv	1x10 ⁻⁶ to 1x10 ⁻⁴	1.0E-7	1.0E-7	1.0E-7	1.0E-7	+	1.0E-7		1.0E-7	
				Ratio (Kh/Kv)	>> 1	100.0	100.0	100.0	100.0		100.0		100.0	
		Till Blanke	et (Tb)		10 to 40 cm/yr	17 to 85								
Recharge [mm/yr]		Till Venee				50 to 128	-		_	recharge appli		-	Base Case re	charge values
achí nm,		Glaciomarin			(8% to 31% of 1,300 mm	17	zones define		•	roduce a reaso		the GEMTEC		ese scenarios.
~ <u>~</u>		Glaciofluvia Alluvial			of precipitation - page 11 of Phase 1 report)	68 85	2006 interpreted upper bedrock hydraulic head map.							
	Land	fill Source Flux			-1 A	0.2	0.2	0.2	0.2	0.2	0.2	0.2	34	0.2
	Lariu	Jource Hux	(/)			0.2	0.2	0.2	0.2	0.2	0.2	0.2	JT	0.2

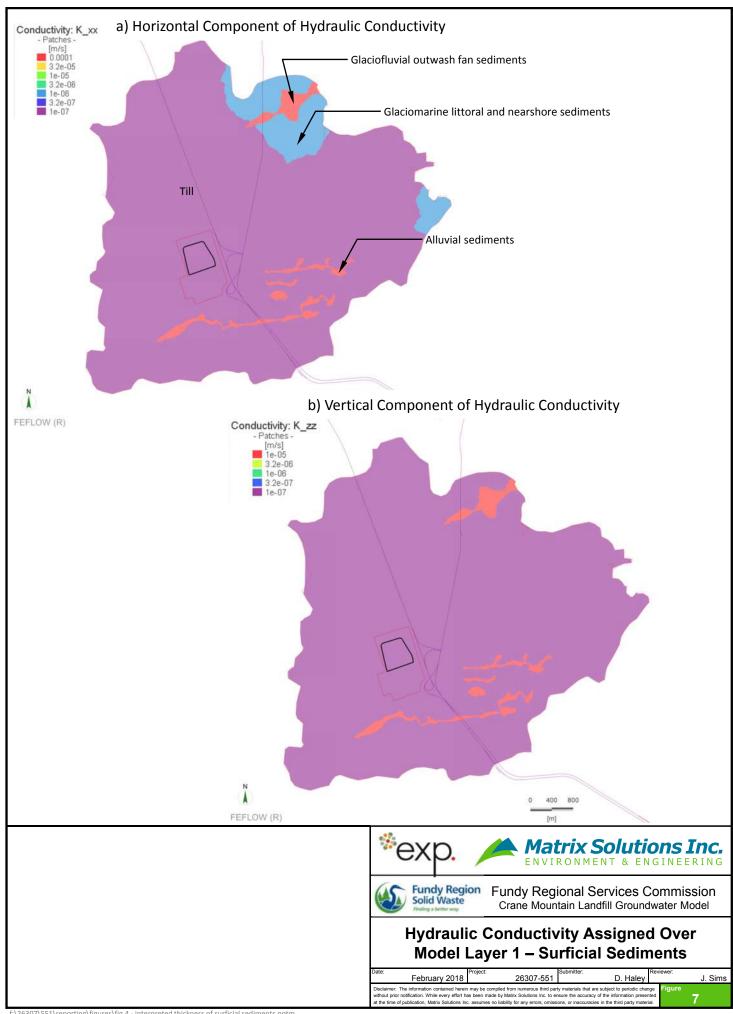

		Co	nstant H	leads		Rech	arge						Imbalance			
RUN	Water Budget Selection	_	ОИТРИТ	Net IN (+) / Net OUT (-)	Vol. Flux	Areal Flux	% Change from Base Case	% of Precip.	Landfill Leakage	Total IN ¹	Fra			Global Percent Discrepancy		
		m³/d	m³/d	m³/d	m³/d	mm/yr	%	%	m³/d	m³/d		%	m³/d			
	Domain	1,078	4,022	-2,944	2,944	37	0%	3%	0.14	4,022	NA		0	0.0%		
Base Case	Lakes	982	470	512								13%				
	Streams		2,249	-2,249			Not A	Applicable	9			-56%	Not Ap	plicable		
	Grand Bay	96	1,302	-1,206		ı	ı		-			-30%				
SENS-1	Domain	1,064	4,502	-3,438	3,438	43	17%	3%	0.14	4,502	NA		0	0.0%		
(more permeable	Lakes	962	531	431								10%				
Till)	Streams		2,633	-2,633			Not A	Applicable	9			-58%	Not Ap	plicable		
	Grand Bay	102	1,338	-1,236								-27%				
	Domain	1,079	4,373	-3,294	3,294	41	12%	3%	0.14	4,373	NA		0	0.0%		
SENS-2 (v2)	Lakes	974	514	460								11%				
(fractured Till)	Streams		2,523	-2,523	Not Applicable						-58%	Not Applicable				
	Grand Bay	105	1,336	-1,231								-28%				
	Domain	1,697	15,447	-13,750	13,750	173	367%	13%	0.14	15,447	NA		0	0.0%		
SENS-3	Lakes	1,599	4,214	-2,615	Not Applicable							-17%				
(more permeable Upper Bedrock)	Streams		10,002	-10,002							-65%	Not Applicable				
оррег вешоску	Grand Bay	98	1,231	-1,133								-7%				
	Domain	185	1,945	-1,760	1,760	22	-40%	2%	0.14	1,945	NA		0	0.0%		
SENS-4	Lakes	111	268	-157								-8%				
(no active fault zones)	Streams		1,338	-1,338			Not A	Applicable	9			-69%	Not Applicable			
2011037	Grand Bay	74	339	-265								-14%				
	Domain	1,090	5,314	-4,224	4,224	53	43%	4%	0.14	5,314	NA		0	0.0%		
SENS-5	Lakes	1,004	679	325								6%				
(more permeable bedrock)	Streams		3,095	-3,095	Not Applicable						-58%	Not Ap	plicable			
Dedition,	Grand Bay	86	1,540	-1,454								-27%				
SENS-6	Domain	756	3,700	-2,944	2,944	37	0%	3%	0.14	3,700	NA		0	0.0%		
(reduced SW-	Lakes	659	491	168					•			5%				
GW	Streams		1,938	-1,938			Not A	Applicable	9			-52%	Not Ap	plicable		
connection)	Grand Bay	97	1,271	-1,174								-32%				
	Domain	1,073	4,040	-2,967	2,966	37	1%	3%	23.00	4,039	NA		-1	0.0%		
SENS-7	Lakes	977	476	501								12%				
(landfill	Streams		2,262	-2,262			Not /	Applicable	2			-56%	Not Ap	plicable		
source flux)	Grand Bay	96	1,302	-1,206								-30%				
	Domain	1,001	4,680	-3,679	3,679	46	25%	4%	0.14	4,680	NA		0	0.0%		
SENS-8	Lakes	892	581	311		<u>I</u>	<u>I</u>		<u> </u>			7%				
(climate	Streams		2,736	-2,736			Not /	Applicable	9			-58%	Not Ap	Not Applicable		
change)	Grand Bay	109	1,363	-1,254								-27%		•		

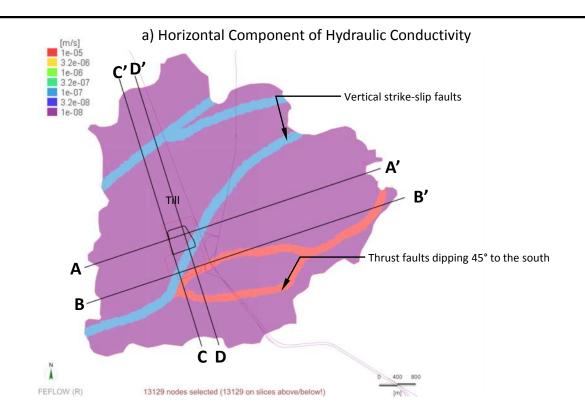

Appendix 2 – REPORT FIGURES



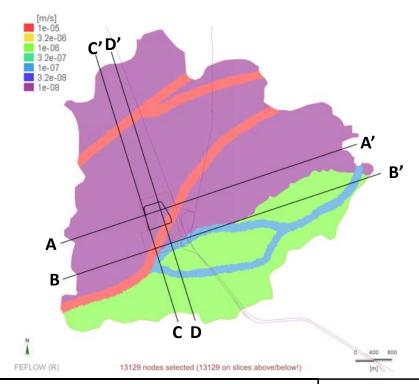








1) Cross-section locations shown are for Figures 9, 10, 13 and 14.

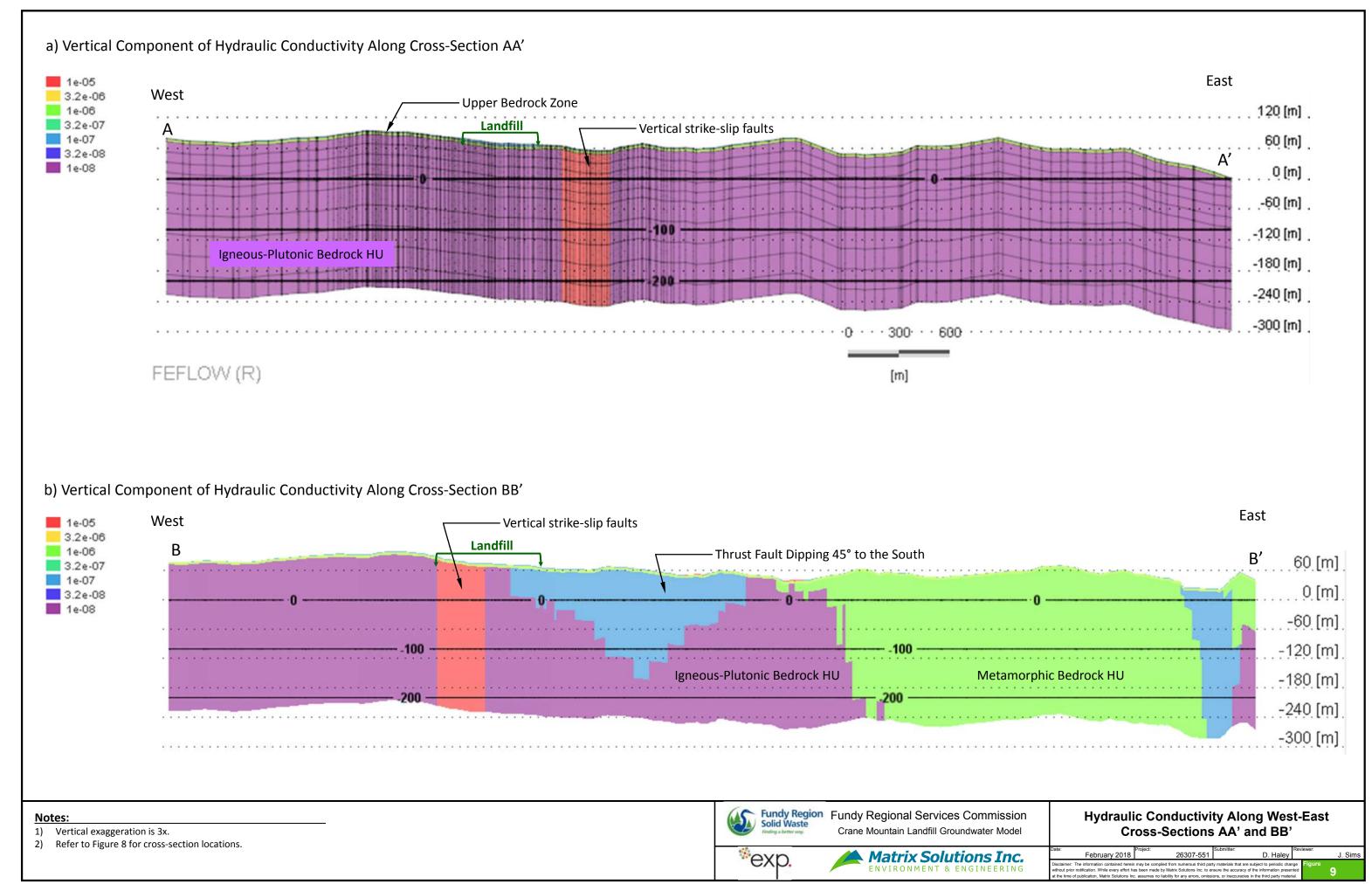


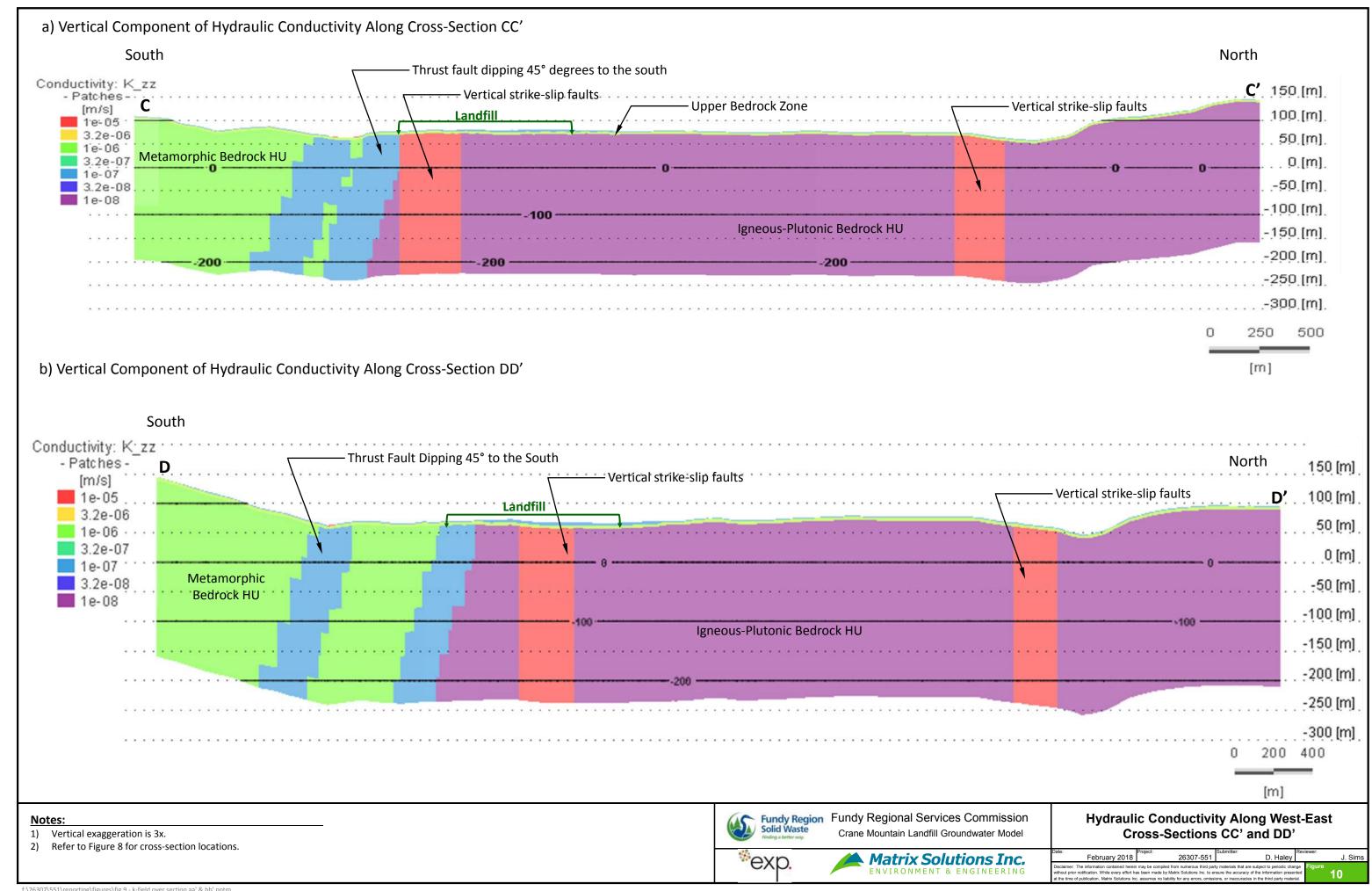
Model Domain and Numerical Mesh

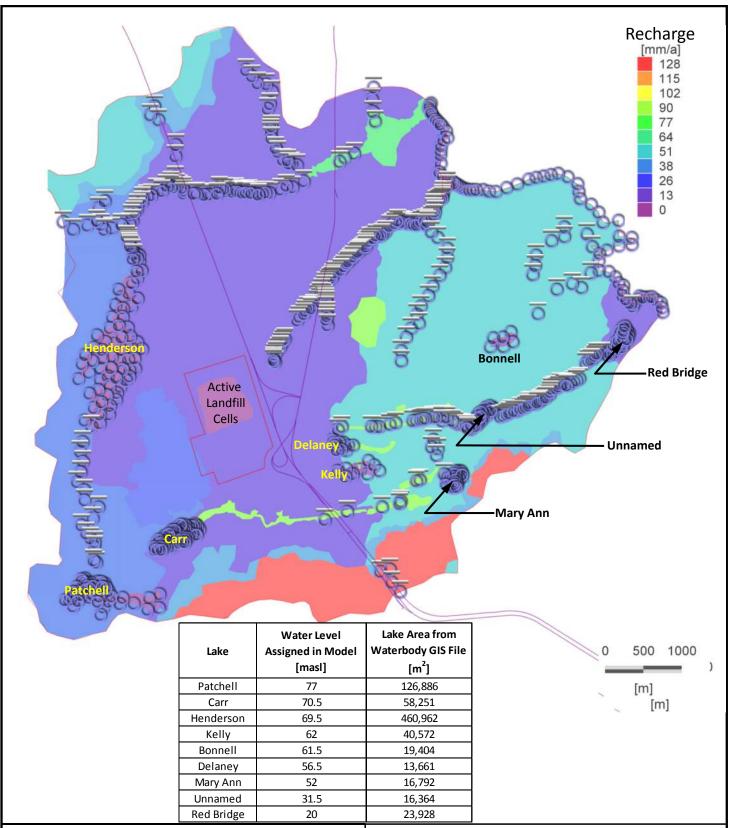
b) Vertical Component of Hydraulic Conductivity

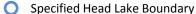
Notes:

1) Cross-section locations shown are for Figures 9, 10, 13 and 14.






Fundy Regional Services Commission Crane Mountain Landfill Groundwater Model

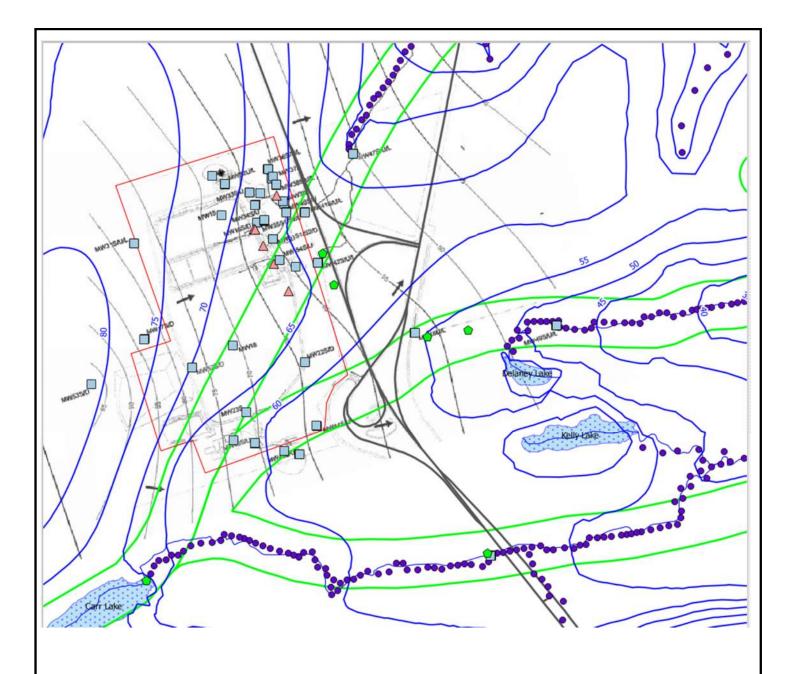

Hydraulic Conductivity Assigned Over Model Layer 3 – Bedrock

Pebruary 2018 Tebruary 2018 Discissions: D. Haley J. Sims
Discissions: The information contained herein may be compiled from numerous third party materials that are subject to periodic change without prior contification. While newly effort has been made by Matrix Sciultons line. I censure the accuracy of the information presented at the time of publication, Matrix Sciultons line. assumes no liability for any errors, omissions, or inaccuracies in the third party material.

Specified Stream Boundary

NOTES:

- Lake boundaries allow water to either enter or exit the groundwater system depending on nearby simulated heads. Stream boundaries are constrained to only allow water to drain from the groundwater system into the surface water system.
- 2. Flux applied over the active landfill cells based on reported ranges discussed in Section 4.4.4.



Fundy Regional Services Commission Crane Mountain Landfill Groundwater Model

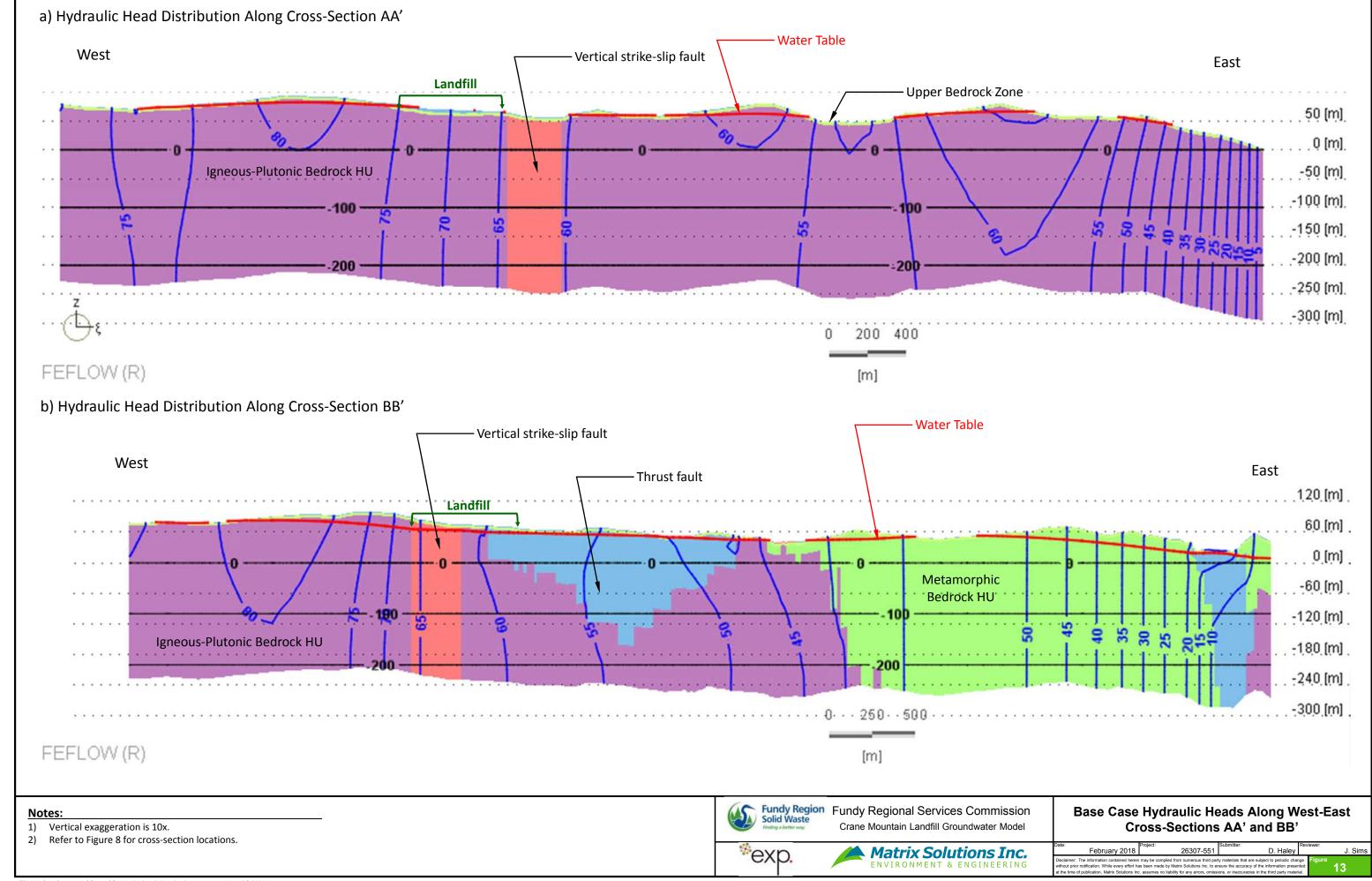
Model Boundary Conditions

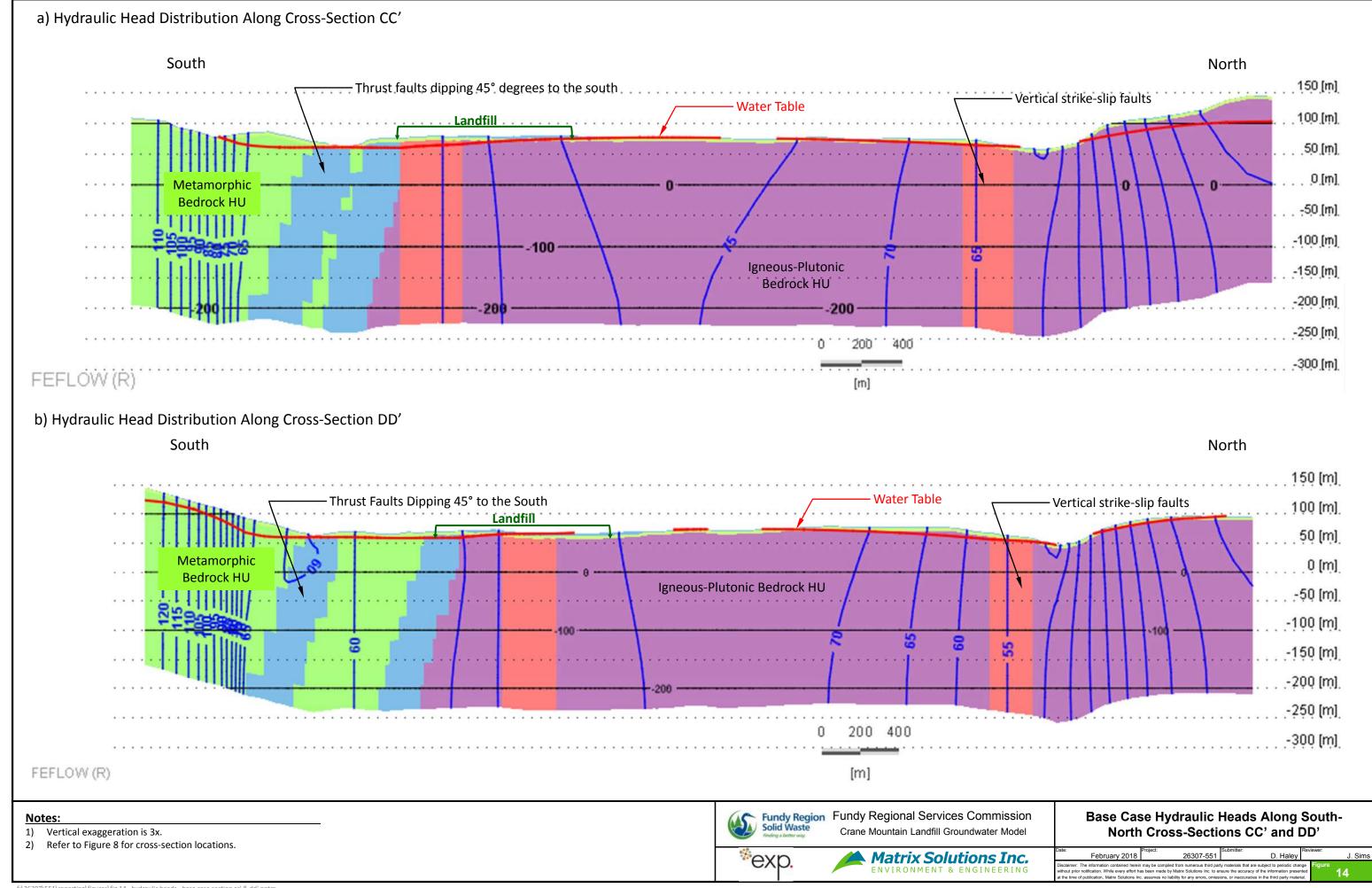
February 2018 26307-551 D. Haley J. Sims

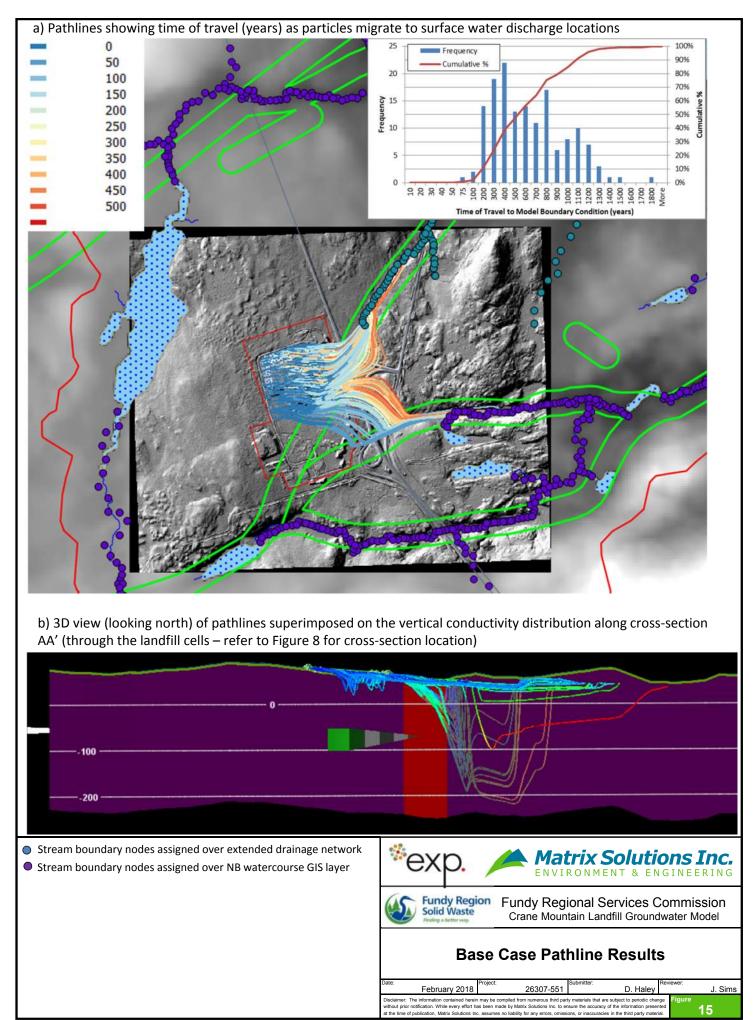
Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change without prior rollfication. White every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication, Matrix Solutions inc. assumes no liability for any enrors, omissions, or inaccuracies in the third party material.

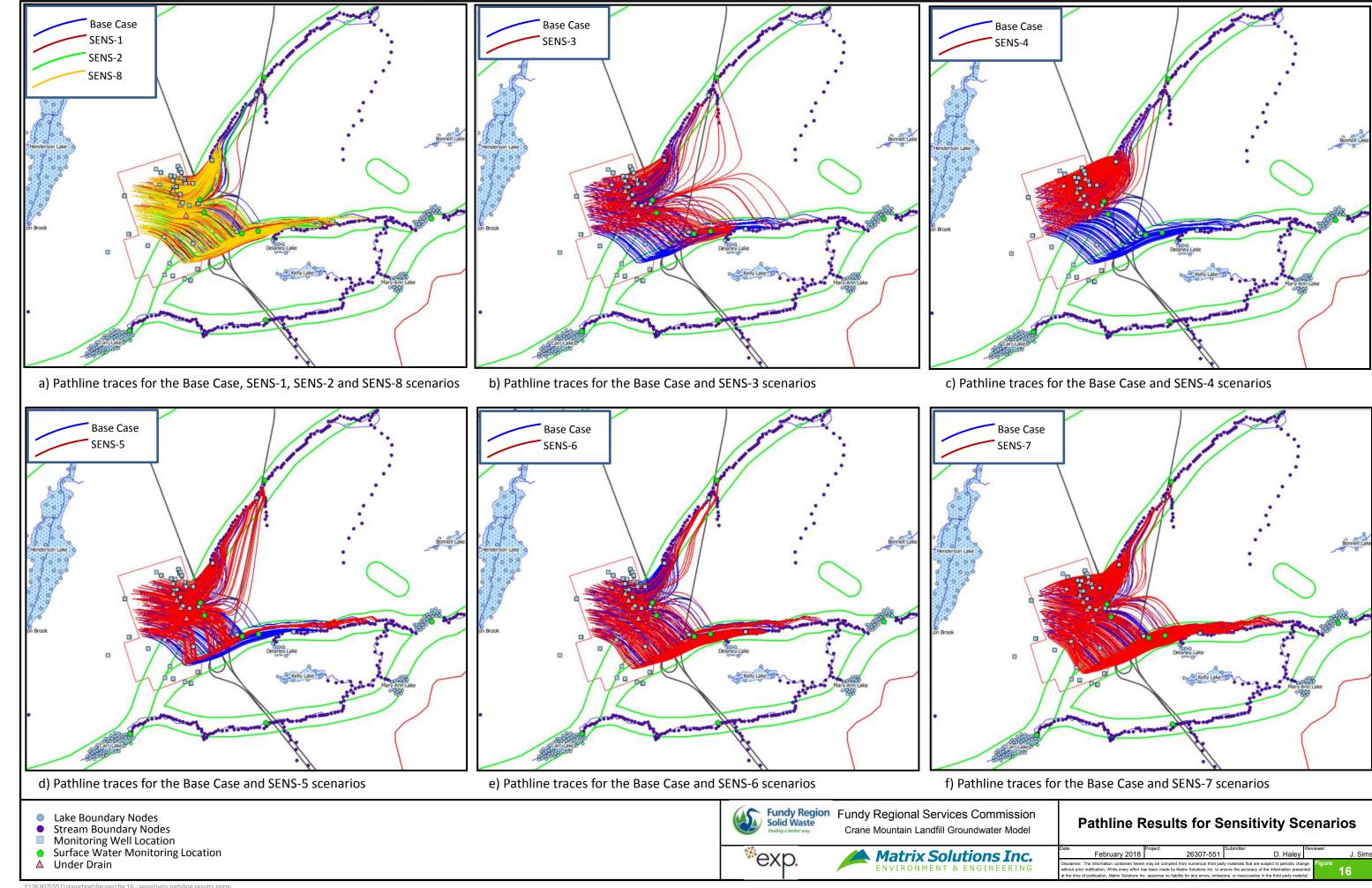
NOTES

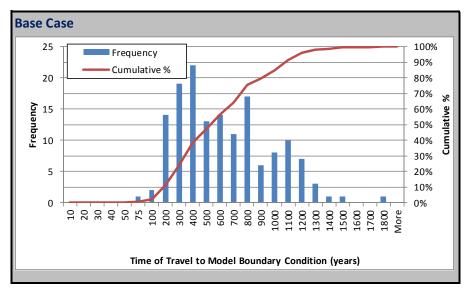
- Base map shows interpreted upper bedrock hydraulic heads from the November 2006 GEMTEC Update of Bedrock Hydrogeology report.
- 75 Base Case Simulated Head Contours
 - Surface Water Drainage Boundary Condition
 - Monitoring Well Location
 - Surface Water Monitoring Location
 - ▲ Under Drain

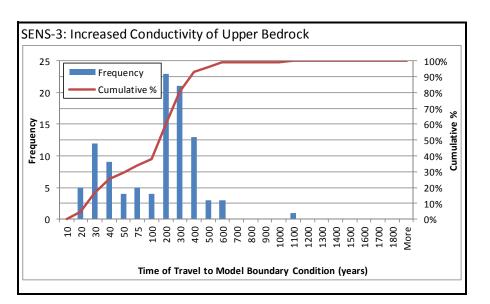


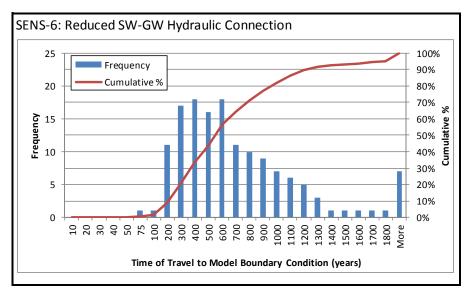

Fundy Regional Services Commission Crane Mountain Landfill Groundwater Model

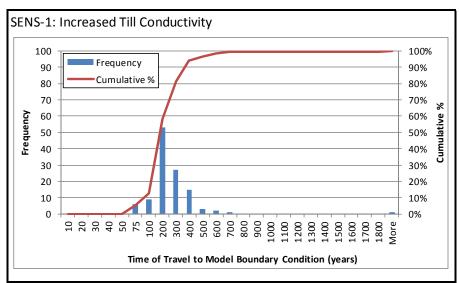

Base Case Hydraulic Head Distribution and Groundwater Flow Patterns – Plan View

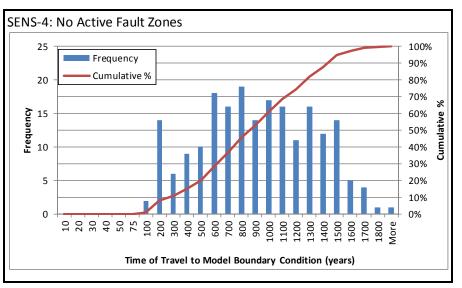

Date: February 2018 Project: Submitter: D. Haley Reviewer: J. Sims

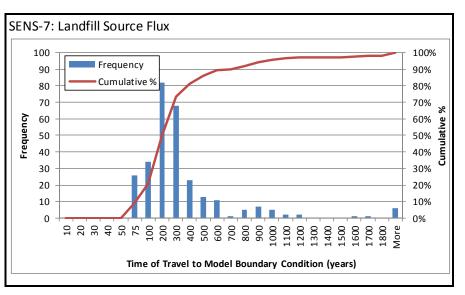

Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at the time of invitations. Matrix Solutions for to ensure the accuracy of the information presented at the time of invitations. Matrix Solutions for some present programments are being carried and the standard materials.

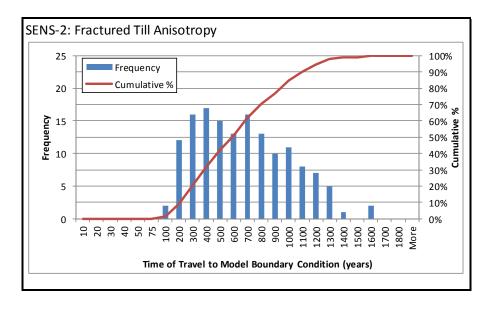


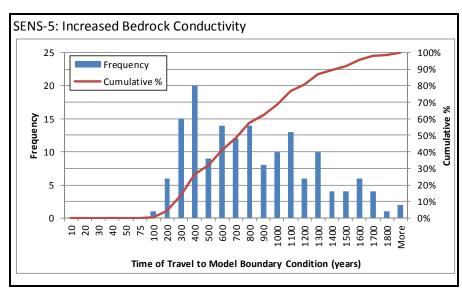


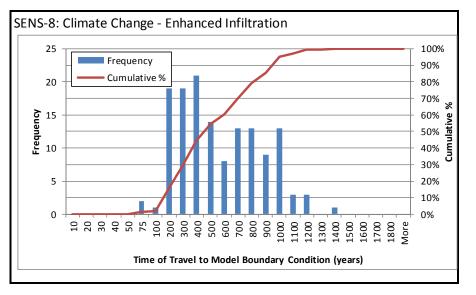


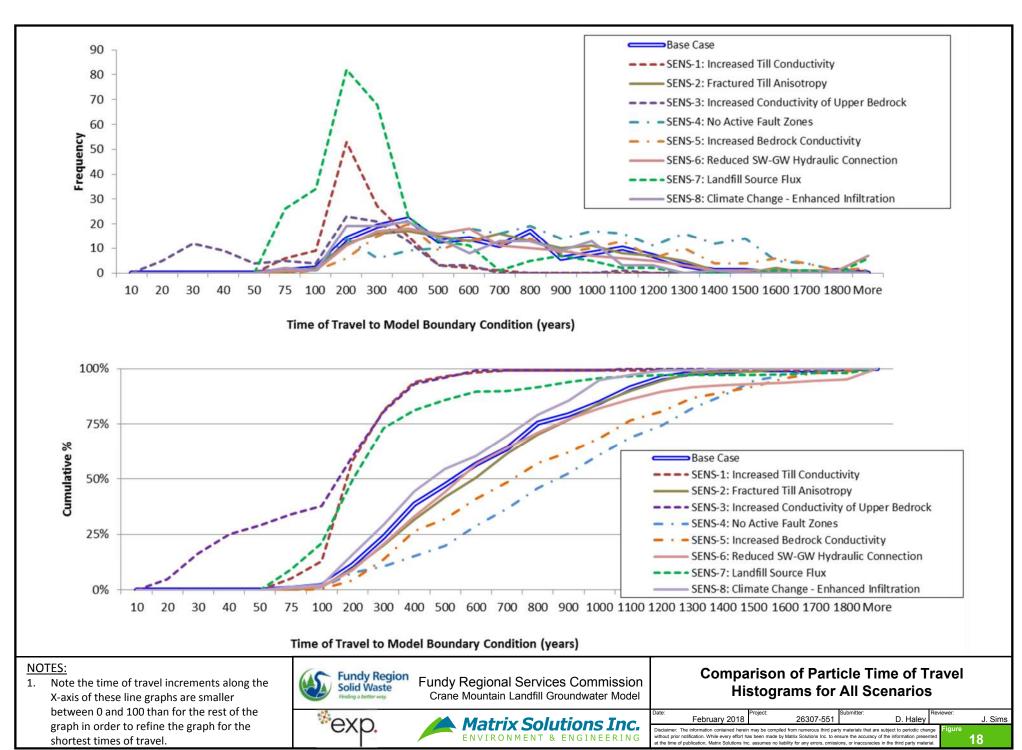











Fundy Region Fundy Regional Services Commission Crane Mountain Landfill Groundwater Model

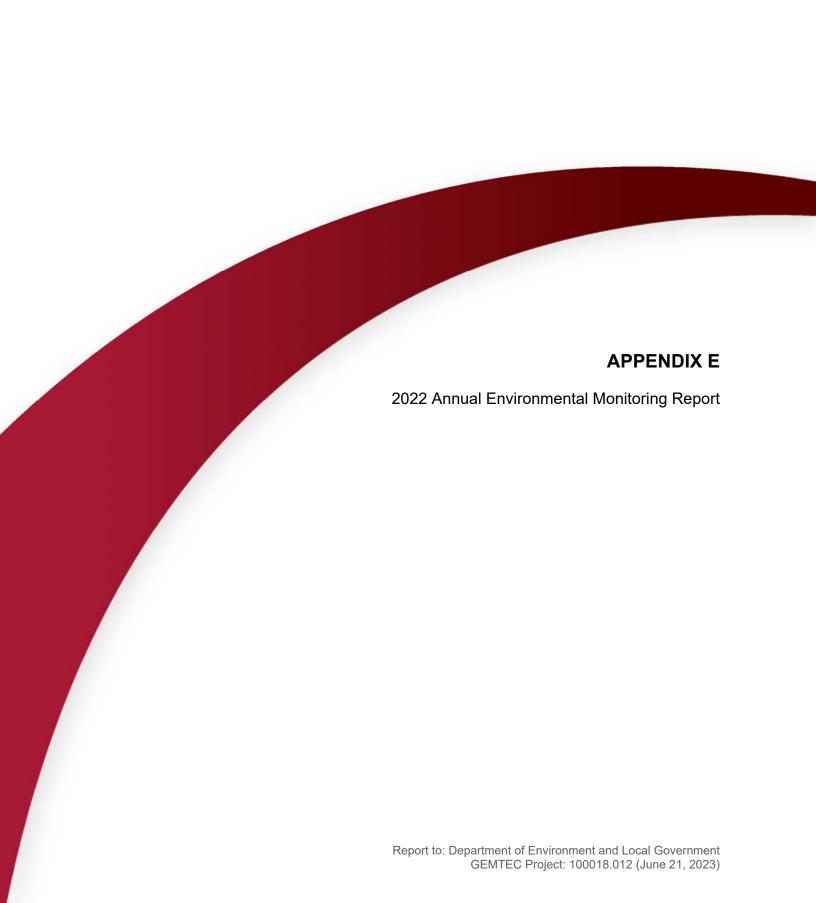
Time of Travel to Downstream Drainage Network Boundary Conditions

February 2018 26307-551 s

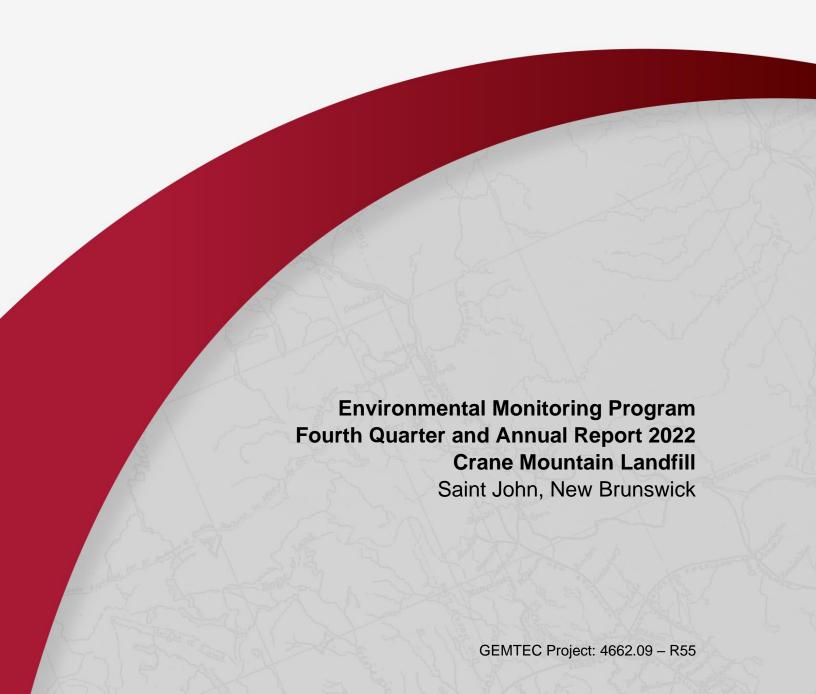
Appendix 3 – ABBREVIATIONS AND ACRONYMS

Abbreviation/Unit	Definition
cm	centimetre
DEM	Digital Elevation Model
HRD	Hydrostratigraphic Rock Domain
HU	Hydrostratigraphic Unit
Kh	Horizontal Hydraulic Conductivity
K _v	Vertical Hydraulic Conductivity
L/s	Litres per second
m	metre
mm	millimetres
m/s	metres per second
m ³ /day or m ³ /d	cubic metre per day
M m ³	Million cubic metres
mm/year	millimetres per year
masl	metres above sea level
mbgs	metres below ground surface

LIST OF FIGURES (TO BE DELETED FROM FINAL PDF)


- Figure 1: Site Location Showing Topography, Surface Drainage and Watershed Boundaries
- Figure 2: Bedrock Subcrop Map and Structural Features
- Figure 3: Surficial Geology
- Figure 4: Interpreted Thickness of Surficial Sediments
- Figure 5: Interpreted Water Table Depth
- Figure 6: Model Domain and Numerical Mesh
- Figure 7: Hydraulic Conductivity Assigned Over Model Layer 1 Surficial Sediments
- Figure 8: Hydraulic Conductivity Assigned Over Model Layer 3 Bedrock
- Figure 9: Hydraulic Conductivity Assigned Over West-East Cross-Sections A-A', B-B' and CC'
- Figure 10: Hydraulic Conductivity Assigned Over Northwest-Southeast Cross-Sections D-D' and E-E'
- Figure 11: Model Boundary Conditions
- Figure 12: Base Case Hydraulic Head Distribution, Groundwater Flow Patterns and Water Budget
- Figure 13: Base Case Hydraulic Head Distribution and Groundwater Flow Patterns W-E Cross-Sections
- Figure 14: Base Case Hydraulic Head Distribution and Groundwater Flow Patterns NW-SE Cross-Sections
- Figure 15: Base Case Pathline Results
- Figure 16: Pathline Results for Sensitivity Scenarios
- Figure 17: Time of Travel to Downstream Drainage Network Boundary Conditions
- Figure 18: Comparison of Particle Time of Travel for All Scenarios

LIST OF TABLES (TO BE DELETED FROM THE FINAL PDF)


Table 1: Data	Sources Used	to Develop t	he Numerical	Flow Model

- Table 2: Hydraulic Parameters and Boundary Conditions Base Case
- Table 3: Water Budget Results Base Case
- Table 4: Description of Sensitivity Scenarios
- Table 5: Hydraulic Parameters and Boundary Conditions Sensitivity Scenarios
- Table 6: Water Budget Results Sensitivity Scenarios

Fundy Regional Services Commission 10 Crane Mountain Road Saint John, New Brunswick E2M 7T8

Environmental Monitoring Program Fourth Quarter and Annual Report 2022 Crane Mountain Landfill Saint John, New Brunswick

March 6, 2023

GEMTEC Project: 4662.09 - R55

GEMTEC Consulting Engineers and Scientists Limited
191 Doak Road
Fredericton, NB, Canada
E3C 2E6

March 6, 2023 File: 4662.09 – R55

Fundy Regional Services Commission 10 Crane Mountain Road Saint John, New Brunswick E2M 7T8

Attention: Mr. Marc MacLeod, General Manager

Re: Environmental Monitoring Program, Fourth Quarter and Annual Report 2022 Crane Mountain Landfill, Saint John, New Brunswick

Enclosed are two copies of our monitoring report for October to December 2022 and the 2022 annual environmental monitoring program report for the Crane Mountain Landfill located in Saint John, New Brunswick.

Our conclusions and recommendations are presented in the following report. We would be pleased to discuss any questions that you or the committee may have regarding the content of this report. Please feel free to contact the undersigned if you have any questions or comments.

David Rae, Ph.D., P.Geo. Senior Risk Assessor Responsible for entire report, except Section 6.0: Breakthrough Requirements and associated conclusions Marco Sivitilli, P.Eng. Civil/Geotechnical Engineer Responsible for Section 6.0: Breakthrough Requirements and associated conclusions

cc: Sheryl Johnstone-Beaumont, P.Eng., Permitting South, NB Department of Environment and Local Government, Marysville Place (1 electronic copy)

N:\Projects\4600\4662.09\2022 Monitoring (Task 13)\Deliverables\R55 - Final Report\4662.09-R55_REV0_Annual Report 2023-03-06-FINAL.docx

TABLE OF CONTENTS

1.0 INT	FRODUCTION	1
2.0 MC	ONITORING SCHEDULE AND PARAMETERS	2
2.1 2.2 2.3 2.4	Groundwater Sampling (October to December) Underdrain Sampling (October to December) Surface Water (October to December) Leachate (October to December)	2 2
3.0 CO	OMPLIANCE MONITORING RESULTS (OCTOBER TO DECEMBER, 2022)	5
3.1 3.2 3.3 3.4 3.5	Screening Criteria Groundwater Underdrains Surface Water Results Leachate Effluent	5 6
4.0 AN 4.1 4.2	NUAL COMPLIANCE MONITORING RESULTS (2022) Domestic Well Sampling	7
	Landfill Monitoring	8 9 9
4.4. 4.4. 4.4.	Potable Water Wells	10 12 14
	ENDING GRAPHS	
5.1	Monitoring Wells	16
6.0 BR	EAKTHROUGH REQUIREMENTS	19
7.1	ONCLUSIONSGroundwater	27
7.2	Underdrains	28

7.3	Surface/Surficial Water	28
7.4	Breakthrough Analysis	29
8.0 RE	ECOMMENDATIONS	29
9.0 CL	OSURE	30
10.0 RE	FERENCES	31
LIST OF	FIGURES	
Figure 1	Monitoring Well Locations	3
Figure 2	Surface Water and Underdrain Monitoring Locations	4
Figure 3	Breakthrough Analysis for Cell 1	22
Figure 4	Breakthrough Analysis for Cell 3	23
Figure 5	Breakthrough Analysis for Cell 5	24
Figure 6	Breakthrough Analysis for Cell 8	25
Figure 7	Breakthrough Analysis for Leachate Surge Lagoon	26

LIST OF APPENDICES

APPENDIX A	Certificate of Approval (COA) and Monitoring Schedule
APPENDIX B	Asbestos Disposal Records
APPENDIX C	2022 Analytical Data
APPENDIX D	Groundwater Elevations
APPENDIX E	Selected Manganese Concentrations Trending Data
APPENDIX F	Selected Chloride Concentrations Trending Data
APPENDIX G	Selected Arsenic Concentrations Trending Data
APPENDIX H	Sedimentation Pond Discharge Data
APPENDIX I	2022 Meteorological Data
APPENDIX J	2022 Trending Data

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by the Fundy Regional Services Commission (former Fundy Regional Service Commission) to complete the 2022 compliance monitoring reporting requirements for the Crane Mountain Landfill (herein referred to as "the Landfill") located in Saint John, New Brunswick. This report is the fourth of the quarterly compliance monitoring reports that are required each year under the Landfill's Certificate of Approval to Operate (COA, I-11079), valid until November 30, 2025 (Appendix A). The monitoring schedule, as outlined in the COA, is also attached in Appendix A. The focus of the monitoring program is to assess the environmental impacts of the landfill on the groundwater and surface water systems in the vicinity of the landfill.

This report presents the analytical results and physical measurements that were obtained by Saint John Laboratory Services Ltd. in 2022. GEMTEC personnel did not observe or oversee the collection of any samples or field measurements. Additionally, GEMTEC was provided analytical results in a spreadsheet; laboratory certificates of the analysis were not provided to GEMTEC for review. GEMTEC provides no verification of the accuracy of the results, adherence to standard field sampling procedures or compliance with field sampling procedures stipulated in the COA with regard to sampling completed by Saint John Laboratory Services Ltd.

Objectives of this report include identifying possible analytical anomalies over the reporting period with particular attention to leachate indicator parameters. Recommendations are provided to address any monitoring issues. This report is limited to the compliance monitoring and reporting requirements as specified in Sections 95 – 113 of the COA and no comments or observations are made concerning the operation of the landfill. GEMTEC's scope of work was limited to completion of the reporting requirements in Section 112 (first three quarterly reports) and Section 113 (fourth quarter and annual report) of the COA.

2.0 MONITORING SCHEDULE AND PARAMETERS

In accordance with the COA, compliance monitoring for the fourth period of 2022 (October to December) included the following:

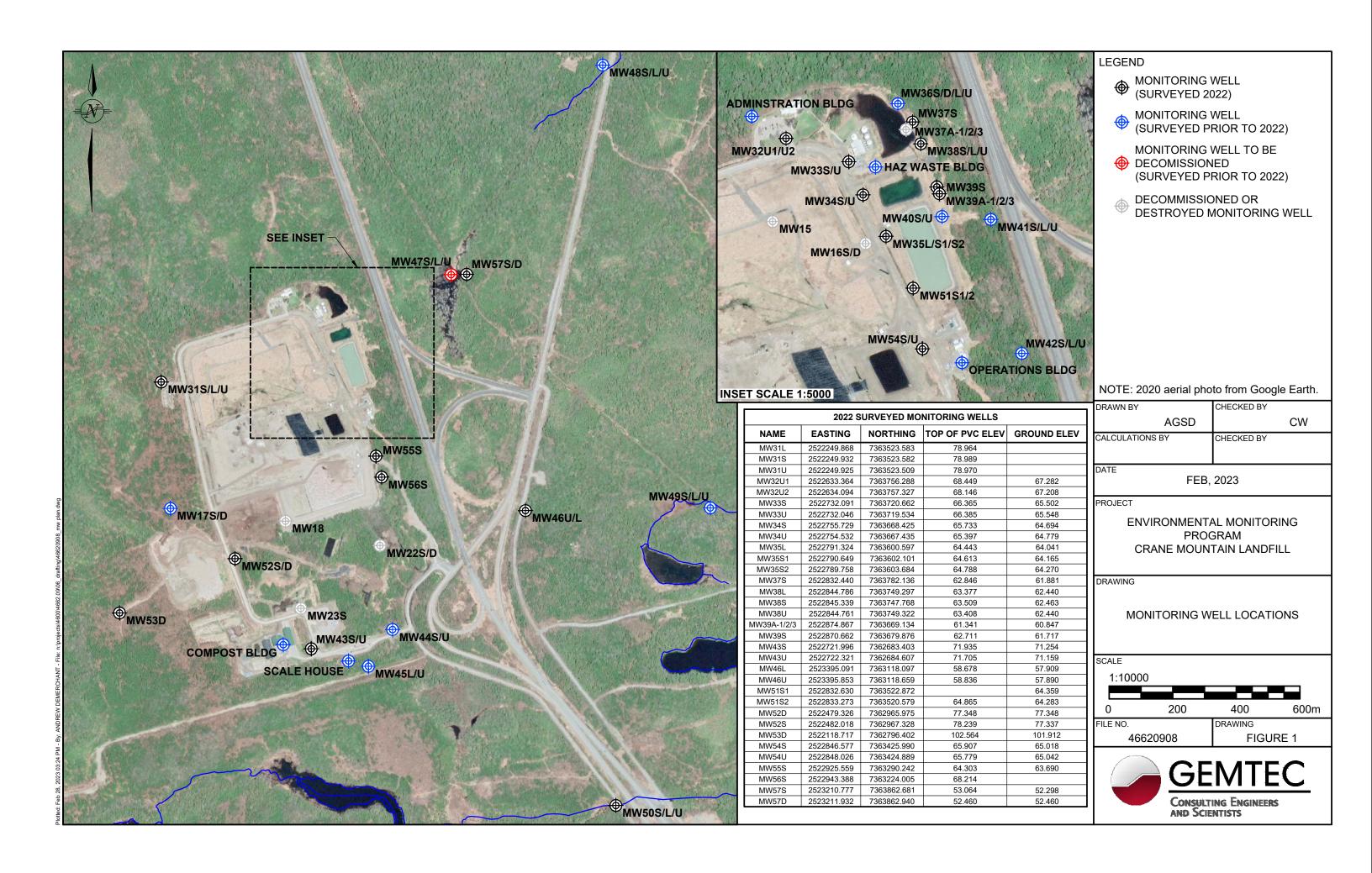
2.1 Groundwater Sampling (October to December)

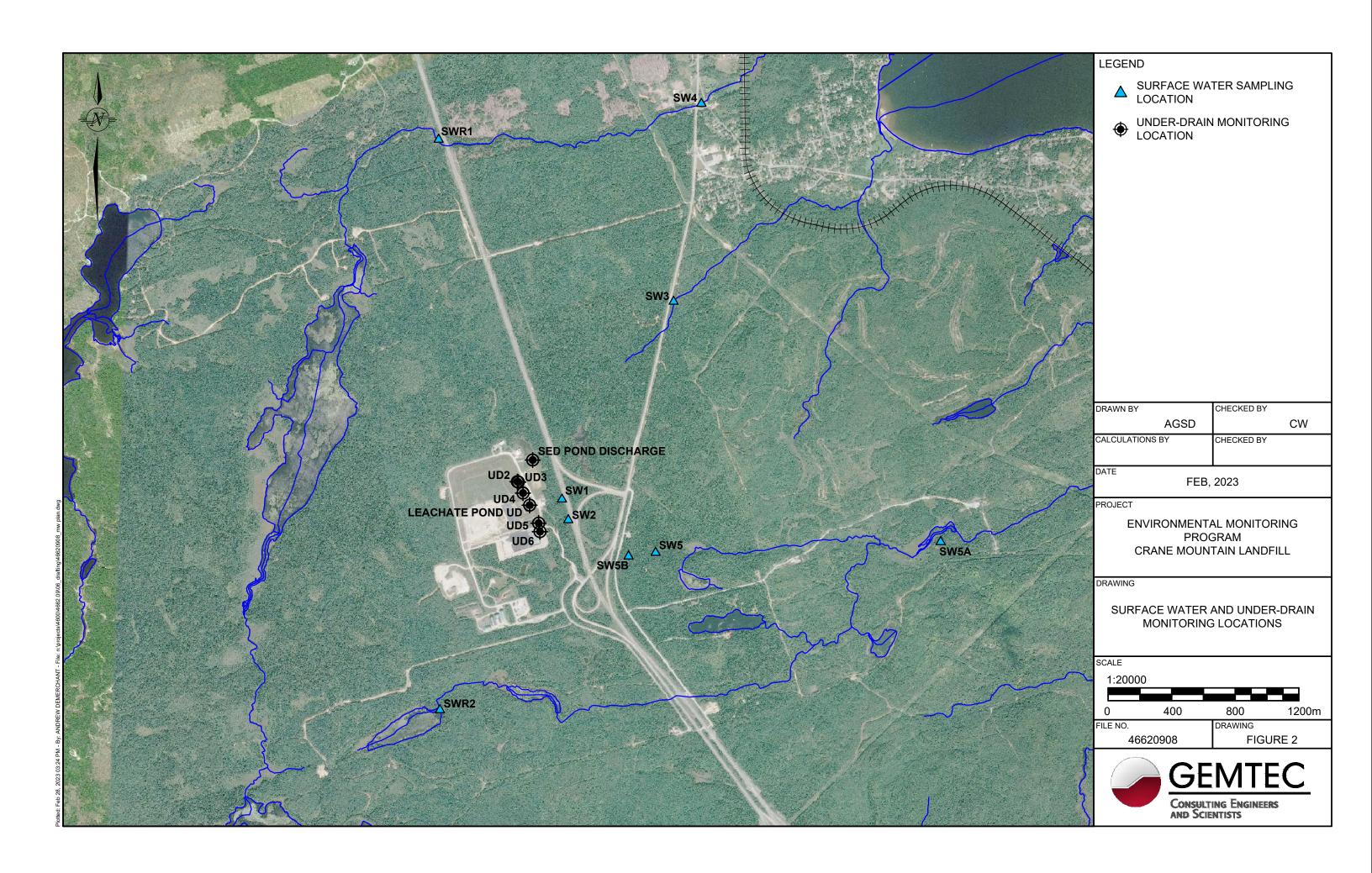
Collection of groundwater samples from select groundwater monitoring wells in November 2022 for analysis of general chemistry parameters.

2.2 Underdrain Sampling (October to December)

Collection of underdrain samples in November 2022 for analysis of general chemistry parameters, trace metals and BTEX/Modified TPH.

2.3 Surface Water (October to December)


Collection of one surface water sample (Sed Pond) in November 2022 for analysis of general chemistry parameters, trace metals and BTEX/Modified TPH.


2.4 Leachate (October to December)

Collection of monthly leachate effluent samples in October, November and December, 2022 for analysis of alkalinity, ammonia, barium, boron, biological oxygen demand (BOD₅), cadmium, chemical oxygen demand (COD), chromium, calcium, chloride, copper, cyanide, iron, magnesium, manganese, lead, mercury, nitrate-nitrite, nickel, phenols, sodium, sulphate, total suspended solids (TSS), total dissolved solids (TDS), total organic carbon (TOC), total kjeldahl nitrogen (TKN), phosphorous, potassium, zinc and BTEX/Modified TPH.

All of the monitoring well locations at the facility are shown in Figure 1 with the surface water and underdrain sampling locations displayed in Figure 2.

3.0 COMPLIANCE MONITORING RESULTS (OCTOBER TO DECEMBER, 2022)

All samples were analyzed by Saint John Laboratory Services Ltd., with the exception of the trace metals thallium and uranium, which were analyzed by RPC Science & Engineering (RPC) in Fredericton, New Brunswick.

Field parameters including temperature, conductivity, dissolved oxygen (DO), and pH were measured by Saint John Laboratory Services Ltd. According to Saint John Laboratory Services Ltd. all field meters were calibrated prior to each sampling event.

3.1 Screening Criteria

The screening criteria used to evaluate the sample results are as follows:

Groundwater results from the monitoring wells and shallow infrastructure, such as the underdrains, were evaluated against historical data, the Guidelines for Canadian Drinking Water Quality (GCDWQ, 2020), and the Atlantic Risk-Based Correction Action (RBCA) Tier I Risk Based Screening Levels (RBSLs, 2022) for an industrial-potable site. Drinking water guidelines are used for comparison purposes only and an exceedance of a guideline does not necessarily indicate contamination, as some of the groundwater parameters exceeding the GCDWQ are naturally occurring.

Surface water data are compared to historical data, the Canadian Council of Ministers of the Environment (CCME) Water Quality Guidelines for the Protection of Fresh Water Aquatic Life (FWAL), and the RBCA Tier I Ecological Screening Levels (ESLs) for an industrial-potable site.

Leachate effluent results are compared to municipal standards for BOD₅ and historical results. Leachate effluent from the Crane Mountain Landfill is sent to the City of Saint John municipal treatment facility and must meet the municipal standard.

3.2 Groundwater

The general chemistry results for samples collected from the groundwater monitoring wells are presented in Table C1-1, in Appendix C. Field data for the groundwater samples are presented in Table C1-4 in Appendix C.

Samples were collected from eight groundwater monitoring wells (MW33U, MW34S, MW34U, MW35L, MW35S2, MW38U, MW41S, and MW41U) on November 24, 2022. A duplicate sample was also collected from MW33U in November. All required wells were sampled in accordance with the facility's COA (I-11079).

With respect to the GCDWQ, the following exceedances are noted:

- In November 2022, turbidity was observed at levels exceeding the GCDWQ of 1 nephelometric turbidity unit (NTU) in groundwater samples collected from three monitoring wells; MW34S (2.27 NTU), MW35L (1.59 NTU), and MW35S2 (19.9 NTU). Turbidity is due to naturally occurring particles in groundwater and elevated turbidity is typical for samples collected from monitoring wells where sampling techniques involve the rapid removal of water from wells. The GCDWQ for turbidity is based on treatment limits for filters and is not a health-based guideline.
- The concentration of manganese exceeded the GCDWQ aesthetic objective (AO) of 0.02 mg/L, and the Maximum Acceptable Concentration (MAC) of 0.12 mg/L at two monitoring wells in November 2022: MW34U (0.13 mg/L), and MW41S (0.223 mg/L). The observed manganese concentrations are within the ranges of historical data at these locations.

3.3 Underdrains

The analytical results for general chemistry parameters, trace metals, and BTEX/Modified TPH for the underdrain samples are presented in Tables C2-1, C2-2 and C2-3, respectively, in Appendix C; field parameters are presented in Table C2-4 in Appendix C. Samples were collected from five underdrain sampling locations (UD3, UD4, UD5, UD6 and the Leachate Surge Pond UD) on November 24, 2022. UD6 was incorporated into the sampling program in November 2018.

PHCs were not detected in any of the underdrain samples collected during this reporting period. With respect to general chemistry and trace metals parameters, underdrain results met the GCDWQ, with the following exceptions:

The concentration of manganese exceeded the GCDWQ AO of 0.02 mg/L and the MAC of 0.12 mg/L at Leachate Surge Pond UD (0.102 mg/L). The observed manganese concentrations were within historical ranges at this location.

3.4 Surface Water Results

The Sed Pond was the only surface water sample collected during this monitoring period. The analytical results for general chemistry parameters (including BOD₅, TKN, TDS, and TSS), trace metals, and BTEX/TPH are presented in Tables C3-1, C3-2, and C3-3, respectively, in Appendix C; field parameters are presented in Table C3-4 in Appendix C.

PHCs were not detected at the Sed Pond during this reporting period. With respect to general chemistry and trace metals parameters, the Sed Pond met the CCME FWAL guidelines, with the following exceptions:

 The aluminum concentration at the Sed Pond in November 2022 (153 μg/L) exceeded the CCME FWAL pH-dependent guideline of 100 μg/L. This concentration is within historical ranges.

15 sedimentation pond discharge events occurred in 2022. TSS is recorded during the discharge events and compared to a maximum TSS value of 25 mg/L as outlined in the COA. Of the 15 discharge events, none exceeded the maximum TSS value. The TSS values from the 2022 sedimentation pond discharge events are presented in Appendix H.

3.5 Leachate Effluent

Samples of the facility's leachate effluent (MH#1) were collected in October, November and December, 2022. The samples were analyzed for specific parameters according to Section 103 of the COA. Analytical results for the leachate effluent are presented in Table C4-1 in Appendix C.

The landfill's leachate effluent is trucked to the City of Saint John's wastewater treatment facility. There are no provincial compliance requirements or standards outlined in the Approval for the effluent. However, the City of Saint John stipulates that the effluent sample must have a weighted average BOD_5 value less than 400 mg/L. The results indicate that the BOD_5 values from October to December, 2022 ranged from 17 mg/L (December) to 35 mg/L (November), with a non-weighted average of 24 mg/L.

4.0 ANNUAL COMPLIANCE MONITORING RESULTS (2022)

4.1 Domestic Well Sampling

Samples from 49 domestic wells in the Martinon area of Grand Bay-Westfield were collected in September 2022. All samples were collected by GEMTEC personnel and submitted to RPC for general chemistry and trace metals analyses.

A copy of the results were sent to individual homeowners and to the New Brunswick Department of Health. Sampling results are not discussed in this report in order to maintain the confidentiality of the participants in the program.

4.2 Groundwater Elevation

The depth to water was measured at all monitoring well locations prior to sample collection. In general, the groundwater levels are consistent with historical findings. Regionally, the groundwater appears to trend southeast. The groundwater elevation data is presented in Appendix D.

4.3 Landfill Monitoring

The environmental sampling requirements are presented in the Approval issued to the landfill by the New Brunswick Department of Environment and Local Government (NBDELG). The current Approval (I-11079) came into effect on December 01, 2020 and is valid until November 30, 2025.

Saint John Laboratory Services Ltd, contracted by the Fundy Regional Services Commission, collected all samples in 2022. A copy of Approval I-11079 is included in Appendix A. Furthermore, as per the Approval, a copy of the facility's Asbestos Disposal Record is attached in Appendix B of this report.

The environmental compliance monitoring for 2022 included the following:

4.3.1 Groundwater Sampling

According to the compliance monitoring schedule, samples were scheduled to be collected from 56 groundwater monitoring wells in the spring and fall (April and September) of 2022 for analysis of general chemistry, trace metals and BTEX/TPH. Eighteen of these locations (MW32U2, MW33U, MW34S, MW34U, MW35L, MW35S2, MW38U, MW41S, MW41U, MW51D, MW51S1, MW51S2, MW52D, MW52S, MW53D, MW54S, MW54U, MW55S, and MW56S) were also scheduled to be sampled during the summer (July 2022). Eight of these locations (MW33U, MW34S, MW34U, MW35L, MW35S2, MW38U, MW41S, and MW41U) were scheduled to be sampled in February and November 2021. Two sampling locations (MW55S and MW56S) were scheduled to be sampled in April and September 2022 for general chemistry analysis only. Two new wells were installed in August 2018 (MW55S and MW56S) and have been included in the compliance monitoring schedule. An additional two new wells (MW57S/D) were added to the sampling rotation. These wells were drilled in September 2022 approximately 30 m to the east of MW47L/S/U to replace these wells. Once wells MW57S/D were drilled and operational, the Department of Environment and Local Government gave approval to decommission wells MW47L/S/U. These wells were successfully decommissioned in November 2022. With the exception of those locations noted in Table 1, all monitoring well stations were sampled as scheduled.

Table 1 Locations Not Sampled in 2022

Sample Location	Date	Comment
MW39S	April & September	Has not been sampled since at least 2011. The well was checked in 2022, and should be sampled moving forward. The well was dry when attempted to sample in 2022.
MW41S	February	Inaccessible
MW41U	February	Inaccessible
MW46U	April & September	Well casing warped around piezometer

MW47 WELL NEST	April & September	Damaged Bridge (Decommissioned November 2022)
MW50U	April & September	Well casing warped around piezometer

4.3.2 Potable Water Sampling

Samples from five potable groundwater well sites (Administration Building, Operations Building, Haz Waste Building, Scale House, and Compost Buildings) were collected on October 20, 2022. Samples collected from all potable groundwater sampling locations were analyzed for general chemistry, thallium, uranium, and bacteria (Total Coliforms and *E.coli*). It is important to note the following:

- The Administration Building had a UV water treatment system installed in December 2021;
- The Gate House water supply is for washroom use only (potable water is supplied); and
- The Maintenance Building, Compost Building, and Zenon Building's water supply is for washroom and operational purposes only (potable water is supplied).

4.3.3 Surface Water Sampling

Samples from six surface water sampling sites (downstream surface water samples) were collected in the spring and fall (between April and September 2022) as per the COA. Samples were also collected from two reference sites (SWR1 and SWR2) during these months. The sedimentation pond discharge location (Sed Pond) was sampled in February, April, July, September, and November 2022. Samples collected from all surface water sampling locations were analyzed for general chemistry, trace metals, BTEX/TPH, Biochemical Oxygen Demand (BOD₅), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), and Total Dissolved Solids (TDS).

4.3.4 Underdrains Sampling

Samples from underdrains UD3, UD4, UD5, UD6, and the Leachate Surge Pond underdrain (leachate pond UD) were scheduled to be collected in March, April, July, September, and November 2022 for analysis of general chemistry, trace metals, BTEX/TPH, BOD₅, COD, TKN, and TSS. All underdrain sample stations were sampled as scheduled.

4.3.5 Leachate Sampling

Leachate samples were collected monthly and analyzed for the following parameters: Alkalinity, Ammonia, Barium, Boron, BOD₅, Cadmium, COD, Chromium, Calcium, Chloride, Copper, Cyanide, Iron, Magnesium, Manganese, Lead, Mercury, Nitrite-Nitrate, Nickel, Phenols, Sodium, Sulphate, TSS/TDS, TKN, and Zinc.

Saint John Laboratory Services Ltd. reports that all field-testing equipment was calibrated prior to each sampling event, that all the monitoring wells were purged prior to samples being obtained and that all samples were filtered through 0.45 µm filters for the analysis of chloride, sulphate, nitrates, and trace metals. Field parameters were measured at all sampling locations. All parameters, with the exception of uranium and thallium, were analyzed by Saint John Laboratory Services Ltd. in Saint John, New Brunswick. Uranium and thallium analyses were conducted by RPC.

PHCs were not detected in any of the groundwater samples collected in 2022. Groundwater monitoring locations are shown in Figure 1 and surface water and underdrain locations are shown in Figure 2.

4.4 Results

4.4.1 Groundwater Results

Results for general chemistry parameters, trace metals, and BTEX/TPH for samples collected from the groundwater monitoring wells are presented in Tables C1-1 through C1-5 in Appendix C. Field data for the groundwater samples are presented in Table C1-6 in Appendix C. Groundwater results from the monitoring wells were evaluated using historical data and GCDWQ. Drinking water guidelines are used for comparison purposes only and an exceedance of a guideline does not necessarily indicate contamination, since some of the groundwater parameters commonly exceed these guidelines due to natural conditions. The results were also compared to the Atlantic RBCA Environmental Quality Standards (EQS) for groundwater for an industrial potable site, with coarse grained soil. These guidelines vary based on the distance to surface water, the results are broken down into greater than 10 m or less than 10 m from a surface water body.

Several parameters in groundwater samples exceeded historical concentrations; however, they did not exceed GCDWQ guidelines if available for the parameter. The following maximum concentrations were noted: nitrate + nitrite at MW55S; potassium at MW45L, MW49U, and MW50S; sulfate at MW52D; sodium at MW52D; arsenic at MW56S. There were multiple locations where concentrations of alkalinity, chloride, calcium, magnesium and bicarbonate exceeded their historical concentrations.

Chloride concentrations did not exceed guidelines at any location. Chloride can be an indicator of leachate. The chloride trend in monitoring wells MW50S/L/U have all shown increased levels of chloride. This well is located downgradient from the landfill. Based on water level information provided from Saint John laboratory Services, it appears the groundwater flows southeast. This well cluster is also located directly beside Route 7. The chloride levels in wells upgradient from MW50S/L/U have also shown slight increasing trends in chloride. The chloride trend graphs are plotted in Appendix F.

With respect to general chemistry and trace metals parameters, groundwater samples met the guidelines in 2022, with the following exceptions:

General Chemistry

- Elevated turbidity exceeding the GCDWQ Aesthetic Objective (AO) of 1.0 NTU was observed at 26 monitoring ells during one or more of the sampling events in the following months: March, April, July, September, and November. This is consistent with historical data. Turbidity is due to naturally occurring particles in groundwater and elevated turbidity is typical for samples collected from the monitoring wells where sampling techniques involve the rapid removal of water from wells. The GCDWQ for turbidity is based on treatment limits for filters and is not a health-based guideline.
- Elevated iron concentrations exceeding the GCDWQ Aesthetic Objective (AO), Atlantic RBCA EQS, and Human Health guideline of 0.3 mg/L was observed at MW36S (1.003 mg/L) in April. The observed concentration is within historical ranges.
- Concentrations of manganese exceeded the GCDWQ AO of 0.02 mg/L at 21 of the 56 monitoring wells sampled in 2022. The concentrations of manganese at 10 monitoring wells also exceeded the MAC (health-based guideline) of 0.12 mg/L. Manganese is frequently detected in groundwater samples recovered from the site at concentrations in excess of the GCDWQ AO and MAC. The observed manganese concentrations are within the ranges of historical data at these locations. Trend graphs for manganese concentrations at select locations are presented in Appendix E. It should be noted that the original monitoring wells MW54S and MW54U were decommissioned in June 2011 and new monitoring wells were installed in the same location in October 2011; therefore, the observed concentrations of manganese at these two locations may not be comparable to historical data.
- pH was below the GCDWQ acceptable range of 7.0 to 10.5 in April 2022 at MW31S (6.6), MW41S (5.4), and MW53D (6.2); July at MW41S (5.8), MW53D (5.7); September 2022 at MW36S (6.7), MW43S (6.7), MW43U (6.9), MW44S (6.4), MW52D (6.9), and MW53D (6.8); November at MW41S (6.2). These measurements are consistent with historical data. No samples recovered from the monitoring well locations were higher than the upper limit (10.5). The GCDWQ for pH is not a health-based guideline; it is related to effectiveness of potable groundwater treatment, controlling corrosion, and reducing leaching from plumbing and distribution systems (HC, 2019).
- Colour exceeded the GCDWQ aesthetic objective at a number of monitoring wells during each sampling event. The GCDWQ is an aesthetic objective based on disinfection of potable groundwater and is not a health-based guideline. Colour is due to naturally occurring organic substances, metals or industrial wastes (Health Canada, 2019).

Trace Metals

- Monitoring wells were separated based on their vicinity to surface water because the Atlantic RBCA ecological guidelines are lower if the groundwater is < 10m from a surface water body. Aluminum was detected at concentrations exceeding the Atlantic RBCA ecological guideline (< 10 m from surface water) of 5 µg/L at MW36L (April and September), MW36S (April and September), MW36U (April and September; parent and duplicate), and MW38L (April and September). The Atlantic RBCA ecological guideline (>10 m from surface water) of 50 µg/L was exceeded at MW43S (September), and MW57D (September). The concentrations also exceeded the GCDWQ and Atlantic RBCA guideline of 100 µg/L at MW36S (April and September), MW41S (April and September), MW43S (April), MW43U (April and September), and MW57S (September). The above GCDWQ for aluminum is an operational guideline and is not health-based. It is related to treatment plants using aluminum-based coagulants and does not apply to naturally occurring aluminum in groundwater (HC, 2019). GCDWQ also published a health-based maximum acceptable concentration (MAC) of 2900 µg/L. This human health-based guideline was not exceeded at any sampling location. All concentrations were within historical ranges.
- Concentrations of arsenic exceeded the Atlantic RBCA Ecological guideline (< 10 m from surface water) of 5 μg/L at MW36L in April (8 μg/L), and September (9 μg/L). The GCDWQ MAC of 10 μg/L, and the Atlantic RBCA Ecological guideline (> 10 m from surface water) of 50 μg/L was exceeded at MW44U in April (53 μg/L, parent and duplicate) and September (51 μg/L, parent and duplicate), and MW45L April (73 μg/L), and September (80 μg/L). Trend graphs for arsenic concentrations at these locations are presented in Appendix G.
- Concentrations of copper exceeded the Atlantic RBCA ecological guideline (< 10m from surface water) of 2 μ g/L at MW36S (7 μ g/L April, and 5.1 μ g/L September). This concentration falls within historical ranges.
- Concentrations of zinc exceeded the Atlantic RBCA Ecological guideline (< 10 m from surface water) of 7 μ g/L at MW36S in April (14 μ g/L). This concentration falls within historical ranges.

4.4.2 Potable Water Wells

Groundwater results from the potable groundwater wells were evaluated using historical data and the GCDWQ. Drinking water guidelines are used for comparison purposes only and an exceedance of a guideline does not necessarily indicate contamination, since some of the groundwater parameters commonly exceed these guidelines due to natural circumstances. Analytical results are presented in Table C-5 in Appendix C.

With respect to the GCDWQ, there were no exceedances in the samples collected in 2022, with the following exceptions:

Arsenic in the groundwater sample collected from the Scale House (0.041 mg/L; GCDWQ: 0.01 mg/L); this is within the historical range of <0.001 mg/L to 0.057 mg/L at this sampling location. Mr. Ron Nelson of FRSC indicated that the landfill is aware of the arsenic exceedances in the potable water at the Gate House and that the water has not been consumed since arsenic exceedances were first identified. According to Mr. Nelson, bottled water is provided for consumption at the Gate House and at the other buildings at the landfill as well.

4.4.3 Underdrains

The analytical results for general chemistry parameters, trace metals, and BTEX/TPH for the underdrain samples are presented in Tables C2-1, C2-2 and C2-3 in Appendix C; field parameters are presented in Table C2-4 in Appendix C. Groundwater results from the underdrains were evaluated using historical data and the GCDWQ.

Sulfate exceeded historical concentrations at UD5; however, no GCDWQ was available for sulfate.

PHCs were not detected in any of the underdrain samples collected in 2022. With respect to general chemistry and trace metals parameters, underdrain results met the GCDWQ, with the following exceptions:

General Chemistry and Trace Metals:

- The concentration of manganese exceeded the GCDWQ AO of 0.02 mg/L at UD4 (0.024 mg/L, March), UD5 (0.029 mg/L, March), UD6 (0.022 mg/L, November), and Leach Surge Pond UD (0.097 mg/L, March; 0.034, July). The concentrations of manganese at UD3 (March), UD6 (March), and Leach Surge Pond UD (November) also exceeded the GCDWQ MAC of 0.12 mg/L. The observed concentrations are within the ranges of historical data at these locations. An all-time high concentration was detected at UD6 in March, however, this location was sampled for the first time in November 2018; therefore, historical trends have not yet been established. Concentrations of manganese above the GCDWQ have been observed in samples collected from the underdrains in the past. Trend graphs for the concentration of manganese at UD3, UD4 and Leach Surge Pond UD are presented in Appendix E.
- Elevated turbidity exceeding the GCDWQ Aesthetic Objective (AO) of 1.0 NTU was observed at UD6 (1.15 NTU, March), and Leach Surge Pond UD (1.12 NTU, March).

4.4.4 Surficial and Surface Water

The analytical results for general chemistry parameters (including BOD₅, TKN, TDS, and TSS), trace metals, and BTEX/TPH are presented in Tables C3-1, C3-2 and C3-3 in Appendix C; field parameters are presented in Table C3-4 in Appendix C and calculated CCME FWAL guidelines are presented in Table C3-5 in Appendix C. Samples were also collected from the Sedimentation Pond (Sed Pond) discharge at the mid-point of all discharges and analyzed for TSS. The mid-point Sedimentation Pond (Sed Pond) discharge TSS data is attached in Appendix H. The daily meteorological data for 2022 are presented in Appendix I.

One surface water sample exceeded its historical concentration in strontium (101 μ g/L); however, it does not have a CCME FWAL guideline. PHCs were not detected in any of the surface water samples collected in 2022. With respect to general chemistry and trace metals parameters, surface water samples met the CCME FWAL guidelines, with the following exceptions:

General Chemistry and Trace Metals:

- The aluminum concentrations at SW1 (115 µg/L, September; parent and duplicate), SWR1 (182 µg/L, September), and Sed Pond (153 µg/L, November) exceeded the CCME FWAL pH dependant guideline of 100 µg/L. These concentrations are within historical ranges.
- The copper concentration at SW1 in April (0.003 mg/L; duplicate only), SW5 in April (0.004 mg/L), and Sed Pond in April (0.010 mg/L) exceeded the CCME FWAL hardness dependant, sample specific guideline. These concentrations are within historical ranges.
- The zinc concentration at SW1 (12 μg/L, September; parent and duplicate), SW5 (9 μg/L, September), SW6 (9 μg/L, September), and Sed Pond (13 μg/L, September) exceeded the CCME FWAL pH, hardness and dissolved organic carbon dependant sample specific guideline. These concentrations are within historical ranges.

4.5 Leachate Effluent

Samples of the facility's leachate effluent (MH#1) were collected monthly in 2022. The samples were analyzed for specific parameters according to the facility's COA. The 2022 results for the leachate effluent are attached in Appendix C4-1.

The facility's leachate effluent is trucked to the City of Saint John municipal sewage treatment facility. There are no provincial compliance requirements or standards outlined in the Approval for the effluent. However, the City of Saint John stipulates that effluent samples must have a weighted average BOD_5 value less than 400 mg/L. However, there is an agreement with the City of Saint John stating that if the weighted average BOD_5 value is greater than the stipulated 400 mg/L a surcharge is applied. The results indicate that the monthly average BOD_5 values from 2022 ranged from 24.3 mg/L to 113.3 mg/L with an annual average of 58.58 mg/L. The 2022 results for the weighted BOD_5 are attached in Table C4-1 in Appendix C.

5.0 TRENDING GRAPHS

The trending graphs presented in Appendix J were compiled using all the available data for the Crane Mountain Landfill (1997 to present). Tabulated general chemistry and trace metal data for select monitoring points is presented in the trending graphs. During plotting it was necessary to assign values to data points, which were below their respective analytical detection limits. In this case, values below the detection limits were assigned values equal to half their respective detection limits. For example, data points with concentrations less than the detection limit for ammonia (< 0.5 mg/L) were assigned a value of 0.25 mg/L.

This section highlights significant trends or analytical anomalies noted in the tabulated and plotted data (1997 to present). Trending graphs for each monitoring well and cell underdrains are attached in Appendix J for the following parameters: alkalinity, ammonia, barium, boron, calcium, chloride, conductivity, iron, magnesium, pH, sodium, sulfate, and total organic carbon.

5.1 Monitoring Wells

With respect to on-site wells, the following trends were observed:

- An increasing trend in chloride concentrations has been observed at the following monitoring well locations: MW35S2, MW38L, MW42S, MW43S, MW44S, MW45L, and MW45U. It should be noted that the observed chloride concentrations at these monitoring locations are below the GCDWQ AO of 250 mg/L. At MW34S, the chloride concentration continues to decrease from the observed high of 166.1 mg/L in 2011. A decreasing trend is observed for chloride concentration at sampling location MW34U, after a historical high value of 47.6 mg/L (February 2019). Increasing trends of chloride at MW33S and MW41S have been reported in the past; however, chloride concentrations at these locations have decreased and remained stable. Chloride concentrations at MW51D were previously showing an increase trend and a chloride spike (17 mg/L) was also observed in September 2016. Chloride concentrations have since returned to historical levels and have been stable at this monitoring well. Increasing trends of chloride concentrations have been observed at MW37S until 2013 and have since been showing a decreasing trend. All-time high concentrations of chloride was observed at MW35S2 (9.9 mg/L; April 2022), MW42S (11.5 mg/L; April 2022), MW44U (18.4 mg/L; September 2022), and MW45U (57.3 mg/L; April 2022), however, none of the reported concentrations exceeded the GCDWQ.
- An increasing trend in calcium concentrations was observed at MW43S, MW44S, MW51S1, MW52S, and MW52D. A slight increasing trend in calcium concentrations was also observed at MW33S since 2012. An increasing trend in calcium concentrations at MW31L was observed from 2010 to 2013 but has since remained relatively stable. A decreasing calcium trend was previously noted at MW45L and MW54S; however, spikes in concentration were observed in 2019 the concentrations decreased in 2020 but then

have since steadily increased. A decreasing trend in calcium concentrations was also observed at: MW31S, MW31U, MW32U1, MW32U2, MW33S, MW34U, MW34S (since 2000), MW36S, MW38U, MW38L, MW36S, MW41S (since 2011), MW46L (since 2005), and MW54S (since 2014). Calcium concentrations at MW42S has been decreasing since 2008 with spikes beginning in September 2020 leading to a new all time high in April 2022 (36.5 mg/L). The concentration at MW35S1 has been increasing since September 2013, but in September 2022 the concentration began to trend downward. MW52D has been trending upward and hit an all time high in July 2022 (167 mg/L), but then dropped in September 2022 this concentration remains above historical measurements (105.1 mg/L). An all-time high concentration of calcium was noted for sampling locations: MW35S1 (41.6 mg/L; April 2022), MW42S (36.5 mg/L; April 2022), MW44S (29.1 mg/L; April 2022), and MW50L (96.1 mg/L; April 2022), and the concentrations of calcium returned to the respective historical ranges in subsequent sampling events, with the exception of MW44S, and MW50L.

- Increasing trends of magnesium were observed in MW43S, MW51S1, MW52S, and MW52D. The concentrations at MW42S and MW52S show an increasing trend and reached a new all time high in April, but then decreased to historical ranges in the subsequent sampling round. MW32U2 reached a new all time high in April 2021 and has been decreasing since. A decreasing trend in magnesium concentration was observed at: MW33S, MW34U (since 2019), MW36S, MW37S, MW41S (since 2011), and MW54U (since 2019). An all-time high concentration of magnesium was noted for sampling locations: MW42S (6.1 mg/L; April 2022), MW49L (4 mg/L; April 2022), MW52S (7.6 mg/L; April 2022), and MW52D (51 mg/L; July), and returning to respective historical ranges in subsequent sampling events.
- Increasing trends in alkalinity were observed at MW36L, MW42S, MW43S, MW46L, MW51S1, and MW52D. MW34U has increased since a large drop in concentration in 2021 and has increased and appears to have stabilized. A decreasing trend in alkalinity was observed at: MW31S (since 2017), MW32U1, MW32U2 (since 2014), MW36S, MW38U (since 2012), MW41S (since 2010), MW44U, MW54S, and MW54U. A decreasing alkalinity trend was noted at MW42S from 2015 to 2021; however, the highest concentrations of alkalinity at MW42S was reported in April 2022 (114 mg/L). Additionally, all-time highs in alkalinity were reported at MW43S (133 mg/L; September 2022), MW51S1 (190 mg/L; April 2022) and MW52D (388 mg/L; September 2022). MW43S is located downgradient of the landfill cells and was intended to monitor potential impacts from landfill activity. However, shallow groundwater at this location may be impacted by runoff from the finished compost that is stored immediately up gradient of MW43S.
- Increasing trends in conductivity were observed at MW31S, MW31U, MW42S, MW43S, MW44S, MW48S, MW48L, MW51S1, and MW52D. Decreasing trends in conductivity were observed at: MW32U2 (since 2014), MW34S (since 2011), MW36L (since 2015),

MW36S, MW37S, MW38S, MW38U (since 2012), MW41S (since 2011), MW44U, and MW54U (since 2012). The values of conductivity reached an all-time high at the sampling locations: (MW31U (524 μ S/cm; September 2022), MW35S2 (294 μ S/cm; September 2022), MW40U (256 μ S/cm; September 2022), MW42S (258 μ S/cm; September 2022), MW48L (587 μ S/cm; September 2022), and MW51S1 (417 μ S/cm; July 2022) and decreased to values within historical range in following sampling events, with the exception of MW31U, MW40U, MW42S, MW48L, and MW51S1 as it was the most recent sampling event.

- Increasing trends in sulfate concentrations were observed at: MW35S1, MW44S, MW51S1, MW52S and MW52D (since 2016). Decreasing trends in sulfate concentrations were observed at: MW31U, MW36L, MW36S (since 2011), MW38L, MW41S, MW42U, MW48U, and MW54S (since 2013). A decreasing trend in sulfate concentrations was observed at MW44U from 2008 until 2016; since 2016, an increasing trend has been observed. Historical high values of sulfate concentrations were obtained at: MW52D (325 mg/L; July 2022).
- Spikes in TOC were observed at several sampling locations in 2022, although no all-time high values were recorded this year.
- A spike in boron concentrations was observed in September 2016 at: MW35S2, MW36L, MW38L, MW38U, MW40S, MW40U, MW41L, MW41S, MW42S, MW43U, MW48L, MW51D, MW51S1, MW51S2, MW52D, MW52S, and MW53D but has since returned to previous levels and stabilized with the exception of MW52D, where an all-time high concentration in boron (2217 μS/cm) was observed in September 2022. An increase in boron concentration was observed at MW31L in 2016; however, the concentration has been decreasing since. A decreasing trend in boron concentrations has been observed at MW36U (since 2016), and MW38S (since 2004).
- An increase in barium concentration was observed at MW38U in September 2022. A spike
 in barium concentrations leading to an all-time high value of 43 mg/L at MW32U2 was
 recorded in May 2020 and the value returned within historical range in the subsequent
 sampling events.
- Increasing trends in sodium were observed at: MW34U, MW35S2, MW43S, and MW52D. A decreasing trend in sodium was observed at: MW31L (since 2013), MW33S, MW41S, MW44U, and MW48U. Highest concentration of sodium was recorded at MW48L (48.7 mg/L; April 2019), MW41L (31.1 mg/L; April 2019), MW32U2 (227.5 mg/L; April 2020), MW42L (24 mg/L; April 2020), and MW43S (36.6 mg/L; September 2021), and later, decreased within the historical range. MW52D reached an all-time high concentration (40.9 mg/L; July 2022) and did not fall back into its historical range.

 Decreasing iron concentrations are noted in MW31S, and MW43U and an iron spike was observed at MW53D in 2019. There were no all-time high concentrations of iron recorded in 2022.

Increasing trends of several parameters (alkalinity, boron, calcium, conductivity, magnesium, and sulphate) have been observed at MW52D, located downgradient of the construction and demolition debris disposal site. Increasing trends began in approximately 2016 and concentrations of these parameters have increased consistently over the last seven years. These parameters are potentially indicative of construction waste (e.g., drywall) leachate and further investigation is recommended (refer to Section 8.0).

With respect to off-site wells, the following increasing trends were observed:

• Increasing trends in chloride concentrations continues at monitoring wells MW50U and MW50L, which are located immediately downgradient of a highway interchange. MW50U showed a slight decrease in September 2022. Concentrations of calcium, magnesium and conductivity, also continue to increase at these locations. It is important to note that MW50U has not been sampled since 2017. The wells are located just off of Route 7 indicating that the impacts may be associated with the application of highway de-icing agents. In 2015-2017, GEMTEC was retained to conduct an additional assessment of the groundwater at selected wells on site. The results of the additional assessment were presented to Fundy Regional Services Commission under separate cover. Slight decreasing trends in alkalinity have been observed at these locations.

5.2 Underdrains

None of the parameters that would indicate leachate impacts show any significant trends at UD3, and UD4. However, the following trends were observed:

- An increase in boron (113 μg/L; November 2022) concentration at UD5, the concentration
 of boron has not exceeded the detection limit of 100 μg/L since 2018. This concentration
 is within historical ranges.
- An increasing trend for concentration of magnesium, calcium and conductivity was observed at UD3, UD4, UD5 and Leachate Pond Discharge UD.
- An increasing trend in sulfate has been observed at UD5 and Leachate Pond UD since 2016.

6.0 BREAKTHROUGH REQUIREMENTS

Theoretical breakthrough curves for Cells 1, 3, 5, and 8 are shown in Figures 3, 4, 5, and 6 respectively, for various depths of leachate within the sumps and cells. The theoretical leachate front has been calculated for these cells based on leachate level readings taken since each cell began operation.

For Cell 1, in operation since the landfill opened in 1997, the theoretical leachate front is now 78 cm below the top of the 900 mm liner within the sump and 56 cm below the top of the 600 mm liner within the cell. The average depth of leachate in the sump was 104 cm (41 inches) in 2022 and 110 cm (43 inches) over the last five years. Based on leachate level measurements and theoretical breakthrough calculations, Cell 1 has met the 25 year breakthrough requirement.

For Cell 3, which has been in operation since June 2002, the theoretical leachate front is now 52 cm below the top of the 1300 mm sump liner and 43 cm below the top of the 600 mm cell liner. The average depth of leachate in the sump was 139 cm (55 inches) in 2022 and 131 cm (51 inches) over the last five years. Extrapolating the five-year average leachate depth in Cell 3 results in theoretical breakthrough times longer than the required 25 years for both the sump and regular liner (see Figure 4).

For Cell 5, which has been in operation since July 2009, the theoretical leachate front is now 33 cm below the top of the 1300 mm sump liner and 18 cm below the top of the 600 mm cell liner. The average depth of leachate in the sump was 123 cm (49 inches) in 2022 and 122 cm (49 inches) over the last five years. Extrapolating this average depth of leachate in Cell 5 results in theoretical breakthrough times longer than the required 25 years for both the sump and regular liner (see Figure 5).

For Cell 8, which has been in operation since October 2018, the theoretical leachate front is now 12 cm below the top of the 1300 mm sump liner and 11 cm below the top of the 600 mm cell liner. The average depth of leachate in the sump was 208 cm (82 inches) in 2022 and 200 cm (79 inches) over the last four years. Extrapolating this average depth of leachate in Cell 8 results in theoretical breakthrough time longer than the required 25 years for the sump. The theoretical breakthrough time for the 600 mm (above the sump) is 23 years when using the average 4 year annual leachate level (see Figure 6). Adjustments in terms of operating leachate levels in the Cell 8 sump will need to be made by FRSC to meet the 25 year breakthrough requirement. Moving forward, the average leachate depth will need to be maintained at less than 188 cm (74 inches). Average annual leachate depths less than 188 cm were achieved in 2019 and 2020, which would be acceptable in the future.

It should be noted that these numbers are theoretical and ignore the benefits of the geomembrane (HDPE) liner. In fact, when considering the geomembrane liner, the leachate front may not have yet reached the clay liner.

The Leachate Surge Pond was first used in October 2005; however, pond levels have only been routinely collected since March 2007. For the purposes of calculating the theoretical breakthrough time for the leachate surge pond, it has been assumed that the usage of the pond in 2006 was similar to 2007 and the data from 2007 was also used for 2006. Using this data, the theoretical leachate front is now 10 cm below the top of the 600 mm clay liner layer in the composite HDPE and clay liner. The average depth of leachate in the pond was 276 cm in 2022 and 234 cm over

the last 5 years. Extrapolating this average depth of leachate results in a theoretical breakthrough time longer than the required 25 years for the composite liner system (i.e., HDPE liner and 600 mm clay liner) (see Figure 6). The composite liner system was considered for this calculation due to the ability to repair defects in the HDPE liner within the lagoon, if required.

Figure 3: Breakthrough Analysis for Cell 1

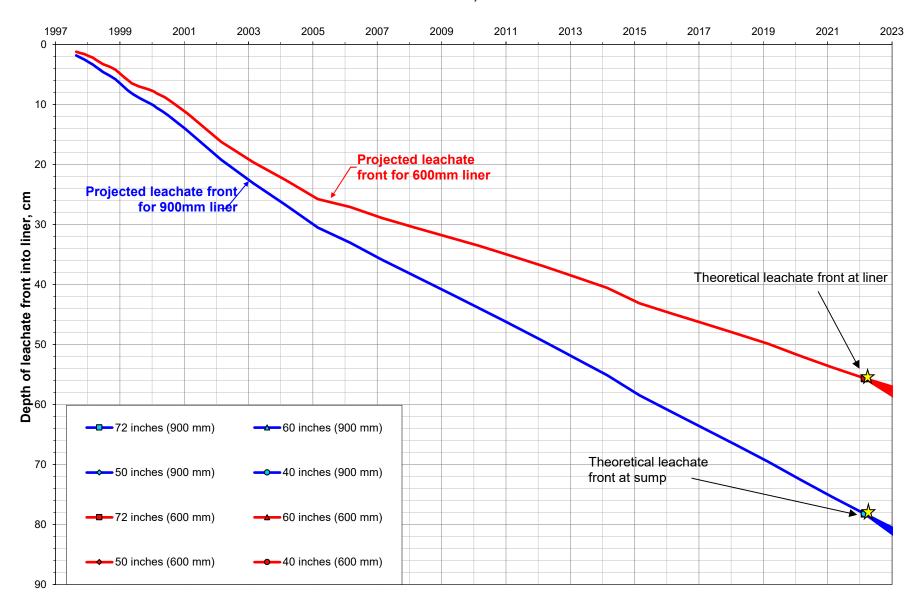


Figure 4: Breakthrough Analysis for Cell 3

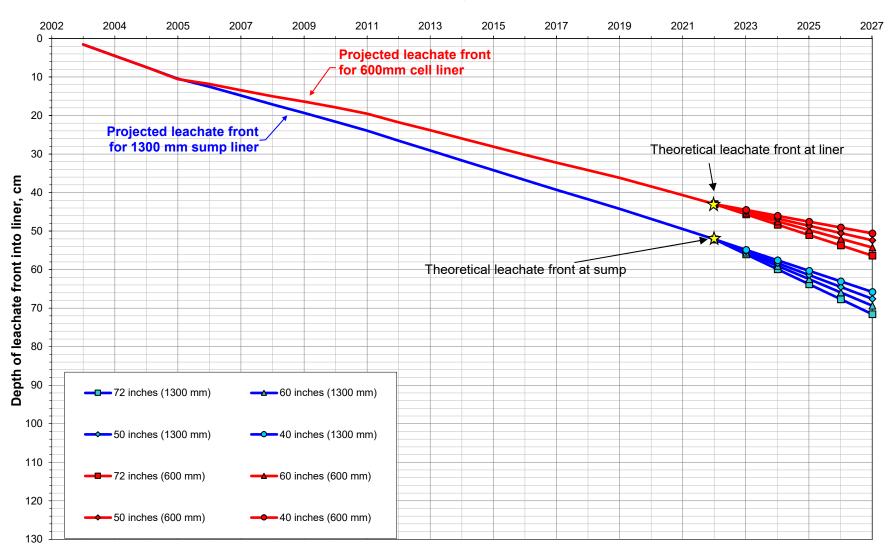


Figure 5: Breakthrough Analysis for Cell 5

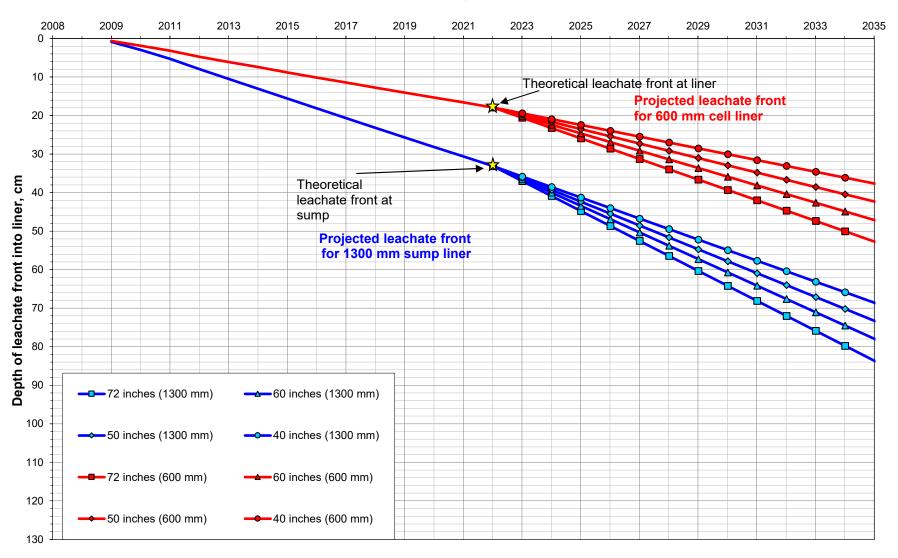


Figure 6: Breakthrough Analysis for Cell 8

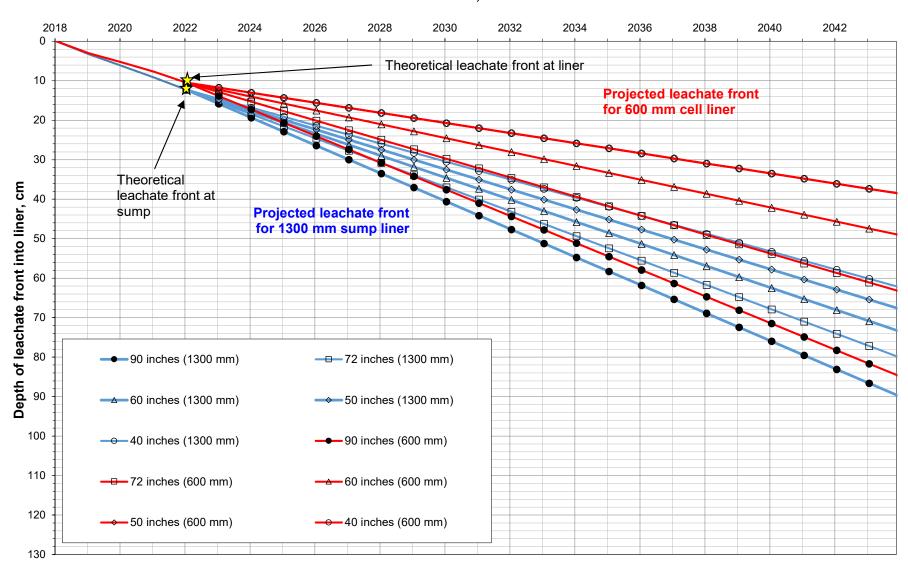
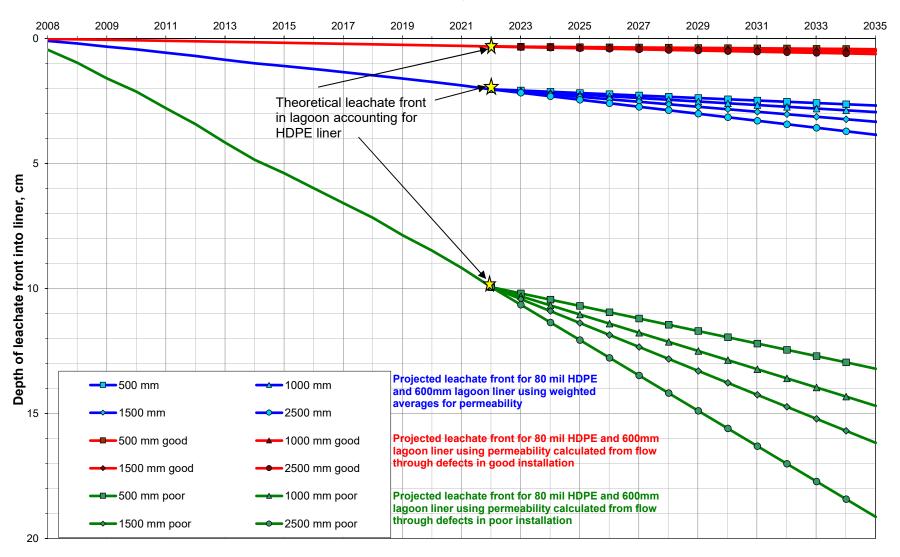



Figure 7: Breakthrough Analysis for Leachate Surge Lagoon

7.0 CONCLUSIONS

Groundwater, underdrain, and surficial/surface water samples were both collected and analyzed by Saint John Laboratory Services Ltd. in 2022.

Based on the sampling results from 2022, the following conclusions are presented:

In general, there is no evidence of an immediate impact to the environment, ground or surface waters from the landfill. Increasing trends of several parameters (alkalinity, boron, calcium, conductivity, magnesium, and sulphate) were observed at MW52D, located downgradient of the construction and demolition debris disposal site. Concentrations do not exceed Atlantic RBCA Environmental Quality Standards however these parameters are potentially indicative of construction waste (e.g., drywall) leachate and further investigation is recommended (refer to Section 8.0). Similar trends were not observed in MW52S where concentrations of these parameters over the same period (2016-2022) have been stable.

7.1 Groundwater

- Elevated aluminum concentrations are within the range of historical data.
- Elevated arsenic concentrations are within the range of the historical data. Increasing arsenic trends are observed at MW36L, MW38S and MW44U.
- Elevated copper concentration is within the range of historical data.
- Elevated zinc concentration is within the range of historical data.
- Elevated turbidity results are within the range of historical data, with the exception of MW57S and MW57D. These wells were drilled in September 2022 do not have historical data.
- Elevated iron concentrations are within the range of historical data.
- pH values are within the range of historical data.
- Elevated conductivity is within historical ranges, with the exception of MW31U, MW35S2, MW40U, MW42S, MW48L, and MW51S1.
- Lead concentrations were below the laboratory detection limit in all groundwater samples collected from the monitoring wells in 2022, with the exception of MW36S in April.
- Elevated manganese concentrations are within the range of historical data.
- Elevated calcium concentrations are within the range of historical data, with the exception of MW35S1, MW42S, MW44S, MW50L, and MW52D.
- Elevated magnesium concentrations are within the range of historical data, with the exception of MW42S, MW49L, MW52S, and MW52D.

- Elevated chloride concentrations are within the range of historical data, with the exception of MW35S2, MW42S, MW44U, and MW45U.
- Elevated sulfate concentrations are within the range of historical data, with the exception of MW52D.
- Elevated iron concentrations are within the range of historical data.
- Elevated boron concentrations are within the range of historical data, with the exception of MW52D.
- Elevated alkalinity is within the range of historical data, with the exception of MW42S, MW43S, MW51S1, and MW52D.
- Increasing trends for multiple parameters were observed at MW52D.
- Petroleum hydrocarbons (BTEX/TPH) were not detected in any groundwater samples recovered from the monitoring wells in 2022.
- The increasing trend in chloride concentrations continues at off-site monitoring well location MW50U and MW50L; MW50U has not been sampled since 2017. Additional assessment was conducted in 2015-2017 which determined that these impacts are due to road-salting activities on Route 7. The results of the additional assessment were provided to Fundy Regional Services Commission under separate cover.
- The water sample collected from the Gate House had a concentration of arsenic above the GCDWQ. The water in this area is not consumed. Bottled water is provided for consumption.

7.2 Underdrains

- Elevated turbidity and manganese results are within the ranges of historical data.
- Petroleum hydrocarbons (BTEX/TPH) were not detected in any of the underdrain samples collected in 2022.

7.3 Surface/Surficial Water

- All elevated concentrations of copper in surface water samples collected in 2022 were within historical data ranges.
- All elevated concentrations of aluminum in surface water samples were within historical ranges.
- All elevated concentrations of zinc in surface water samples were within historical ranges.
- Petroleum hydrocarbons (BTEX/TPH) were not detected in any of the surface water samples collected in 2022.

7.4 Breakthrough Analysis

• The minimum 25 year breakthrough requirements have been met for Containment Cell 1. Containment Cells 3 and 5 are projected to meet the 25 year breakthrough requirement, based on recorded data and theoretical calculations using average leachate levels for the last 5 years. The Cell 8 theoretical breakthrough calculation is based on limited data (4 years) so there is ample time to make adjustments to operational practices in terms of leachate levels in the leachate pump station sump to avoid not meeting the 25 year breakthrough requirements.

8.0 RECOMMENDATIONS

Based on the results of the 2022 monitoring program, we offer the following recommendations:

- All damaged monitoring wells should be repaired prior to the next groundwater monitoring event. If the wells cannot be repaired, they should be replaced.
- MW57S/D should be added to the COA, replacing MW47S/L/U.
- MW52D should be inspected for any indication of surface runoff entering the well. If the surface seal is compromised, the well should be decommissioned and replaced.
- Consideration should be given to adding MW18, MW22S/D, and MW23S, located downgradient of MW52D, to the monitoring program.

9.0 CLOSURE

This report has been prepared for the sole benefit of our client, Fundy Regional Services Commission. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC Consulting Engineers and Scientists Limited and Fundy Regional Service Commission.

Any use that a third party makes of this report, or any reliance or decisions made based on it, is the responsibility of such third parties. GEMTEC Consulting Engineers and Scientists Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The report presents the analytical results and physical measurements for samples that were collected and analyzed by Saint John Laboratory Services Ltd. in 2022. Saint John Laboratory Services Ltd. Is contracted directly by the FRSC for water sampling and laboratory analysis.

Should additional information become available, GEMTEC Consulting Engineers and Scientists Limited requests that this information be brought to our attention so that we may re-assess the conclusions presented herein. This report was prepared by Kassidy Totton, EIT (monitoring results) and Marco Silvitilli, P.Eng. (breakthrough analysis). The monitoring results were reviewed by David Rae, PhD, PGeo, and the breakthrough analysis was reviewed by Marco Sivitilli, P.Eng., on behalf of GEMTEC Consulting Engineers and Scientists Limited.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

10.0 REFERENCES

- Atlantic Partnership in Risk Implementation (PIRI). 2022. Atlantic RBCA (Risk-Based Corrective Action) for Impacted Sites in Atlantic Canada, Version 4.0, User Guidance, July 2022.
- Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines for the Protection of Aquatic Life Summary Table. Accessed online at https://ccme.ca/en/summary-table in November 2022.
- Health Canada. September 2020. Guidelines for Canadian Drinking Water Quality, Summary Table. Accessed online at https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html in November 2022.
- NBDELG, 2008. New Brunswick Groundwater Chemistry Atlas (1994-2007). T2008-1 Environmental Reporting Series. Sciences and Reporting Branch Sciences and Planning Division Department of Environment. December 2008.

APPROVAL TO OPERATE

I-11079

Pursuant to paragraph 8(1) of the *Water Quality Regulation - Clean Environment Act*, and paragraph 5 (3) (a) of the *Air Quality Regulation - Clean Air Act*, this Approval to Operate is hereby issued to:

Fundy Regional Service Commission for the operation of the

Crane Mountain Landfill

Description of Source:	A regional sanitary landfill with leachate collection and disposal.
Source Classification:	Fees for Industrial Approvals Regulation - Clean Water Act
Parcel Identifier:	Air Quality Regulation Class 4 55087001, 55087027, 55086987, 55087019, 55043301, 55043293, 55160352
Mailing Address:	P.O. Box 3032 Grand Bay-Westfield, NB E5K 4V3
Conditions of Approval:	See attached Schedules "A" and "B" of this Approv
Supersedes Approval:	I-9959
Valid From:	December 01, 2020
Valid To:	November 30, 2025
Recommended by: Sherye	Jhustone
Issued by: The Minister of Environment and the Minister of	November 30, 2020 1 Climate Change Date

SCHEDULE "A"

A. DESCRIPTION AND LOCATION OF SOURCE

The Fundy Regional Service Commission operates a regional solid waste management and disposal facility that is commonly referred to as the Crane Mountain Landfill. The Landfill is located in Saint John near Grand Bay-Westfield and serves the residents of Saint John county and the western portions of Kings and Queens county. The Commission operates a construction and demolition debris disposal site, a household hazardous waste depot, an organics transfer facility, material recovery facility, a landfill gas collection system, and a flare/electric generation system at the Landfill. A designated area on site is also utilized for the temporary storage of metal, tires, wood, white goods and other such salvageable/recyclable materials.

The operation of the regional solid waste management and disposal facility by the Fundy Regional Service Commission, located in the City of Saint John, County of Saint John, and the Province of New Brunswick and identified by Parcel Identifier (PID) numbers 55087001, 55087027, 55087019, 55043301, 55086987, 55160352 & 55043293 is hereby approved **subject to the following:**

B. DEFINITIONS

- 1. "Approval Holder" means Fundy Regional Service Commission.
- 2. "**Department**" means the New Brunswick Department of Environment and Local Government.
- 3. "Minister" means the Minister of Environment and Climate Change and includes any person designated to act on the Minister's behalf.
- 4. "Director" means the Director of the Authorizations Branch of the Department of Environment and Local Government and includes any person designated to act on the Director's behalf.
- 5. **"Facility"** means the property, leachate collection and treatment systems, buildings, equipment and any other activities involved with the operation of the regional solid waste management and disposal facility by the Fundy Regional Service Commission at PID numbers 55087001, 55087027, 55086987, 55087019, 55043301, 55160352 & 55043293.
- 6. **"containment cell"** means the area at the Facility approved in writing by the Department for the disposal of solid waste.

- 7. **"watercourse"** means the full width and length, including the beds, banks, sides and shoreline, or any part of a river, creek, stream, spring, brook, lake, pond, reservoir, canal, ditch or other natural or artificial channel open to the atmosphere, the primary function of which is the conveyance or containment of water whether the flow be continuous or not.
- 8. **"friable asbestos"** means waste material containing asbestos fibre or asbestos dust in a concentration greater than 1% by weight that is **not** tightly bound within a solid matrix such that it is easily crumbled by the hands.
- 9. "petroleum product" means a mixture of hydrocarbons, or their by-products, of any kind and in any form, including airplane fuel, asphalt, bunker "C" oil, crude oil, diesel fuel, engine oil, fuel oil, gasoline, kerosene, lubricants, mineral spirits, naphtha, petroleum based solvents regardless of specific gravity, transformer oil and waste petroleum products and excluding propane and paint.

10. **"biomedical waste"** means,

- a) any part of the human body, including tissues and bodily fluids, but excluding fluids, extracted teeth, hair, nail clippings and the like, that are not infectious,
- b) any part of the carcass of an animal infected with a communicable disease or suspected by a licensed veterinary practitioner to be infected with a communicable disease,
- c) non-anatomical waste infected with communicable disease,
- d) a mixture of a waste referred to in clause (a), (b) or (c) and any other waste or material; or
- e) a waste derived from a waste referred to in clause (a), (b) or (c), unless the waste that is derived from the waste referred to in clause (a), (b) or (c) is produced in accordance with a certificate of approval that states that, in the opinion of the Director, the waste that is produced in accordance with the certificate of approval does not have characteristics similar to the characteristics of waste referred to in clause (a), (b) or (c).
- 11. "hazardous waste" means any waste material intended for disposal or recycling, that is identified as a hazardous waste or hazardous recyclable material by the federal *Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations*, and/or is included in Class 1 and/or Class 7 of the federal *Transportation of Dangerous Goods Regulations*. This definition excludes any waste(s) for which the Director of the Approvals Branch has issued a written exemption.
- 12. **"sludge"** means a solid, semi-solid or liquid residue having less than 15% solids generated during the treatment of municipal and/or industrial wastewater, or generated as a result of other processes.
- 13. **"liquid waste"** means bulk liquids in a volume greater than 20 litres.
- 14. "liquid oily waste" means any waste containing free flowing petroleum products.

15. **"petroleum contaminated soil"** means soil that contains petroleum products at quantities determined, to the satisfaction of the Department, to be above the level indicated in the most recent version of the RBCA Tier I Risk-Based Screening Level (RBSL) Guidelines for Soil: Commercial, Non-potable, Coarse-grained for Modified TPH (Gas + Diesel#2 + #6 Oil).

16. "C&D debris" means

- a) concrete, brick and untreated wood,
- b) siding, ceiling tile, gyproc, insulation,
- c) asbestos that is not friable asbestos,
- d) solid roofing materials such as asphalt shingles,
- e) glass from doors and windows,
- f) metal, wood, fibreglass and durable plastic structural materials from the demolition of a building,
- g) wiring and incandescent light fixtures that do not contain fluorescent tubing/lighting,
- h) toilets, bathtubs, wash basins, and plumbing fixtures,
- i) floor coverings attached to a building during demolition,
- j) broken and aged asphalt, or
- k) any mixture of (a) thru (j)

that has been obtained during the construction, renovation or demolition of a building or structure. Debris or other materials obtained from commercial, industrial and manufacturing sources is not acceptable. Debris: i) from a building that has or may have manufactured, contained, transferred or distributed contaminated or hazardous (such as a pesticide storage warehouse) products; or ii) that contains PCB's (polychlorinated biphenyls), or iii) that contains lead paint of a known concentration greater than 1000ppm (parts per million) or that has been deemed leachable toxic (exceeds 5 mg/L) or contains lead paint that is flaking/chipping/peeling is not considered C&D debris for the purpose of this Approval.

- 17. "C&D Site" means the portion of the Facility approved by the Department for the disposal of C&D debris.
- 18. **"disposal cell"** means the area at the C&D Site approved by the Department for the disposal of C&D debris.
- 19. **"sorting area"** means a location at the C&D Site, if approved in writing by the Director, where loads of C&D debris may be dumped and sorted. Unapproved materials may temporarily be stored here.
- 20. **"household hazardous waste"** means, for the purposes of this approval, hazardous waste that is generated in New Brunswick households.

- 21. "hazardous waste collection and transportation network" means a company that is approved by or acceptable to the Department to collect and transport hazardous waste.
- 22. **"landfill gas control and collection system"** is the system used to capture landfill gas from the containment cells. The system consists of the collection wells, piping, generator, flare and skid mount blower.
- 23. "SWIM" means Environment Canada's Single Window Information Manager, which is a one-window secure online electronic data reporting system accessible at: https://www.canada.ca/en/environment-climate-change/services/reporting-through-single-window.html

C. EMERGENCY REPORTING

- 24. The Approval Holder, operator or any person in charge of the Facility **shall immediately** notify the Department where:
 - a) there has been, or is likely to be, a release of a contaminant or contaminants, such as leachate, wastewater, petroleum products, hazardous materials, or gaseous material, from the Facility which is of such magnitude or duration that there is a concern for the health or safety of the public, or there could be an impact to the environment.

Notification Procedure

During normal office hours, telephone the Department Regional Office **until personal contact is made** (i.e. no voice mail messages will be accepted) and provide as much information that is known about the environmental emergency. The telephone number for the Regional Office is provided below:

Saint John Regional Office (Phone) at (506) 658-2558

After hours, or if contact cannot be made to the Regional Office, telephone Environment and Climate Change Canada's National Environmental Emergencies Centre (NEEC) **until personal contact is made** and provide as much information that is known about the environmental emergency. The telephone number for NEEC is provided below:

NECC (Phone) at 1-800-565-1633

At this time the problem that occurred, its resulting impact and what was done to minimize the impact should be clearly expressed.

Within 24 hours of the original notification, a copy of an "Incident Report" shall be electronically mailed to the Region 4 (Saint John) Office and Central Office. The "Incident Report" shall clearly detail as much information about the incident that is available. As a minimum the report should include: details of the problem, its resulting impact and what was done to minimize the impact.

Within five (5) working days from the original notification, a "Detailed Emergency Report" shall be emailed to the Region 4 (Saint John) Office and also to Central Office in Fredericton. The "Detailed Emergency Report" shall describe in detail the problem that occurred, why the problem occurred, what the environmental impact was, what was done to minimize the impact, and what measures have been taken to prevent a re-occurrence of the problem.

Electronic Mail Addresses:

Saint John Regional Office at elg.egl-region4@gnb.ca Central Office in Fredericton to the assigned Approvals Engineer

D. GENERAL INFORMATION

- 25. The issuance of this Approval does not relieve the Approval Holder from the responsibility of complying with other applicable federal, provincial or municipal legislation and/or bylaws.
- 26. A copy of this Approval to Operate should be maintained on-site or in the office of the Approval Holder.
- 27. The Approval Holder shall immediately notify the Department in writing of any change in the legal name or address of the Facility.
- 28. Any operating problems or other matters that could cause the Facility to be in non-compliance with this Approval should be reported to the Department immediately.

E. TERMS AND CONDITIONS

GENERAL CONDITIONS

29. In the event of Facility closure, the Approval Holder shall, in addition to any requirements under the *Environmental Impact Assessment Regulation* 87-83 filed under the *Clean Environment Act*, prepare plans and an engineering closure proposal with ongoing monitoring, landfill gas and leachate management and complete site rehabilitation if appropriate. The plan shall also include other information as requested in writing by the Minister. The plans shall be submitted to the Director for review and approval **at least six** (6) **months** before the planned closure date. The plans must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick.

- 30. In the event of closure of the C&D Site at the Facility, the Approval Holder shall ensure that a Closure Plan is prepared and submitted to the Director for review and approval at least three (3) months before the planned closure date. The plans must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick and include, but not necessarily be limited to, updated site plans and an engineering proposal for the site rehabilitation, monitoring, leachate treatment if appropriate and closure.
- 31. The Approval Holder shall ensure that any item received at the Facility containing ozone-depleting substances, including but not limited to those utilized for refrigeration and/or air conditioning, are decommissioned according to the *Ozone Depleting Substances Regulation 97-132* filed under the *Clean Air Act*.
- 32. The Approval Holder shall ensure that waste, including C&D debris and friable asbestos, that originates from outside of New Brunswick is not accepted at the Facility unless specifically approved by the Minister following an evaluation under the *Environmental Impact Assessment Regulation*.
- 33. The Approval Holder shall ensure that an Environmental Management Plan (EMP) is in place at the Facility. The EMP should include detailed emergency, contingency response and clean-up procedures for potential spillage, release or mishandling of leachate, a petroleum product, or other dangerous materials at the Facility. The EMP should also include details on how the Facility will respond to emergency situations that may arise such as forest fires, restricted access to the Facility (traffic accidents or other blockade for example), failure of the leachate treatment and sedimentation ponds or leachate collection systems or other events that would interrupt normal operation of the Facility.

Facility personnel should be appropriately trained to perform emergency and contingency response procedures as described in the EMP.

34. The Approval Holder shall continue to work on developing and implementing the statistical approach, which includes trigger parameters, in order to quickly identify potential impacts from the landfill.

OPERATING CONDITIONS

- 35. The Approval Holder shall ensure that the Facility is not used for the disposal of the materials listed below unless otherwise approved in writing by the Director.
 - petroleum contaminated soil,
 - liquid wastes (with the exception of septage from the Facility sewage system),
 - sludge (with the exception of sludge from the Facility leachate treatment system),
 - liquid oily wastes,
 - hazardous wastes,
 - biomedical waste or
 - any mixture of the above

- 36. The Approval Holder shall ensure that any solid waste disposed of at the Facility is done so in the containment cells at the Facility unless otherwise approved in writing by the Director. It is recommended that the waste be regularly and uniformly compacted.
- 37. The Approval Holder shall ensure that the minimum 25-year breakthrough requirement for the containment cells at the Facility is maintained.
- 38. The Approval Holder shall ensure that all exposed waste in the containment cells of the Facility is covered with a minimum of 150 mm of clean soil (or an alternate daily cover that has been pre-approved by the Department), as a minimum, at the end of each operating day.
- 39. The Approval Holder shall provide supervision when any material is being disposed of at the Facility, including the C&D Site. No disposal at the Facility, including the C&D Site, is permitted otherwise.
- 40. The Approval Holder shall ensure that the incoming waste at the Facility is routinely scrutinized to ensure that unacceptable waste is not received at the Facility.
- 41. The Approval Holder shall ensure that a buffer strip of native softwood trees is maintained around the Facility in accordance with the Environmental Impact Assessment Study.
- 42. The Approval Holder shall ensure that a Pest Management Program is in place at the Facility that is in compliance with "Pest Control at NB Landfill Sites and Transfer Stations", attached as Schedule "B".

CONSTRUCTION

- 43. The Approval Holder shall ensure that the necessary engineering documentation is submitted to the Director, and approved in writing by the Department, prior to the construction, modification or expansion of:
 - 1) additional solid waste disposal cells;
 - 2) landfill gas management systems;
 - 3) sludge handling facilities;
 - 4) leachate collection and treatment systems;
 - 5) facilities for processing recyclables;
 - 6) storage of waste including household hazardous waste;
 - 7) special waste disposal cells/locations or
 - 8) any other pertinent construction activity at the Facility.

44. The Approval Holder shall ensure that final cover applied to the containment cells at the Facility shall be a minimum of 300 mm granular layer, 600 mm low permeability clayey till @ 1 x 10⁻⁷ cm/sec hydraulic conductivity, 150 mm granular protection layer, 150 mm growing medium and vegetative cover and shall be sloped a minimum of 2% to promote precipitation runoff from the disposal cell. All holes, cave-ins and faults shall be filled in or repaired, as required, until the final cover has been properly stabilized. All side slopes shall be designed to ensure proper slope stability and full containment of leachate. As a minimum, a side slope of less than 4 horizontal to 1 vertical should be utilized.

If approved in writing by the Director, an alternative final cover plan may be used.

- 45. The Approval Holder shall ensure that a Quality Assurance and Quality Control (QA/QC) report is submitted to the Department upon completion of the installation of final cover on a containment cell or cells at the Facility. The report must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick or is licensed to practise as a professional engineer pursuant to the *Engineering Profession Act* and include as a minimum:
 - commentary that confirms that all construction activities and testing associated with the installation of final cover were supervised by a qualified independent third party and that the final cover meets the Department's requirements as detailed in the previous condition;
 - all test parameters, the number of tests and locations;
 - copies of any inspection and testing reports;
 - a summary of any problems or deficiencies encountered and how they were corrected; and
 - other information as requested by the Department.

The QA/QC report should be forwarded to the Department no later than 3 months upon completion of the final cover.

- 46. The Approval Holder shall ensure that all future containment cells at the Facility are designed such that the installed leachate piping can be inspected in the future by video or an alternate method approved in writing by the Director, to ensure that the leachate piping is in proper working condition.
- 47. The Approval Holder shall ensure that, prior to decommissioning any monitoring wells at the Facility, a decommissioning plan and schedule is submitted to the Director and approved in writing by the Department.

LEACHATE AND SURFACE WATER

48. The Approval Holder shall ensure that no leachate (including treated leachate) or water that has come in contact with solid waste, is released from the Facility to the environment or to the Facility's surface water drainage system including the sedimentation ponds.

- 49. The Approval Holder shall ensure that all leachate and all water at the Facility that has come in contact with solid waste is directed to the Facility's leachate collection system.
- 50. The Approval Holder shall ensure that the leachate levels in the disposal cells at the Facility are monitored and recorded Monday thru Friday. If precipitation is scheduled on Saturday and/or Sunday, or if the leachate levels in the disposal cells are high, then monitoring on Saturday and Sunday is also required.
- 51. The Approval Holder shall ensure that any leachate taken from the Facility to the Lancaster Wastewater Treatment Facility is treated to a level that is acceptable to the City of Saint John.
- 52. The Approval Holder shall ensure that surface water at the Facility that has not been in contact with leachate or solid waste is directed to the sedimentation pond(s). Clean surface water that has a total suspended solids (TSS) value of 25mg/l or less may be diverted from the sedimentation pond(s) if approved in writing by the Department. Water from empty disposal cells that has not been in contact with leachate or solid waste should bypass the leachate collection system and be directed to the surface water drainage system at the Facility.
- 53. The Approval Holder shall ensure that the drainage ditches at the Facility are maintained to ensure they remain free flowing at all times.
- 54. The Approval Holder shall ensure that there is a continuous, permeable layer of gravel surrounding the waste at the Facility from the top of the upper side slopes through the top of the berm area to the leachate collection system. Particular care must be exercised at the top of berm area so that the final cover will properly intersect the top of berm.
- 55. The Approval Holder shall ensure that the leachate collection piping at the Facility is properly maintained to ensure they remain free flowing.
- Frior to October 15, 2021, and at least once every two years thereafter, the Approval Holder shall ensure that the leachate collection piping at the Facility is inspected by video or other method pre-approved in writing by the Director, to ensure the leachate collection system is in proper working condition.

WASTE DISPOSAL

57. The Approval Holder shall ensure that hot loads arriving at the Facility containing ashes or other materials that could potentially cause a fire in the containment cells are temporarily stored in a separate secure location until the risk of fire has been eliminated. The material shall then be disposed of in the containment cells (or a designated area that has been approved in writing by the Director) at the Facility.

- 58. The Approval Holder shall ensure that any friable asbestos accepted at the Facility for disposal has been wetted, placed in securely tied, double bagged 6 mil polyethylene bags or securely tied single 6 mil polyethylene bag that has been placed in a drum or cardboard box with all seams securely taped and each bag, cardboard box and/or drum is clearly labelled "WASTE ASBESTOS UN2590" or "DECHETS D'AMIANTE UN2590" and there are no punctures in the containers (if they are punctured, the contents must be wetted and repackaged prior to land filling) and they are placed at a dedicated location within the containment cells and are immediately covered with a minimum of 300 mm of clean cover material, or 1000 mm of municipal solid waste. Asbestos should be accepted at the Facility by appointment only, and not disposed during windy conditions.
- 59. The Approval Holder shall ensure that there is a sufficient quantity of wetting agent onsite when asbestos is being handled and disposed at the Facility.
- 60. The Approval Holder shall ensure that any unloading of friable asbestos at the Facility is done by the driver (or assistant) and that they or any personnel at the Facility who handle the asbestos are wearing the proper respirators and clothing during the unloading and disposal of the asbestos waste. Appropriate facility staff must supervise the unloading and covering of the asbestos waste.
- 61. The Approval Holder shall ensure that an "Asbestos Disposal Record" is maintained. The Record shall include, but not necessarily be limited to, the disposal date, volume of asbestos waste, origin of the shipment, contractor delivering the asbestos waste and a detailed plan of the disposal location at the Facility.

HOUSEHOLD HAZARDOUS WASTE

- 62. The Approval Holder shall ensure that the household hazardous waste depot at the Facility is operated in accordance with the most recent edition of the household hazardous waste Operations Manual that has been approved in writing by the Department.
- 63. The Approval Holder shall ensure that only household hazardous waste that is generated in New Brunswick is received and stored in the household hazardous waste depot at the Facility. All household hazardous waste received by the Facility is to be stored in the household hazardous waste depot.
- 64. The Approval Holder shall ensure that all household hazardous waste being stored in the household hazardous waste depot at the Facility is collected by a hazardous waste collection and transportation network. No household hazardous waste is to be stored at the Facility for more than one year.
- 65. The Approval Holder shall ensure that household hazardous waste at the Facility shall only be received, sorted, stored, and transferred from the Facility.

- 66. The Approval Holder shall ensure that all household hazardous waste stored in the household hazardous waste depot is:
 - a) secured in sealed and chemically resistant containers;
 - b) away from high traffic areas and protected from vehicle impacts;
 - c) away from electrical panels;
 - d) in a containment area that has secondary containment adequate to contain 110 % of the total volume contained within the containment area;
 - e) in a containment area that is designed to prevent contact between incompatible chemicals; and
 - f) in a containment area designed to prevent the release or discharge of chemicals to the environment as a result of a spill or other upset condition.
- 67. **Within 15 days of the end of each month**, the Approval Holder shall submit a monthly report to the Director that includes:
 - a) a summary report of all household hazardous waste stored in the household hazardous waste depot for the previous month using a form acceptable to the Department, and
 - b) a summary report of all spills that have occurred in association with the operation of the household hazardous waste program. This summary shall identify the material spilled, the approximate volume spilled, the date of the spill, the containment methods employed, and the steps taken to prevent a future recurrence of the spill. This does not relieve the Approval Holder of compliance with the Emergency Reporting section of this Approval.

CONSTRUCTION AND DEMOLITION DEBRIS

- 68. The Approval Holder shall ensure that only C&D debris is disposed of in the C&D Site's disposal cell. Any material at the C&D Site that is not located in a designated sorting area is considered disposed.
- 69. The Approval Holder shall ensure that all loads of C&D debris that are brought to the C&D Site have been properly scrutinized before they are disposed. If previously approved in writing by the Director, a designated sorting area may be used to scrutinize loads of C&D debris brought to the C&D Site.
- 70. The Approval Holder shall ensure that any unapproved materials brought to the C&D Site, including those in a designated sorting area, are either immediately placed in a temporary storage area and removed daily from the C&D Site and properly disposed. If the unapproved material is hazardous or may cause immediate impacts to the environment then it shall be immediately removed from the C&D Site and properly disposed of.
- 71. The Approval Holder shall provide on-site supervision when C&D debris is being disposed of at the C&D Site. No disposal at the C&D Site is permitted otherwise.

- 72. The Approval Holder shall ensure that clean/uncontaminated cover material at least 150 mm deep is applied to all exposed C&D debris at the C&D Site at least once per week.
- 73. The Approval Holder shall ensure that any final cover applied at the C&D Site is sloped in such a manner to ensure positive drainage and prevent standing or pooling of water on the surface.
- 74. The Approval Holder shall ensure that the area between the property line of the Facility and the C&D Site disposal cell is maintained with a treed or bermed buffer zone.
- 75. The Approval Holder shall ensure that the C&D Site is designed and operated such that surface water is prevented from entering the C&D debris disposal cell. No C&D debris shall be disposed of in free standing water.
- 76. The Approval Holder shall ensure that a minimum of 1.5 metres of overburden is maintained between the C&D debris and the bedrock and seasonal high groundwater.
- 77. The Approval Holder shall ensure that the C&D debris disposed of at the C&D Site is regularly compacted to minimize voids. Compaction with a dozer or equivalent is recommended.
- 78. The Approval Holder shall ensure that the side slopes of the disposal area of the C&D Site are properly stabilized (using riprap or a vegetative layer as part of the cover system for example) and maintained to limit erosion.
- 79. The Approval Holder shall ensure that a 50 metre treed or bermed buffer zone is maintained on the southern, northern and western boundaries of the C&D Site. It is understood at this time that the entire approved area for the C&D Site may be clearcut as part of a scientific evaluation of woodlot procedures. Ensure that the clearcut area is not grubbed if the scientific evaluation proceeds.

SITE MANAGEMENT

- 80. The Approval Holder shall ensure that areas of the containment cells at the Facility that will be inactive for at least three months are covered with a 300 mm intermediate cover layer, graded to promote drainage and minimize erosion and infiltration. Any leachate or any water that has, or could, come in contact with waste in the containment cells must be directed to the leachate collection system.
- 81. The Approval Holder shall ensure that white goods, scrap metals, electronics, propane tanks/canisters, wood, tires and any other materials being salvaged at the Facility are stored in a secured area separate from the main waste disposal area.

- 82. The Approval Holder shall ensure that debris and litter at the Facility is controlled. Adequate barriers and/or fencing shall be utilized to confine debris and litter to the immediate disposal area. Any debris or litter found along the access roads or otherwise not contained in the disposal cells shall be routinely collected and disposed in an appropriate location.
- 83. The Approval Holder shall ensure that unauthorized access to and scavenging at the Facility is controlled.
- 84. The Approval Holder shall ensure that the visibility buffer that has been established on the south and west borders of the Facility is maintained at a height of at least 6 meters.

LANDFILL GAS MANAGEMENT

- 85. The Approval Holder shall ensure that any landfill gas that is not utilized by the electric generator should be sent to the landfill gas flare as necessary to reduce greenhouse gases.
- 86. The Approval Holder shall ensure that a continuous temperature monitor is fully functional and in operation at all times when the landfill gas flare is in use. The temperature shall be recorded once every hour.
 - An electronic record of the temperature results shall be maintained for a minimum of two years and shall be made available to an inspector upon request.
- 87. The Approval Holder shall ensure that the landfill gas control and collection system is properly operated and maintained.
- 88. The Approval Holder shall ensure that when the flare of the landfill gas control and collection system is operated with a minimum gas residence time of 0.75 seconds at a minimum temperature of 875 degrees Celsius to maximize the destruction efficiency.
- 89. The Approval Holder shall notify the Department if the continuous temperature monitor is taken out of service for maintenance or repair while the landfill gas flare is in operation. During the maintenance or repair the temperature shall be manually monitored and recorded on a schedule approved in writing by the Department.

EMISSIONS AND DISCHARGES

- 90. The Approval Holder shall ensure that no leachate is discharged from the Facility to the environment.
- 91. The Approval Holder shall ensure that any discharge from the Facility, including the sedimentation pond, to a watercourse has a total suspended solids (TSS) value of 25 mg/l or less.

- 92. The Approval Holder shall ensure that there is no open burning conducted at the Facility, including the C&D Site.
- 93. The Approval Holder shall ensure that both odour and noise emissions released from the Facility are controlled to prevent impacts to off-site receptors. In the event that odour or noise emission impacts do occur, the Department may require the Approval Holder to develop, submit and implement a Control Plan that mitigates the impacts such that they no longer cause a nuisance to off-site receptors. The Control Plan shall be submitted to the Director for review and approval prior to implementation.
- 94. The Approval Holder shall ensure that fugitive dust emissions generated from truck traffic or other activities at the Facility are controlled by the use of water. Written permission from the Department must first be obtained if calcium chloride or other chemical compounds are to be used for dust control. The use of a petroleum product for dust control is **prohibited.**

TESTING AND MONITORING

95. The Approval Holder shall ensure that the groundwater monitoring wells at the Facility are sampled at seasonal intervals that provide an accurate representation of groundwater quality at the Facility. The existing network of groundwater monitoring wells at the Facility is as follows:

Well Nest	Shallow Till	Deep Till	Shallow Bedro	ock Mid Bedroc	<u>k</u> <u>Deep</u>
Bedrock					
MV	V31			MW31-S	MW31-U
MV	/31-L				
MV	/32			MW32-U	MW32-L
MW	33 MW3	33-S		MW33-U	
MW	34 MW3	34-S		MW34-U	
MW	35 MW3	35-S1 M	IW35-S2	MW35-L	
MW	36 MW3	36-S		MW36-U	MW36-L
MW	37 MW3	37-S			
MW	38 MW3	38-S		MW38-U	MW38-L
MW	39 MW3	39-S			
MW	40 MW ²	40-S		MW40-U	
MW	41 MW ²	41-S		MW41-U	MW41-L
MW	42 MW ²	42-S		MW42-U	MW42-L
MW	43 MW ²	43-S		MW43-U	
MW	44 MW ²	44-S		MW44-U	
MW	45			MW45-U	MW45-L
MW	46			MW46-U	MW46-L
MW	47 MW ²	47-S		MW47-U	MW47-L
MW	48 MW	48-S		MW48-U	MW48-I

MW49	MW49-S		MW49-U	MW49-L
MW50	MW50-S		MW50-U	MW50-L
MW51	MW51-S1	MW51-S2		MW51-D
MW52	MW52-S			MW52-D
MW53				MW53-D
MW54	MW54-S		MW54-U	

- 96. The Approval Holder shall ensure that any new groundwater monitoring wells, underdrains, leak detection systems or other sampling points at the Facility are sampled and analyzed as directed by the Department in writing.
- 97. The Approval Holder shall ensure that all ground and surface water samples required to be obtained for the Facility are obtained by a qualified technician and, unless otherwise approved in writing by the Director, analyzed by a laboratory that is, as a minimum, a member in good standing of the Canadian Association for Laboratory Accreditation (CALA) Proficiency Testing Program for Environmental Laboratories.

For the purpose of this Approval, "GENERAL CHEMISTRY" shall include the following analyses:

Ammonia	Alkalinity (as CaCO ₃)	Calcium
Chemical Oxygen Demand	Chloride	Colour
Copper	Hardness (as CaCO ₃)	Iron
Nitrate-Nitrite (as N)	Magnesium	Manganese
o-Phosphate (as P)	Phenols	Potassium
r-Silica (as SiO ₂)	Sodium	Sulphur (Sulphate & Sulphide)

r-Silica (as SiO₂) Sodium

Turbidity Total Suspended Solids Total Organic Carbon

Total Kjeldahl Nitrogen (TKN) Zinc

with the associated calculated parameters: Bicarbonate, Carbonate, Hydroxide, Cation Sum, Anion Sum, % difference, Theoretical conductance, Saturation pH (5°C) and Langelier Index (5°C).

and "TRACE METALS" shall include the following analyses:

Aluminum	Antimony	Arsenic	Barium
Beryllium	Bismuth	Boron	Cadmium
Calcium	Chromium	Cobalt	Copper
Iron	Lead	Magnesium	Manganese
Mercury (CV	AAS)	Molybdenum	Nickel Potassium
Selenium	Silver	Sodium	Strontium
Thallium	Tin	Uranium	Vanadium
Zinc			

and "BTEX/TPH" shall be analyzed in accordance with the Atlantic RBCA Tier 1 Guidelines for Laboratories and shall include the following parameters:

Benzene C6-C10 Hydrocarbons
Toluene >C10-C21 Hydrocarbons
Ethylbenzene >C21-<C32 Hydrocarbons
Xylene Modified TPH (Tier 1)

% Rec. iso-butylbenzene-Volatile
% Rec. iso-butylbenzene-Extractable
% Rec. n-dotriacontane-Extractable

98. The Approval Holder shall ensure that the following field parameters are obtained during each sampling event at the Facility:

Conductivity Dissolved Oxygen pH

Temperature ground water elevations (referenced to geodetic datum)

- 99. The Approval Holder shall ensure that prior to obtaining a ground water sample from a monitoring well at the Facility, a minimum of one well volume and a maximum of three well volumes be purged from that monitoring well.
- 100. The Approval Holder shall ensure that all field testing equipment is calibrated before and after each sampling event conducted at the Facility.
- 101. The Approval Holder shall ensure that groundwater samples to be submitted for analysis of TRACE METALS are field filtered using 0.45 μm in-line waterra filter or equivalent. All other samples should be unfiltered.
- 102. The Approval Holder shall ensure that the leachate surge pond, leachate holding pond and disposal cell underdrains at the Facility are sampled on at least 5 different occasions each calendar year and analyzed for GENERAL CHEMISTRY, TRACE METALS and BTEX/TPH.
- 103. The Approval Holder shall ensure that the leachate discharged from the containment cells at the Facility (MH#1) is sampled monthly and analyzed for the following parameters:

Alkalinity Ammonia Barium Boron BOD_5 Cadmium COD Chromium Calcium Chloride Copper Cyanide Iron Magnesium Manganese Lead Nitrite-Nitrate Nickel Phenols Mercury

Sodium Sulphate TSS/TDS Total Organic Carbon (TOC)

TKN Total Phosphate Zinc

and BTEX/TPH

- 104. The Approval Holder shall ensure that the groundwater monitoring well nests MW31 thru MW50 are sampled during the Spring and Fall seasons of each calendar year for GENERAL CHEMISTRY, TRACE METALS and BTEX/TPH.
- 105. The Approval Holder shall ensure that the groundwater monitoring well nests MW51 thru MW54 are sampled in the Spring, Summer and Fall months and analyzed for GENERAL CHEMISTRY, TRACE METALS & BTEX/TPH.
- 106. The Approval Holder shall ensure that the groundwater monitoring wells MW33U, MW34S, MW34U, MW35S2, MW35L, MW38U, MW41S and MW41U are sampled on at least five different occasions between February and November of each year and analyzed for GENERAL CHEMISTRY.
- 107. The Approval Holder shall ensure that the surface water sampling stations SW1, SW2, SW3, SW4, SW5, SW6 and the sedimentation pond discharge shall be sampled in the Spring and Fall seasons of each year and analyzed for GENERAL CHEMISTRY, TRACE METALS, BTEX/TPH, TKN, BOD₅ and TSS/TDS.

The sedimentation pond discharge shall be sampled near the mid-point of a discharge event.

- 108. The Approval Holder shall ensure that the results of all sampling and analysis conducted at the Facility are kept on file in both a hardcopy and electronic version.
- 109. The Approval Holder shall ensure that in September or October of each year the domestic wells chosen for the Domestic Well Monitoring Program are sampled and analyzed for the following parameters:

Ammonia Alkalinity (as CaCO₃) Calcium
Chloride Copper Iron
Nitrate-Nitrite (as N) Magnesium Manganese
o-Phosphate (as P) Potassium pH
r-Silica (as SiO₂) Sodium Sulphate

Total Disolved Solids Total Organic Carbon Turbidity
Zinc Conductivity Temperature

with the associated calculated parameters: Bicarbonate, Carbonate, Hydroxide, Cation Sum, Anion Sum, % difference, Theoretical conductance, Hardness (as CaCO₃), Ion Sum, Saturation pH (5°C) and Langelier Index (5°C).

110. The Approval Holder shall ensure that for each discharge of water from the sedimentation pond at the Facility a sample is obtained at the mid-point of the discharge event and analyzed for Total Suspended Solids (TSS).

111. The Approval Holder shall ensure that all monitoring samples required under this approval are obtained by a qualified technician and, unless otherwise Approved, analyzed by a laboratory that is accredited by the Canadian Association for Laboratory Accreditation (CALA) and having completed the CALA Proficiency Testing Program for the requested parameters.

REPORTING

- 112. On or before May 31, August 31 & November 30 of each calendar year, the Approval Holder shall ensure that an environmental monitoring report is submitted to the Director. It is understood that the May report will include monitoring from January to March, the August report will include monitoring from April to June and the November report will include monitoring from July to September. The 4th quarter report for monitoring of October to December will be included with the Annual Environmental Report. The reports must be prepared or approved by a person who is a member of the Association of Professional Engineers and Geoscientists of the Province of New Brunswick or is licensed to practice as a professional engineer pursuant to the Engineering Profession Act and include, as a minimum, a copy of the analysis, a comparison of the analysis with previous analytical results from the Facility, and commentary indicating whether their is an indication of any immediate, or potential threat or impact to the environment, ground or any surface waters. If an impact has occurred or is suspected the report must include a proposal for further investigation and/or remediation.
- 113. On or before **February 28 of each year**, the Approval Holder shall ensure that an Annual Environmental Report for the previous calendar year is submitted to the Director. The report must include as a minimum:
 - a) a copy of the Asbestos Disposal Record;
 - b) recommendations for any future monitoring, groundwater well installation or other work at the Facility;
 - c) confirmation that all field testing equipment has been calibrated before and after each sampling event conducted at the Facility;
 - d) confirmation that each groundwater monitoring well has been appropriately purged prior to obtaining a sample;
 - e) dates of all sampling conducted at the Facility;
 - f) dates of each discharge from the sedimentation pond;
 - g) a copy of the analytical results of the sampling and monitoring data obtained from the Facility for the previous calendar year and a review of those analytical results that is completed by a professional engineer or geoscientist licensed with the Association of Professional Engineers and Geoscientists of New Brunswick that includes as a minimum:
 - h) comparisons with historical results from the Facility;
 - i) identification of possible analytical anomalies;
 - j) an evaluation and discussion of the results for the surface water sampling points, groundwater monitoring wells, any cell or leachate pond underdrains/subdrain collection manholes and commentary on whether or not there is evidence of an immediate or potential impact to the environment, ground or surface waters and if so, recommendations for additional investigation, monitoring and remediation to mitigate the impacts;

- k) confirmation that the containment cells and leachate pond(s) have been operated such that the minimum breakthrough requirements have been maintained; and
- l) trending graphs for each monitoring well at the Facility and the leachate pond leak detection and cell underdrain manholes for the following indicator parameters showing results vs. time:

Alkalinity, Ammonia, Barium, Boron, Calcium, Chloride, Conductivity, Iron, Magnesium, pH, Sodium, Sulphate, and Dissolved Organic Carbon.

Note: Trending graphs should be completed on an annual basis but an alternate schedule may be accepted if approved in writing by the Director.

- 114. In the event the Approval Holder violates any Term or Condition of this Approval the Approval Holder is to immediately report this violation to the Department by calling (506) 453-7945. In the event the violation may cause the health or safety of the general public to be at risk and/or harm to the environment could or has resulted, the Approval Holder shall follow the Emergency Reporting procedures contained in this Approval.
- 115. In the event the Approval Holder receives a complaint from the public regarding unfavourable environmental impacts associated with the Facility, the Approval Holder is to report this complaint to the Department within one business day of receiving the complaint.
- 116. **Prior to November 30 of each year,** the Approval Holder shall ensure that each homeowner that has their well sampled as part of the Domestic Well Monitoring Program receives a signed copy of the analysis from the laboratory that did the analysis and a summary sheet that highlights any concerns or potential problems found in the analysis.
- 117. **Prior to November 30 of each year**, the Approval Holder shall ensure that a Domestic Well Monitoring Program report is submitted to the Department of Health. The report, as a minimum, shall include a signed copy of the analytical results and a summary of each well that has been completed by a qualified person that highlights any concerns or potential problems found.

A letter shall also be sent to the Department prior to November 30 of each year indicating that the sampling and analysis has been completed and that 1) a report has been forwarded to the Department of Health and 2) a signed copy of the analysis and summary of the results by a qualified person has been sent to each homeowner participating in the program.

118. The Approval Holder shall submit to the Department an annual status report by **June 30th** of each year, with respect to **Condition 34.** The report shall include a summary of work done in the previous year and any new or modified actions taken to the protocols.

- 119. **Prior to December 15, 2022**, the Approval Holder shall submit a Report, for review and approval by the Department, summarizing the Landfill Closure Plan and Post Closure Expenses Report to include a review for information or financial gaps. The Report shall demonstrate compliance with both the Landfill Closure Plan and Expenses Report requirements and provide a strategy for addressing any outstanding items.
- 120. **Beginning in 2021**, the Approval Holder shall submit a greenhouse gas emissions report by June 1st of each year, for the previous calendar year, to the Department by means of the SWIM system. Reporting shall be consistent with Environment Canada's Greenhouse Gas Emissions Reporting Program (GHGRP). Reporting requirements are published annually in the Canada Gazette, Part 1 under the authority of subsection 46(1) of the *Canadian Environmental Protection Act*, 1999 (CEPA 1999).
- 121. **Prior to March 31**st, **2022**, the Approval Holder shall prepare and submit a Greenhouse Gas Management Plan to the Department in accordance with the Guidelines for Greenhouse Gas Management for Industrial Emitters in New Brunswick, July 2015, or as may be updated from time to time. The Greenhouse Gas Management Plan shall be renewed every 5 years, as a minimum.
- 122. **Beginning in 2023**, the Approval Holder shall prepare and submit an Annual Greenhouse Gas Progress Report to the Department by July 1st of each year, for the previous calendar year, in accordance with the Guidelines for Greenhouse Gas Management for Industrial Emitters in New Brunswick.

Prepared by:

Sheryl Johnstone, P.Eng.

Senior Approvals Engineer, Authorizations

SCHEDULE "B"

PEST CONTROL AT NB LANDFILL SITES AND TRANSFER STATIONS

1. Terms and Conditions for Rodent Control at NB Landfill Sites and Transfer Stations

- 1. All personnel directly involved in the mixing, loading and application of the pesticides for the control of rodents at waste disposal facilities must hold a valid Class E, Class F, or Class L Pesticide Applicator's Certificate, which must be in their immediate possession.
- 2. Professional companies hired to conduct this work must hold a valid Provincial Operator's License and Pesticide Use Permit.
- 3. The treatment area must be posted with an approved sign prior to the treatment.
- 4 The signs are to be conspicuously posted at all ordinary points of access.
- 5 The applicator shall ensure that the signs are removed after either the completion of treatment or the expiration of their permit.
- 6 The sign shall be rectangular in shape with a minimum size of 14 cm x 21 cm, rain resistant with type or letters of sufficient size and clarity to be easily read together with a symbol of a cautionary raised hand inside a symbol of a stop sign. The information on the sign must be bilingual and must contain the words "Attention, Pesticide Application", the name of the pesticide, the Pest Control Product registration number, date of application, name of applicator, operator name or logo and telephone number.
- 7 Industry approved tamper resistant bait stations must be attempted before using other methods of baiting.
- 8 The Director of Pesticides Control or any member of the Pesticides Management Unit must approve areas that require alternative baiting methods. They can be contacted at (506) 453-7945.

Appendix B: Compliance Monitoring Schedule ¹, Fundy Region Service Commission

		Febuary	April	July	September	November
	MW 31L, 31S, 31U		GC, TM, BTEX		GC, TM, BTEX	
	MW 32U1, 32U2		GC, TM, BTEX		GC, TM, BTEX	
	MW 33S		GC, TM, BTEX		GC, TM, BTEX	
	MW 33U	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
	MW 34S, 34U	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
	MW 35L	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
	MW 35S1		GC, TM, BTEX		GC, TM, BTEX	
	MW 35S2	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
	MW 36L, 36S, 36U		GC, TM, BTEX		GC, TM, BTEX	
	MW 37S		GC, TM, BTEX		GC, TM, BTEX	
	MW 38L, 38S		GC, TM, BTEX		GC, TM, BTEX	
	MW 38U	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
<u>s</u>	MW 39S		GC, TM, BTEX		GC, TM, BTEX	
We	MW 40S, 40U		GC, TM, BTEX		GC, TM, BTEX	
Monitoring Wells	MW 41L		GC, TM, BTEX		GC, TM, BTEX	
tori	MW 41S, 41U	GC	GC, TM, BTEX	GC	GC, TM, BTEX	GC
Ä	MW 42L, 42S, 42U		GC, TM, BTEX		GC, TM, BTEX	
Ĕ	MW 43S, 43U		GC, TM, BTEX		GC, TM, BTEX	
	MW 45L, 45U		GC, TM, BTEX		GC, TM, BTEX	
	MW 46L, 46S		GC, TM, BTEX		GC, TM, BTEX	
	MW 47L, 47S, 47U		GC, TM, BTEX		GC, TM, BTEX	
	MW 48L, 48S, 48U		GC, TM, BTEX		GC, TM, BTEX	
	MW 49L, 49S, 49U		GC, TM, BTEX		GC, TM, BTEX	
	MW 50L, 50S, 50U		GC, TM, BTEX		GC, TM, BTEX	
	MW 51D, 51S1, 51S2		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	MW 52D, 52S		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	MW 53D		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	MW 54S, 54U		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	MW 55S		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	MW 56S		GC, TM, BTEX	GC, TM, BTEX	GC, TM, BTEX	
	UD 3	GC, TM, BTEX				
Under drains	UD 4	GC, TM, BTEX				
d a	UD 5				GC, TM, BTEX	
	UD 6	GC, TM, BTEX				
	SW 1		GC, TM, BTEX		GC, TM, BTEX	
ν	SW 2		GC, TM, BTEX		GC, TM, BTEX	
ate.	SW 3		GC, TM, BTEX		GC, TM, BTEX	
W	SW 4		GC, TM, BTEX		GC, TM, BTEX	
Surface Waters	SW 5		GC, TM, BTEX		GC, TM, BTEX	
urf	SW 6		GC, TM, BTEX		GC, TM, BTEX	
Ñ	SW R1		GC, TM, BTEX		GC, TM, BTEX	
	SW R2		GC, TM, BTEX		GC, TM, BTEX	
_	Sed Pond	GC, TM, BTEX				
	Leachate UD	GC, TM, BTEX				

Notes:

1. Prepared by Saint John Laboratory Services Ltd. to meet COA I-11079.

Appendix B-1 Asbestos Locations Record

Asbestos Locations 2022 FRSC

Date	Ticket #	WP ID#	Comments
02-Feb-22	550927	112	Source: Saint John the Baptist Church, 261 Gilbert St.
			1021 Duck Cove Lane, All Tech
			Delivered by: Fero/ Kelson Environmental Services
22-Feb-22	596164	113	Source: Refinery
			Delivered by: Fero / AlumaSafway
01-Mar-22	598031	114	Source: 15 Fenton Drive Saint John
			Delivered by: Service Master
15-Mar-22	602063	115	Source: 11 William Court, Quispamsis
			Delivered by: Belfor
17-Mar-22	602815	116	Source: 629 George St./ Saputo 91 Millidge Ave.
			Delivered by: Kelson Environmental Services
24-Mar-22	605116	117	Source: Refinery
			Delivered by: Fero / AlumaSafway
31-Mar-22	606690	118	Source: 17 Lone Water Farm rd, SJ Museum, 110 Charlotte
	606578	118	Source: 416 Bay Street, 10 princess court, Ridgewood Admin.
			Delivered by: Air Quality Services
05-Apr-22	607961	119	Source: 629 George St., UNBSJ Ganong Hall, Suputo building Saint John
			Delivered by: Kelson Environmental Services
28-Apr-22	615838/ 615881	120	Source: Refinery
			Delivered by: Fero / AlumaSafway
24-May-22	624511	121	Source: Refinery
			Delivered by: Fero / AlumaSafway
06-Jun-22	628994	122	Source: Refinery
			Delivered by: Fero / AlumaSafway
20-Jun-22	633521	123	Source: Refinery
			Delivered by: Fero / AlumaSafway
21-Jun-22	633917	125	Source: UNB Tucker Hall, NBCC St. Andrews, 45 Gifford Rd, 21 Cannon St, 570 Gondola Point Rd, 674 Dunn Ave, St. Josephs Hospital
			Delivered by: Air Quality Services
21-Jun-22	633982	125	Source: Refinery
21-Juli-22	033902	125	Delivered by: Fero / AlumaSafway
			Ridgewood Bld. #2, NB Museum E2K1E5, 110 Charlotte St, Play House
21-Jun-22	634030	125	E3B1C2, St. Josephs Hospital Boiler Room
			Delivered by: Air Quality Services
18-Jul-22	643037	126	Source: Refinery
10-041-22	040001	120	Delivered by: Fero / AlumaSafway
22-Jul-22	644786	127	Source: Coleson Cove, UNBSJ, 202 Gateway St
	011100	121	Delivered by: Kelson Environmental Services/Fero
09-Aug-22	650781	128	Source: 11 William Court, Quispamsis
00-7 tag-22	000701	120	Delivered by: Belfor
29-Aug-22	658204		Source: 491 Ridge st. Saint John
20 / lag-22	000204		Delivered by: Kelson Environmental Services
29-Aug-22	658229/658231		Source: Refinery
	3002207000201		Delivered by: Fero / AlumaSafway
08-Sep-22	661676	131	Source: 491 Ridge st. Saint John
			<u> </u>
	00.0.0		Delivered by: Kelson Environmental Services
15-Sep-22		132	Delivered by: Kelson Environmental Services Source: Refinery
15-Sep-22	664434	132	Delivered by: Kelson Environmental Services Source: Refinery Delivered by: Fero / AlumaSafway

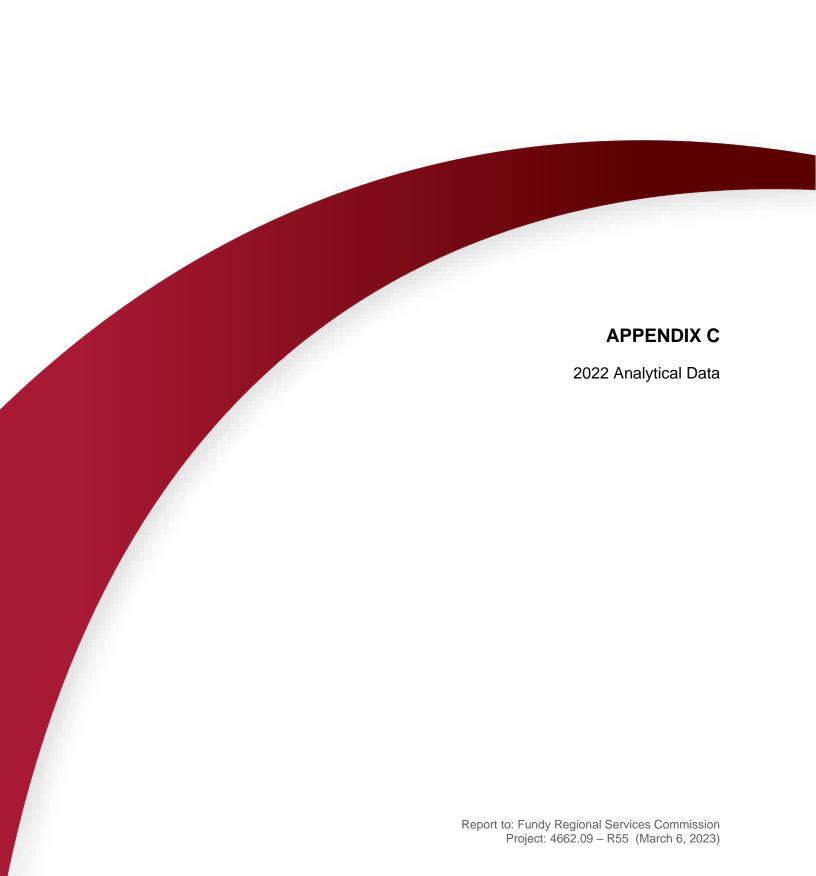
Appendix B-1 Asbestos Locations Record

Asbestos Locations 2022 FRSC

Date	Ticket #	WP ID#	Comments
			Delivered by: Fero / AlumaSafway
29-Sep-22	669256	135	Source: Refinery
			Delivered by: Fero / AlumaSafway
03-Oct-22	670582	136	Source: Refinery
			Delivered by: Fero / AlumaSafway
11-Oct-22	673679	137	Source: Refinery
			Delivered by: Fero / AlumaSafway
12-Oct-22	674148	138	Source: Refinery
			Delivered by: Fero / AlumaSafway
26-Oct-22	678918	139	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
24-Nov-22	689603	140	Source: 193 Greedale Cresent, UNB Ganong Hall,
			Delivered by: Kelson Environmental Services
29-Nov-22	691553	141	Source: Saint John Regional Correction Center
			Delivered by: John Flood &Sons 1961 Ltd.
05-Dec-22	693137	142	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
09-Dec-22	694923	143	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
12-Dec-22	695610	144	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
14-Dec-22	696608	145	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
22-Dec-22	699027	146	Source: 228 Lancaster Ave. Saint John
			Delivered by: Air Quality Services
	<u> </u>		

Appendix B-1 Asbestos Locations Record

Asbestos Locations 2022 FRSC


Date	Ticket #	WP ID#	Comments

Appendix B-2 Asbestos Coordinates Record

Asbestos Waypoint Coordinates (WP#)

2022

WP#	Latitude	Longitude	Elevation (feet)
112	45°16.115 N	66°12.607 W	268
113	45°16.114 N	66°12.627 W	279
114	45°16.131 N	66°12.648 W	294
115	45°16.121 N	66°12.638 W	275
116	45°16.1328N	66°12.642 W	276
117	45°16.129 N	66°12.645 W	280
118	45°16.133N	66°12.648 W	284
119	45°16.136 N	66°12.647 W	283
120	45°16.181 N	66°12.747 W	301
121	45°16.169 N	66°12.664 W	303
122	45°16.145 N	66°12.660 W	301
123	45°16.150 N	66°12.635 W	302
125	45°16.151 N	66°12.628 W	300
126	45°16.120 N	66°12.606 W	287
127	45°16.113 N	66°12.623 W	288
128	45°16.113 N	66°12.602 W	289
130	45°16.111 N	66°12.638 W	281
131	45°16.138 N	66°12.622 W	276
132	45°16.146 N	66°12.617 W	273
133	45°16.148 N	66°12.631 W	279
135	45°16.156 N	66°12.643 W	280
136	45°16.157 N	66°12.651 W	277
137	45°16.134 N	66°12.626 W	295
138	45°16.135 N	66°12.626 W	302
139	45°16.139 N	66°12.614 W	291
140	45°16.082 N	66°12.693 W	250
141	45°16.089 N	66°12.702 W	238
142	45°16.093 N	66°12.703 W	252
143	45°16.167 N	66°12.670 W	292
144	45°16.169 N	66°12.669 W	292
145	45°16.162 N	66°12.673 W	293
146	45°16.129 N	66°12.600 W	295

Sample Station:				DWQ ²	Atlantic		MW31L	MW31L	MW31S	MW31S	MW31U	MW31U DUP	MW31U	MW31U DUP	MW32U1
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11
Alkalinity	mg/L	1	-	-	-	-	69	64	8	9	67	67	66	66	204
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.588	0.141	5.740	1.270	0.588	0.588	1.270	1.270	0.197
Calcium	mg/L	-	-	-	-	-	22.6	20.8	4.7	3.8	24.8	24.7	22.1	21.4	63.3
Chloride	mg/L	0.2	-	≤ 250	250	1200	4.0	2.4	4.2	2.8	4.0	3.9	2.9	2.9	20.5
Conductivity	μS/cm	-	-	-		-	159	168	34	177	145	145	524	524	447
Copper	mg/L	0.001	2	1	2	0.02	0.001	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	0.003
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	<0.002	<0.002	0.041	0.012	<0.002	<0.002	<0.002	<0.002	<0.002
Magnesium	mg/L	-	-	-	·	-	2.6	2.4	0.8	0.8	2.4	2.4	2.3	2.4	8.7
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.007	<0.002	0.009	<0.002	<0.002	0.003	<0.002	<0.002	
Nitrate + Nitrite (as N)	mg/L	0.2	1	-		-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.9	8.4		7.1	7.7	7.7	7.2	7.2	8.2
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	0.4	0.7	0.2	0.3	0.3	0.3	0.4	0.4	9.0
r-Silica	mg/L	-	-	-	-	-	16.2	16.3	6.0	6.5	12.7	12.5	10.0	9.8	19.1
Sodium	mg/L	-	-	≤ 200	200	-	9.1	8.6	3.1	4.0	3.8	3.6	4.1	4.2	24.6
Sulfate	mg/L	2	-	≤ 500	-	1280	6	5	2	2	2	2	2	2	6
Total Organic Carbon	mg/L	1	-	-	-	-	<1	2	1	1	<1	<1	1	1	4
Turbidity	NTU	-	-	≤ 1.0	-	-	0.53	0.61		1	0.85	0.85	0.75	0.75	
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.004	<0.002	0.004	<0.002	0.002	<0.002	<0.002	<0.002	0.002
Calculated Parameters											07		22	22	224
Bicarbonate	mg/L	1	-	-	-	-	69	64	8	9	67	67	66	66	204
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	1.75	1.63	0.44	0.44	1.61	1.59	1.48	1.46	5.18
Anion sum	meq/L	-	-	-	-	-	1.91	1.76	0.49	0.48	1.68	1.67	1.54	1.54	4.69
% difference	-	-	-	-	-	-	-4.32 165	-3.95	-4.68	-4.98	-2.23 152	-2.44 151	-2.05 141	-2.65 140	4.93
Theoretical Conductivity	μS/cm	-	-	-	-	-	67	150 62	42 15	39 13	72	72	65	63	492 194
Hardness	mg/L	-		-	-	-	114	104	23	23	105	104	100	100	337
Ion Sum	mg/L	-	-	-	-	-	8.68	8.74	10.29		8.65	8.65	8.70	8.72	7.76
Saturation pH	-	-	-	-	-	-	-0.80	-0.36	-3.73	10.33 -3.20	-0.93	-0.93	-1.51	-1.53	0.44
Langelier Index	-	-	-	-	-	-	-0.60	-0.30	-3.73	-3.20	-0.93	-0.93	-1.51	-1.55	0.44
BOD ₅	ma/l	3						I	1	I		_			
COD	mg/L	1	-	-			- <1	7	3	2	- <1	- <1	2	2	13
Color	mg/L TCU	0		- ≤ 15	-	-	3	6	8	6	5	5	6	6	11
Kjeldahl Nitrogen	ma/L	0.5	<u> </u>	<u>≥ 15</u>	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	0.5	-	≤ 500	-	-		~ 0.0				~ 0.5	~ 0.0	\0. 0	~U.U
	,	- 1	-	≥ 500			- <1	- 8	2	8	-	-	8	8	-
Total Suspended Solids	mg/L	I	-	-	-	-	<u> </u>	ŏ		ď	I	I	ŏ	ŏ	2

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 1 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:				DWQ ²	Atlantic		MW32U1	MW32U2	MW32U2	MW33S	MW33S	MW33U	MW33U DUP	MW33U	MW33U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH ⁵	Eco ⁵	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/03/07	2022/03/07	2022/04/11	2022/04/11
Alkalinity	mg/L	1	-	-	-	-	160	120	150	107	188	88	88	89	89
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	0.197	1.270	0.588	1.270	0.282	0.282	0.588	0.588
Calcium	mg/L	-	-	-	-	-	56.6	77.5	55.8	35.9	50.4	26.6	26.5	27.9	28.0
Chloride	mg/L	0.2	-	≤ 250	250	1200	35.4	211.6	78.3	10.7	9.6	7.5	7.6	7.9	7.8
Conductivity	μS/cm	-	-	-	-	-	533	895	741	243	292	197	196	212	212
Copper	mg/L	0.001	2	1	2	0.02	<0.001	0.002	<0.001	0.002	< 0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Magnesium	mg/L	-	-	-	-	-	5.9	6.7	3.3	4.7	5.0	3.2	3.1	3.4	3.5
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43				0.004	0.006	0.006	0.007	0.012	0.011
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
рН		-	-	7.0-10.5	-	6.5 to 9	7.7	8.2	7.3	7.8	7.1	8.2	8.2	8.0	8.0
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	1.5	4.3	1.6	1.2	1.8	0.3	0.3	8.0	8.0
r-Silica	mg/L	-	-	-	-	-	15.6	13.5	11.3	5.7	6.7	13.5	13.1	15.2	15.0
Sodium	mg/L	-	-	≤ 200	200	-	13.2	84.8	38.1	6.9	8.4	10.9	11	9.9	10.2
Sulfate	mg/L	2	-	≤ 500	-	1280	5	4	4	2	3	8	8	8	8
Total Organic Carbon	mg/L	1	-	-	-	-	4	<1	4	<1	4	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-	8.0	0.33	0.54		0.79	0.94	0.95	0.52	0.51
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002
Calculated Parameters							100	100	450	107	100				
Bicarbonate	mg/L	1	-	-	-	-	160	120	150	107	188	88	88	89	89
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	3.92	8.22	4.76	2.51	3.34	2.07	2.06	2.12	2.15
Anion sum	meq/L	-	-	-	-	-	4.25	8.46	5.13	2.28	3.63	2.27	2.26	2.35	2.34
% difference	-	-	-	-	-	-	-3.98 421	-1.44 994	-3.78	4.71	-4.17	-4.54 207	-4.52 207	-4.97	-4.27
Theoretical Conductivity	μS/cm	-	-	-	-	-	166	221	546 153	244 109	350 146		79	211 84	213 84
Hardness	mg/L	-		-	-	-	278	509	331	168	266	80 145	79 145	146	147
Ion Sum	mg/L	-	-	-	-	-	7.91	7.90	7.95	8.28	7.89	8.50	8.50	8.47	8.47
Saturation pH	-	-	-	-	-	-	-0.26	0.29	-0.63	-0.49	-0.84	-0.26	-0.26	-0.49	-0.49
Langelier Index	-	-	-	-		-	-0.26	0.29	-0.63	-0.49	-0.84	-0.26	-0.26	-0.49	-0.49
BOD ₅		2							1	I		I	1		
COD	mg/L	3	-	-			-		- 44	-	-	-	-		
COD	mg/L	1	-	- ≤ 15	-	-	10 7	<1 5	11 11	<1	11 8	<1 1	<1 1	<1 1	<1 1
	TCU	0	-		-	-	<0.5	<0.5	<0.5	<0.5	<0.5		'	<0.5	<0.5
Kjeldahl Nitrogen	mg/L	0.5	-	- 500	-	-		<0.5				<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	4	-	- 7	-	-	-	-	
Total Suspended Solids	mg/L	1	-	-	-	-	9	1	14	7	10	2	2	<1	<1

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 2 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	Helte	MDL ¹	GC	DWQ ²	Atlantic	: RBCA⁴	MW33U	MW33U DUP	MW33U	MW33U DUP	MW33U	MW33U DUP	MW34S	MW34S	MW34S
Date:	Units	MDL	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/07/21	2022/07/21	2022/09/15	2022/09/15	2022/11/24	2022/11/24	2022/03/07	2022/04/11	2022/07/21
Alkalinity	mg/L	1	-	-	-	-	84	85	85	84	83	83	164	182	212
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	0.410	0.410	0.410	0.282	0.282	0.855	0.197	0.103
Calcium	mg/L	-	-	-	-	-	27.9	27.5	24.1	23.7	24.9	24.4	47.9	62.5	70.9
Chloride	mg/L	0.2	-	≤ 250	250	1200	10.3	10.4	6.0	6.0	6.2	6.1	26.7	29.5	45.0
Conductivity	μS/cm	-	-	-	-	-	214	214	298	298	210	208	350	442	555
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	<0.002	<0.002	<0.002	<0.02	<0.02	<0.002	<0.002	<0.002
Magnesium	mg/L	-	-	-	-	-	3.5	3.5	3.2	3.1	3.6	3.6	6.1	8.2	9.3
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	< 0.002	<0.002	<0.002	<0.002	<0.02	<0.02	<0.002	0.008	<0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.7	7.7	7.6	7.6	8.1	8.1	7.9	8.1	8.1
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	0.4	0.4	0.6	0.6	0.6	0.6	1.7	1.5	1.1
r-Silica	mg/L	-	-	-	-	-	14.9	14.3	11.3	11.0	12.0	12.5	11.3	11.8	14.6
Sodium	mg/L	-	-	≤ 200	200	-	10.3	10.5	9.2	8.8	10.8	10.6	17.6	20.6	24.8
Sulfate	mg/L	2	-	≤ 500	-	1280	9	9	7	6	7	7	5	7	10
Total Organic Carbon	mg/L	1	-	-	-	-	1	1	3	2	1	1	<1	<1	1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.65	0.65			0.42	0.42		0.8	
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002
Calculated Parameters															
Bicarbonate	mg/L	1	-	-	-	-	84	85	85	84	83	83	164	182	212
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	2.14	2.13	1.88	1.84	2.02	1.99	3.70	4.73	5.41
Anion sum	meq/L	-	-	-	-	-	2.35	2.35	2.08	2.04	2.08	2.09	3.92	4.34	5.44
% difference	-	-	-	-	-	-	-4.73	-4.98	-4.92	-5.19	-1.38	-2.55	-2.89	4.22	-0.26
Theoretical Conductivity	μS/cm	-	-	-	-	-	216	216	189	185	196	194	390	469	566
Hardness	mg/L	-	-	-	-	-	84	83	73	72	77	76	145	190	215
Ion Sum	mg/L	-	-	-	-	-	145	146	135	132	136	135	269	311	373
Saturation pH	-	-	-	-	-	-	8.50	8.50	8.56	8.57	8.55	8.56	7.97	7.81	7.69
Langelier Index	-	-	-	-	-	-	-0.82	-0.82	-0.99	-1.00	-0.46	-0.48	-0.10	0.27	0.39
BOD ₅	/I	2			l			1	1	1		1			
	mg/L	3	-	-			-	-	7	-	-	-	-	-	-
COD	mg/L	1	-	- 45	-	-	2	2	7	5 7	7	7	<1	<1 6	2
Color	TCU	0	-	≤ 15	-	-	6	6	/	,		,	9	,	40.5
Kjeldahl Nitrogen	mg/L	0.5	-	- 500	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L		-	≤ 500			-	-	-	-	-		-	-	
Total Suspended Solids	mg/L	1	-	-	-	-	<1	<1	9	8	<1	<1	<1	1	12

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 3 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	11-24-	1	GC	DWQ ²	Atlantic	: RBCA⁴	MW34S	MW34S	MW34U	MW34U	MW34U	MW34U	MW34U	MW35L	MW35L
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/09/15	2022/11/24	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/03/07	2022/04/11
Alkalinity	mg/L	1	-	-	-	-	209	158	134	136	132	125	132	96	110
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		1.270	3.980	0.855	0.588	0.141	0.410	0.855	0.855	0.855
Calcium	mg/L	-	-	-	-	-	50.5	40.7	22.4	29.0	24.9	15.3	24.5	17.2	23.3
Chloride	mg/L	0.2	-	≤ 250	250	1200	29.0	13.0	22.1	21.3	20.8	12.4	22.3	3.7	4.3
Conductivity	μS/cm	-	-	-	-	-	527	369	306	343	330	343	312	203	239
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Magnesium	mg/L	-		-	-	-	8.4	6.6	2.0	3.0	2.9	1.0	2.1	2.5	2.8
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	< 0.002	< 0.02		0.019	0.013	<0.002			
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.3	7.2	7.9	8.0	8.3	7.8	7.9	8.0	8.0
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.3	1.3	0.3	2.9	0.8	1.4	2.3	0.9	1.1
r-Silica	mg/L	-	-	-	-	-	11.9	10.5	9.3	10.8	10.5	8.9	6.8	10.0	11.9
Sodium	mg/L	-	-	≤ 200	200	-	23.9	17.6	41.8	40.3	43	41.2	47.2	22.6	23.7
Sulfate	mg/L	2	-	≤ 500	-	1280	6	2	10	10	11	10	9	6	7
Total Organic Carbon	mg/L	1	-	-	-	-	3	1	1	<1	1	1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.89		0.96	0.51		0.71	0.59		
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	< 0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
Calculated Parameters				1	1										
Bicarbonate	mg/L	1	-	-	-	-	209	158	134	136	132	125	132	96	110
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	4.31	3.37	3.11	3.52	3.37	2.67	3.51	2.08	2.45
Anion sum	meq/L	-	-	-	-	-	4.77	3.35	3.34	3.41	3.10	2.90	3.21	2.14	2.46
% difference	-	-	-	-	-	-	-5.07	0.38	-3.51	1.64	4.21	-4.11	4.55	-1.41	-0.21
Theoretical Conductivity	μS/cm	-	-	-	-	-	460	331	325	350	336	273	344	198	232
Hardness	mg/L	-	-	-	-	-	161	129	64	85	74	42	70	53	70
Ion Sum	mg/L	-	-	-	-	-	329	239	233	243	235	206	240	149	172
Saturation pH	-	-	-	-	-	-	7.84	8.06	8.39	8.27	8.35	8.59	8.36	8.65	8.46
Langelier Index	-	-	-	-	-	-	-0.58	-0.84	-0.51	-0.27	-0.09	-0.79	-0.45	-0.61	-0.46
BOD ₅	/I	2	I	1				1	1	1	1	1	1		
	mg/L	3	-	-			-	-	-	-	-	-	-	-	
COD	mg/L	1	-	- 45	-	-	9	3	4	<1 4	3	2	1	<1	<1
Color	TCU	0	-	≤ 15	-	-	10 <0.5	40 F	2		14	- 1	9	8	40.5
Kjeldahl Nitrogen	mg/L	0.5	-	- 500	-	-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	12	18	8	<1	5	8	24	11	8

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	exceed	the MA	care red	font and	holded

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 4 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	j	, <u>, , , , , , , , , , , , , , , , , , </u>		DWQ ²	Atlantic		MW35L	MW35L	MW35L	MW35S1	MW35S1	MW35S2	MW35S2	MW35S2	MW35S2
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/07/21	2022/09/15	2022/11/24	2022/04/11	2022/09/15	2022/03/07	2022/04/11	2022/07/21	2022/09/15
Alkalinity	mg/L	1	-	-	-	-	106	104	103	112	112	120	112	111	109
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.141	0.410	0.855	0.197	0.410	0.855	0.588	0.141	0.410
Calcium	mg/L	-	-	-	-	-	20.3	18.3	17.6	41.6	30.2	19.6	25.7	26.2	16.9
Chloride	mg/L	0.2	-	≤ 250	250	1200	5.0	2.9	2.7	13.1	10.0	8.7	8.4	9.9	7.0
Conductivity	μS/cm	-	-	-	-		228	274	229	305	311	225	258	254	294
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.010	<0.002	0.006
Magnesium	mg/L	-	-	-	-		2.7	2.7	2.7	5.1	4.4	3.0	3.9	3.7	4.0
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.005	0.007	0.004	0.006	<0.002		0.006	0.002	<0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
рН		-	-	7.0-10.5	-	6.5 to 9	8.2	7.9	7.9	8.2	7.9	7.9	8.0	8.2	8.0
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	0.8	0.9	1.2	1.7	1.4	0.7	1.8	1.4	2.5
r-Silica	mg/L	-	-	-	-	1	11.8	9.3	11.4	9.8	7.6	10.0	11.0	11.2	7.8
Sodium	mg/L	-	-	≤ 200	200		23.1	19.5	23.8	13.5	11.8	28.6	26.2	23.4	25.0
Sulfate	mg/L	2	-	≤ 500	-	1280	6	5	5	17	14	5	6	5	<2
Total Organic Carbon	mg/L	1	-	-	-	-	<1	2	<1	<1	1	2	<1	<1	1
Turbidity	NTU	-	-	≤ 1.0	-	-		0.83		0.65	0.51				
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	< 0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002	<0.002
Calculated Parameters							100	101	400	110	110	100	110		100
Bicarbonate	mg/L	1	-	-	-	-	106	104	103	112	112	120	112	111	109
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1		-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	2.26	2.01	2.17	3.13	2.42	2.49	2.79	2.67	2.32
Anion sum	meq/L	-	-	-	-	-	2.40	2.20	2.25	2.89	2.67	2.65	2.56	2.58	2.24
% difference	-	-	-	-	-	-	-2.91	-4.68	-1.84	3.96	-4.99	-3.13	4.32	1.72	1.75
Theoretical Conductivity	μS/cm	-	-	-	-	-	218	198	204	311	259	246	259	254	218
Hardness	mg/L	-	-	-	-	-	62	57	55	125	94	61	80	81	59
Ion Sum	mg/L	-	-	-	-	-	164	153	156	204	184	186	184	181	164
Saturation pH	-	-	-	-	-	-	8.54	8.59	8.61	8.20	8.34	8.50	8.41	8.40	8.60
Langelier Index	-	-	-	-	-	-	-0.39	-0.71	-0.69	-0.03	-0.40	-0.60	-0.37	-0.22	-0.65
BOD ₅	mg/L	3	_												
COD		1		-			- 1	7		- <1	4	2	- <1	- <1	3
Color	mg/L TCU	0	-	- ≤ 15	-	-	14	8	<1 15	4	7		<u> </u>	<u> </u>	3
Color Kjeldahl Nitrogen		0.5	-	≥ 10	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Kjeidani Nitrogen Total Dissolved Solids	mg/L mg/L		-	≤ 500	-	-								\0.5	\0.5
	J	- 1	-	≥ 500			- 6	10	-	- <1	9	- 75	- 18	- 20	74
Total Suspended Solids	mg/L	1	-	-	-	-	ь	10	86	<.1	9	/5	18	28	/4

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 5 of 70 AppC1_2022 Analytical Data-(MW)-KT.xisx

Sample Station:	Unite	MDL ¹	GC	DWQ ²	Atlantic	: RBCA⁴	MW35S2	MW40S	MW40S	MW40U	MW40U	MW41L	MW41L	MW41S	MW41S
Date:	Units	MDL	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/11/24	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022-03-07	2022/04/25
Alkalinity	mg/L	1	-	-	-	-	110	128	123	104	102	98	96	-	2
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.413	0.588	0.055	0.588	0.141	0.588	0.141	-	-
Calcium	mg/L	-	-	-	-	-	18.5	20.8	20.7	18.4	19.7	21.5	23.4	-	2.5
Chloride	mg/L	0.2	-	≤ 250	250	1200	6.9	3.7	2.4	2.9	3.7	3.2	3.3	-	4.7
Conductivity	μS/cm	-	-	-	-	-	255	268	205	209	256	244	227	-	37
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	0.002
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	<0.002	<0.002	0.020	0.002	<0.002	0.002	-	0.151
Magnesium	mg/L	-	-	-	-	-	3.6	3.0	2.3	2.7	2.3	3.1	2.5	-	0.6
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	< 0.002	0.008	0.003	0.003	0.002	0.002	<0.002	-	
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	8.1	8.0	8.5	8.0	8.2	7.9	8.4	-	
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002
Potassium	mg/L	-	-	-	-	-	1.9	1.7	1.8	1.7	1.3	1.2	1.5	-	0.5
r-Silica	mg/L	-	-	-	-	-	7.8	9.5	8.8	8.6	8.5	14.2	14.1	-	6.0
Sodium	mg/L	-	-	≤ 200	200	-	27.9	32.0	28.6	21.4	19.7	22.4	21.0	-	4.0
Sulfate	mg/L	2	-	≤ 500	-	1280	3	6	<2	2	2	17	21	-	2
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	-	5
Turbidity	NTU	-	-	≤ 1.0	-	-				0.31	0.44	0.54	0.66	-	
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	< 0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	-	0.018
Calculated Parameters			•	r	Υ	T.			T				1		
Bicarbonate	mg/L	1	-	-	-	-	110	128	123	104	102	98	96	-	2
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	-	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	-	<1
Cation sum	meq/L	-	-	-	-	-	2.48	2.72	2.51	2.12	2.06	2.33	2.33	-	0.37
Anion sum	meq/L	-	-	-	-	-	2.32	2.65	2.38	2.12	2.11	2.52	2.57	-	0.41
% difference	-	-	-	-	-	-	3.37	1.24	2.73	-0.08	-1.10	-3.86	-4.97	-	-4.40
Theoretical Conductivity	μS/cm	-	-	-	-	-	231	256	229	199	197	230	236	-	34
Hardness	mg/L	-	-	-	-	-	61	64	61	57	59	66	69	-	9
Ion Sum	mg/L	-	-	-	-	-	172	196	179	153	151	166	168	-	17
Saturation pH	-	-	-	-	-	-	8.56	8.44	8.46	8.59	8.56	8.54	8.52	-	11.17
Langelier Index	-	-	-	-	-	-	-0.47	-0.42	0.06	-0.59	-0.32	-0.65	-0.13	-	-5.74
BOD₅	mg/L	3	-	-			-	-	-	-	-	-	-	-	
COD	mg/L	1	-	-	-	-	1	<1	<1	<1	<1	<1	<1	-	14
Color	TCU	0	-	≤ 15	-	-			8	4	<1	3	3	-	
Kjeldahl Nitrogen	mg/L	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	59	5	3	<1	<1	<1	1	-	16

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 6 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:				DWQ ²	Atlantic		MW41S	MW41S	MW41S	MW41U	MW41U	MW41U DUP	MW41U	MW41U DUP	MW41U
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/07/21	2022/09/22	2022/11/24	2022-03-07	2022/04/25	2022/04/25	2022/07/21	2022/07/21	2022/09/22
Alkalinity	mg/L	1	-	-	-	-	2	2	2	-	99	99	98	98	96
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-	V GI IGDIO	-	12.500	39.720	-	0.855	0.855	0.141	0.141	0.410
Calcium	mg/L	-	-	-	-	-	3.1	3.0	2.7	-	21.6	21.5	22.3	22.6	26.4
Chloride	mg/L	0.2	-	≤ 250	250	1200	4.2	2.7	3.6	-	2.7	2.7	3.6	3.7	3.3
Conductivity	μS/cm	-	-	-	-	-	34	43	40	-	243	243	244	244	234
Copper	mg/L	0.001	2	1	2	0.02	0.002	0.004	0.002	-	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.185	0.270	0.119	-	<0.002	< 0.002	< 0.002	< 0.002	< 0.002
Magnesium	mg/L	-	-	-	-	-	0.9	0.4	0.5	-	3.6	3.6	3.3	3.4	2.7
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43		0.25		-					0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	<0.05	< 0.05	-	<0.05	<0.05	<0.05	< 0.05	<0.05
pΗ		-	-	7.0-10.5	-	6.5 to 9				-	7.9	7.9	8.1	8.1	8.0
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	-	<0.002	<0.002	<0.002	< 0.002	<0.002
Potassium	mg/L	-	-	-	-	-	0.3	0.7	8.0	-	2.3	2.1	0.6	0.8	1.5
r-Silica	mg/L	-	-	-	-	-	8.5	8.5	7.0	-	13.3	13.7	13.5	13.5	12.3
Sodium	mg/L	-	-	≤ 200	200	-	4.9	4.5	4.3	-	22.3	22.3	22.5	23.1	20.7
Sulfate	mg/L	2	-	≤ 500	-	1280	3	2	2	-	15	16	18	18	19
Total Organic Carbon	mg/L	1	-	-	-	-	12	10	7	-	<1	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-			0.78	-	0.42	0.42	0.55	0.54	0.45
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.005	0.007	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002
Calculated Parameters										T	20				
Bicarbonate	mg/L	1	-	-	-	-	2	2	2	-	99	99	98	98	96
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	0.46 0.50	0.40 0.44	0.40 0.41	-	2.40	2.39 2.49	2.38	2.43	2.50 2.48
Anion sum	meq/L	-	-	-	-	-	-3.64			-	2.46	-1.90	2.53 -3.11	2.53 -2.03	0.52
% difference	μS/cm	-	-	-	-	-	-3.64 39	-4.90 32	-1.37 33	-	-1.19 231	231	235	-2.03 238	242
Theoretical Conductivity	_	-	-	-	-	-	11	9	9	-	69	69	69	70	77
Hardness Ion Sum	mg/L	-		-	-	-	19	15	16	-	167	167	168	170	170
Saturation pH	mg/L -	-	-	-		-	11.08	11.09	11.14	-	8.54	8.54	8.53	8.52	8.46
Langelier Index	-	-		-		-	-5.33	-4.58	-4.96		-0.61	-0.61	-0.39	-0.38	-0.51
Langeller Index	-	-	-	-		-	-5.55	-4.56	-4.90	-	-0.01	-0.01	-0.39	-0.36	-0.51
BOD ₅	mg/L	3	_	_				_	_	l	_	1	-	1	
COD	mg/L	1		-		_	35	27	19	-	- <1	<1	- <1	<1	- <1
Color	TCU	0	-	- ≤ 15		-	ან	21	19	-	2	2	9	9	6
Kjeldahl Nitrogen	ma/L	0.5	-	≥ 10 -		-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	0.5		≤ 500	-	-								\0.0	~ 0.5
Total Suspended Solids	,	-		≥ 500			29	81	9	-	<1	- <1	5	5	8
rotai Suspended Solids	mg/L	I	-	-	-	-	29	۱۵	9	-	<u> </u>	<u> </u>	5	อ	ŏ

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 7 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:				DWQ ²	Atlantic		MW41U DUP	MW41U	MW42L	MW42L	MW42S	MW42S	MW42U	MW42U	MW43S
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/09/22	2022/11/24	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/11
Alkalinity	mg/L	1	-	-	-	-	96	94	110	104	114	88	115	109	70
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	1.270	0.855	0.141	0.855	3.960	0.855	1.270	1.830
Calcium	mg/L	-	-	-	-	-	26.5	19.6	27.1	32.9	36.5	28.3	24.8	23.2	25.4
Chloride	mg/L	0.2	-	≤ 250	250	1200	3.3	2.5	4.1	4.8	11.5	10.4	3.5	4.2	43.6
Conductivity	μS/cm	-	-	-	-	-	234	230	235	230	253	258	241	224	295
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.007
Iron	mg/L	0.002		≤ 0.3	0.3	3	<0.002	< 0.002	<0.002	<0.002	<0.002	0.003	<0.002	0.002	0.240
Magnesium	mg/L	-		-	-	-	2.7	3.2	5.3	4.2	6.1	4.2	4.2	3.3	4.8
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	<0.002	<0.002	0.007	0.005			0.01	<0.002	
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
pH		-	-	7.0-10.5	-	6.5 to 9	8.0	7.6	8.0	8.2	7.9	7.0	8.0	7.4	7.4
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.2	1.1	1.3	1.0	1.0	0.9	1.0	0.9	3.8
r-Silica	mg/L	-	-	-	-	-	12.2	11.8	10.3	9.9	18.2	15.0	9.4	9.2	5.7
Sodium	mg/L	-	-	≤ 200	200	-	21.1	22.63	10.2	8.9	7.7	6.8	20.9	18.1	23.1
Sulfate	mg/L	2	-	≤ 500	-	1280	20	14	5	6	3	3	4	5	4
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	3
Turbidity	NTU	-	-	≤ 1.0		-	0.45	0.28	0.31	0.46			0.23	0.54	
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	<0.002	<0.002	0.003	0.003	0.004	0.01	<0.002	0.009	0.003
Calculated Parameters		4				1	00	0.4	440	404	444	00	445	100	70
Bicarbonate	mg/L	1	-	-	-	-	96	94 <1	110 <1	104 <1	114 <1	88 <1	115 <1	109 <1	70 <1
Carbonate Hydroxide	mg/L	1	-	-	-	-	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1
,	mg/L	-	-	-	-	-	2.52	2.25	2.27	2.40	2.71	2.08	2.52	2.24	2.78
Cation sum	meq/L	-	-	-	-	-	2.52	2.25	2.27	2.40	2.71	2.08	2.52	2.24	2.78
Anion sum	meq/L	-	-	-	-	-	0.61	-0.92	-2.00	2.30	-2.65	-4.87	2.38	-1.62	2.00
% difference Theoretical Conductivity	μS/cm	-	-	-		-	246	216	220	230	261	207	233	217	301
Hardness	_	-	-	-		-	77	62	89	99	116	88	79	72	83
Ion Sum	mg/L mg/L	-		-		-	172	157	163	162	180	142	173	164	175
Saturation pH	ilig/L	-		-		-	8.46	8.60	8.39	8.33	8.25	8.47	8.41	8.47	8.62
Langelier Index	-	-	-	-		-	-0.51	-1.03	-0.44	-0.17	-0.37	-1.46	-0.41	-1.04	-1.24
Langeller index	-	-	_			-	-0.51	-1.03	-0.44	-0.17	-0.57	-1.40	-0.41	-1.04	-1.24
BOD ₅	mg/L	3	_	_			_	_	_	_	_	_	_	_	
COD	mg/L	1		-			<1	<1	- <1	<1	<1	- <1	- <1	<1	8
Color	TCU	0		- ≤ 15			6	3	1	5	13		3	5	U
Kjeldahl Nitrogen	ma/L	0.5		- 10		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	- 0.0		≤ 500			-0.5	-0.0	-		-0.5			-0.0	-0.0
Total Suspended Solids	mg/L	1		<u> </u>			8	1	<1	3	4	52	<1	4	44
rotal Suspended Solids	mg/L	ı	-	-		-	0	ı	<u> </u>	J	4	52	<u> </u>	4	44

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exce	and the MAC	are red font	and holded
Results that exce	sed the MAC	are reu ioni	and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 8 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	1124	MDL ¹	GCDWQ ²		Atlantic RBCA⁴		MW43S	MW43U	MW43U	MW44S	MW44S	MW44U	MW44U DUP	MW44U	MW44U DUP
Date:	Units		MAC ³	AO/OG ³	HH ⁵	Eco ⁵	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15
Alkalinity	mg/L	1	-	-	-	-	133	96	94	48	53	182	182	177	177
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		3.960	0.197	0.141	0.588	12.500	0.197	0.197	0.410	0.410
Calcium	mg/L	-	-	-	-	-	35.0	9.7	12.1	29.1	26.8	51.6	51.6	58.5	59.6
Chloride	mg/L	0.2	-	≤ 250	250	1200	43.6	5.4	5.6	19.6	16.2	17.1	16.9	18.3	18.4
Conductivity	μS/cm	-	-	-	-	-	351	250	242	243	247	467	469	461	461
Copper	mg/L	0.001	2	1	2	0.02	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.093	0.173	0.067	<0.002	0.004	<0.002	<0.002	0.003	0.003
Magnesium	mg/L	-	-	-	-	-	5.0	1.6	1.4	5.3	4.3	8.4	8.4	7.2	7.0
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.002	0.016	0.002	0.002	<0.002	0.011	0.012	< 0.002	<0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
рН		-	-	7.0-10.5	-	6.5 to 9		8.1	8.5	7.7		8.2	8.2	7.6	7.6
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Potassium	mg/L	-	-	-	-	-	5.6	1.5	1.1	1.1	1.0	1.2	1.3	1.7	1.7
r-Silica	mg/L	-	-	-	-	-	6.7	10.7	10.4	19.8	13.8	21.1	20.4	23.4	23.6
Sodium	mg/L	-	-	≤ 200	200	-	32.9	43.9	40.4	9.0	10.3	36.8	37.0	32.5	32.2
Sulfate	mg/L	2	-	≤ 500	-	1280	3	13	18	21	24	35	35	41	41
Total Organic Carbon	mg/L	1	-	-	-	-	11	<1	<1	<1	<1	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-				0.76		0.71	0.71	0.37	0.37
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.01	<0.002	0.011	<0.002	0.02	<0.002	<0.002	0.008	0.008
Calculated Parameters															
Bicarbonate	mg/L	1	-	-	-	-	133	96	94	48	53	182	182	177	177
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	3.74	2.57	2.51	2.31	2.17	4.90	4.91	4.97	4.99
Anion sum	meq/L	-	-	-	-	-	3.69	2.35	2.43	2.44	2.29	4.89	4.86	5.04	5.06
% difference	-	-	-	-	-	-	0.69	4.63	1.64	-2.83	-2.71	0.09	0.46	-0.76	-0.63
Theoretical Conductivity	μS/cm	-	-	-	-	-	398	233	239	238	230	488	489	504	507
Hardness	mg/L	-	-	-	-	-	108	31	36	94	85	163	163	176	178
Ion Sum	mg/L	-	-	-	-	-	258	171	173	133	136	332	332	336	337
Saturation pH	-	-		-	-	-	8.20	8.90	8.81	8.72	8.72	7.90	7.90	7.85	7.84
Langelier Index	-	-	-	-	-	-	-1.48	-0.81	-0.35	-0.98	-2.31	0.31	0.31	-0.27	-0.26
DOD				1				I	1	I	1	1	1		
BOD ₅	mg/L	3	-	-			-	-	-	-	-	-	-		
COD	mg/L	1	-	- 45	-	-	32	<1	<1	<1	<1	<1	<1	<1	<1
Color	TCU	0	-	≤ 15	-	-	10.5	40 F	40 F	5	13	3	3	6	6
Kjeldahl Nitrogen	mg/L	0.5	-		-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-	-	-	-	-	-	
Total Suspended Solids	mg/L	1	-	-	-	-	112	168	281	1	16	<1	<1	8	7

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exce	and the MAC	are red font	and holded
Results that exce	sed the MAC	are reu ioni	and bolded

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 9 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:				DWQ ²	Atlantic		MW45L	MW45L	MW45U	MW45U	MW46L	MW46L	MW48L	MW48L	MW48S
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/15	2022/04/25
Alkalinity	mg/L	1	-	-	-	-	92	88	88	84	109	113	84	81	81
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.588	0.410	0.588	0.291	0.855	0.410	0.588	0.055	0.855
Calcium	mg/L	-	-	-	-	-	27.8	27.7	52.9	53.1	81.9	87.9	12.0	9.9	25.4
Chloride	mg/L	0.2	-	≤ 250	250	1200	10.2	8.3	57.3	48.2	150.2	125.3	13.5	6.8	4.0
Conductivity	μS/cm	-	-	-	-	-	227	248	399	251	698	697	238	587	187
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	0.004	< 0.002	0.003	<0.002	0.002	< 0.002	0.011	< 0.002
Magnesium	mg/L	-	-	-	-	-	6.4	4.9	8.5	6.2	11.9	9.8	1.3	0.5	3.2
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.006	< 0.002	0.011	<0.002	0.018	<0.002	0.007	<0.002	
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.9	8.0	7.9	8.0	7.9	8.0	7.9	8.6	7.8
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.5	1.6	1.7	2.0	1.7	2.1	1.2	2.2	1.1
r-Silica	mg/L	-	-	-	-	-	15.8	16.0	13.5	13.0	10.5	10.7	10.6	11.3	9.6
Sodium	mg/L	-	-	≤ 200	200	-	10.8	9.7	9.1	8.6	28.5	28.0	43.9	36.1	10.1
Sulfate	mg/L	2	-	≤ 500	-	1280	8	6	12	10	7	8	17	15	7
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-			0.48	0.63	0.33	0.4	0.39	0.56	0.92
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	<0.002	0.009	<0.002	0.01	<0.002	0.008	<0.002	0.008	<0.002
Calculated Parameters															
Bicarbonate	mg/L	1		-	-	-	92	88	88	84	109	113	84	81	81
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	2.45	2.25	3.78	3.59	6.35	6.46	2.65	2.16	2.00
Anion sum	meq/L	-	-	-	-	-	2.48	2.34	3.75	3.38	6.52	5.91	2.47	2.21	1.91
% difference	-	-	-	-	-	-	-0.66	-1.95	0.34	2.92	-1.33 765	4.46 726	3.38	-1.05	2.24
Theoretical Conductivity	μS/cm	-	-	-	-	-	235	216	417 167	383 158		260	254 35	210	190 77
Hardness	mg/L	-	-	-	-	-	96	89 147	229	212	253 390	374	173	27 152	132
Ion Sum	mg/L	-	-	-	-	-	157						8.86		
Saturation pH	-	-	-	-	-	-	8.46 -0.54	8.48 -0.51	8.20 -0.32	8.22	7.92 -0.05	7.87 0.11	-0.97	8.96 -0.32	8.55 -0.77
Langelier Index	-	-		-		-	-0.54	-0.51	-0.32	-0.24	-0.05	0.11	-0.97	-0.32	-0.77
DOD			1			1			ı	I		I	ı		
BOD₅	mg/L	3	-	-			-	-	-	-		-		-	
COD	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Color	TCU	0	-	≤ 15	-	-	9	11	6	8	2	6	2	7	7
Kjeldahl Nitrogen	mg/L	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-		-				-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	3	13	2	10	<1	7	<1	8	2

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 10 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	j			DWQ ²	Atlantic	•	MW48S	MW48U	MW48U	MW49L	MW49L	MW49S	MW49S	MW49U	MW49U
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH ⁵	Eco ⁵	2022/09/15	2022/04/25	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Alkalinity	mg/L	1	-	-		-	81	86	81	84	78	71	73	82	79
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-	Variable	0.141	0.855	0.141	0.855	0.141	0.855	0.410	0.855	0.141
Calcium	mg/L	-	-	-	-	-	28.5	23.1	25.9	25.7	23.4	24.5	23.2	27.6	24.1
Chloride	mg/L	0.2	-	≤ 250	250	1200	3.1	4.8	3.3	6.2	5.1	3.7	3.1	4.4	3.9
Conductivity	μS/cm	-	-	-	-	-	212	221	210	200	204	162	104	184	186
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.004	<0.002	0.003	<0.002	0.003	<0.002	0.003	<0.002	0.003
Magnesium	mg/L	-	-	-	-	-	2.2	2.3	1.7	4.0	2.5	4.1	2.7	4.1	2.5
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	<0.002		<0.002	0.012	<0.002	0.009	0.003	0.003	<0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
pН		-	-	7.0-10.5	-	6.5 to 9	8.5	7.9	8.1	7.9	8.1	7.6	7.9	7.8	8.2
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.1	1.2	1.6	1.2	1.0	1.0	0.9	1.8	1.1
r-Silica	mg/L	-	-	-	-	-	11.4	12.3	13.2	11.0	11.5	10.2	11.7	10.4	11.5
Sodium	mg/L	-	-	≤ 200	200	-	11.7	21.0	12.3	11.3	9.6	5.7	5.3	7.0	6.7
Sulfate	mg/L	2	-	≤ 500	-	1280	12	14	10	6	5	4	3	4	4
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-		0.38	0.54	0.57	0.76			0.32	0.49
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.008	< 0.002	0.008	< 0.002	0.01	< 0.002	0.008	< 0.002	0.009
Calculated Parameters															
Bicarbonate	mg/L	1		-	-	-	81	86	81	84	78	71	73	82	79
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1		-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	2.17	2.29	2.01	2.13	1.82	1.83	1.63	2.07	1.73
Anion sum	meq/L	-	-	-	-	-	2.05	2.24	2.06	2.04	1.91	1.69	1.74	1.90	1.87
% difference	-	-	-	-	-	-	2.84	0.99	-1.30	2.20	-2.39	4.17	-3.27	4.24	-3.90
Theoretical Conductivity	μS/cm	-	-	-	-	-	206	219	193	201	176	168	157	191	169
Hardness	mg/L	-	-	-	-	-	80 141	67	72	81	69	78	69 112	86 131	70 121
Ion Sum	mg/L	-	-	-	-	-		152	136	138	125	114			
Saturation pH	-	-	-	-	-	-	8.50 0.00	8.57 -0.69	8.55 -0.45	8.53 -0.62	8.61 -0.56	8.63 -1.07	8.64 -0.72	8.51 -0.73	8.59 -0.40
Langelier Index	-	-	-	-	-	-	0.00	-0.69	-0.45	-0.62	-0.56	-1.07	-0.72	-0.73	-0.40
BOD ₅	mg/L	3	_	_			_		_	_	_	_	_	_	
COD	mg/L	1		-			- <1	<1	- <1						
Color	TCU	0	-	- ≤ 15	-	-	<u> </u>	4	7	5	3	7	8	2	2
Kjeldahl Nitrogen	mg/L	0.5		≥ 10		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L mg/L			≤ 500		-									\0.5
Total Dissolved Solids Total Suspended Solids	J	- 1	-	≥ 500			22	- <1	- 8	1	- <1	2	10	- <1	- <1
rotal Suspended Solids	mg/L	ı	-	-	-	-	22	<u> </u>	ŏ	1	<u> </u>		10	<u> </u>	<u> </u>

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 11 of 70

AppC1_2022 Analytical Data-(MW)-KT.xisx

Sample Station:	1124	1	GC	DWQ ²	Atlantic	: RBCA⁴	MW50L	MW50L	MW50S	MW50S	MW51D	MW51D	MW51D	MW51S1	MW51S1
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21
Alkalinity	mg/L	1	-	-	-	-	78	71	92	96	122	120	119	190	186
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.588	0.141	0.855	0.410	0.855	0.141	0.141	0.588	0.410
Calcium	mg/L	-	-	-	-	-	96.1	81.5	58.1	53.9	30.9	27.0	27.4	54.9	53.2
Chloride	mg/L	0.2	-	≤ 250	250	1200	190.4	158.0	82.6	87.1	6.5	4.5	4.2	5.0	5.8
Conductivity	μS/cm	-	-	-	-	-	813	674	570	499	251	254	255	411	417
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	0.002	<0.002	0.002	<0.002	<0.002	0.004	<0.002	<0.002
Magnesium	mg/L	-		-	-	-	29.0	21.9	17.6	14.8	5.6	4.8	3.9	8.9	8.2
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.018	0.002	0.011	<0.002	0.004	0.003	<0.002	0.003	0.005
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.9	8.1	8.0	7.9	7.9	8.2	8.3	8.0	8.0
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.5	2.9	2.7	4.1	1.5	0.6	1.6	3.1	1.5
r-Silica	mg/L	-	-	-	-	-	8.2	7.8	9.0	8.7	10.8	10.7	10.4	11.6	11.4
Sodium	mg/L	-	-	≤ 200	200	-	9.7	8.9	9.0	9.7	16.8	18.1	16.7	19.4	20.2
Sulfate	mg/L	2	-	≤ 500	-	1280	10	10	11	6	3	4	3	18	24
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	1	<1	<1	1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.15	0.43	0.36	0.53	0.33	0.65	0.79	0.27	0.86
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	<0.002	0.008	<0.002	0.009	<0.002	<0.002	0.008	<0.002	<0.002
Calculated Parameters				1											T
Bicarbonate	mg/L	1	-	-	-	-	78	71	92	96	122	120	119	190	186
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	7.67	6.33	4.81	4.43	2.77	2.54	2.46	4.39	4.25
Anion sum	meq/L	-	-	-	-	-	7.14	6.10	4.37	4.44	2.60	2.53	2.47	4.01	4.09
% difference	-	-	-	-	-	-	3.57	1.89	4.81	-0.12	3.11	0.23	-0.32	4.53	1.86
Theoretical Conductivity	μS/cm	-	-	-	-	-	902 359	756 294	525 218	510 196	259 100	241 87	234 84	420 174	419 167
Hardness	mg/L	-	-	-	-	-									299
Ion Sum	mg/L	-	-	-	-	-	416	354	273	272	186	179	176	299	
Saturation pH	-	-	-	-	-	-	7.99	8.11	8.14 -0.18	8.15	8.29	8.36 -0.16	8.35 -0.07	7.85	7.87 0.11
Langelier Index	-	-	-	-	-	-	-0.09	-0.02	-0.18	-0.29	-0.35	-0.16	-0.07	0.13	0.11
BOD ₅	mg/L	3	_					1	1	_	_				
COD		1		-			- <1	- <1	- <1	1	- <1	2	- <1	- <1	3
Color	mg/L TCU	0		- ≤ 15			3	5	4	3	3	6	6	2	9
Kjeldahl Nitrogen	ma/L	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	0.5		- ≤ 500	-	<u> </u>		<0.5 -	<0.5 -		<0.5 -	<0.5 -	<0.5 -		~ 0.5
	Ü	- 1		≥ 500			- <1	6	- <1	1	- <1	5	7	- <1	
Total Suspended Solids	mg/L	1	-	-	-	-	<u> </u>	Ö	<u> </u>	1	<u> </u>	ס	1	<u> </u>	<1

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 12 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	11-24-	1	GC	DWQ ²	Atlantic	: RBCA⁴	MW51S1	MW51S2	MW51S2	MW51S2	MW52D	MW52D	MW52D	MW52S	MW52S
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21
Alkalinity	mg/L	1	-	-	-	-	185	140	141	138	353	327	388	101	88
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	0.855	0.141	0.141	0.197	0.141	3.960	0.588	0.141
Calcium	mg/L	-	-	-	-	-	51.8	36.0	34.0	33.3	113.6	167.7	105.1	36.7	39.7
Chloride	mg/L	0.2	-	≤ 250	250	1200	4.3	5.2	5.1	4.5	11.3	12.8	12.0	5.3	6.5
Conductivity	μS/cm	-	-	-	-	-	398	286	293	297	1093	1328	1253	313	279
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.002	<0.002	<0.002	0.002	<0.002	<0.002	0.003	<0.002	<0.002
Magnesium	mg/L	-		-	-	-	6.3	6.4	5.8	4.5	44.8	51.9	42.5	7.6	6.3
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	< 0.002	0.003	0.004	0.003			<0.002	0.006	0.005
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.8	8.0	8.1	8.3	8.1	8.2		7.9	8.2
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	3.2	1.9	1.1	1.9	2.0	1.5	3.2	2.1	1.2
r-Silica	mg/L	-	-	-	-	-	11.6	10.9	10.6	11.1	20.3	24.5	24.1	11.4	10.4
Sodium	mg/L	-	-	≤ 200	200	-	18.2	18.6	19.7	17.5	36.3	40.9	38.8	10.8	9.2
Sulfate	mg/L	2	-	≤ 500	-	1280	18	4	3	3	154	325	149	32	39
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	1	1	2	7	6	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.67	0.38			0.31	0.85			
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.007	< 0.002	<0.002	0.008	< 0.002	<0.002	0.007	< 0.002	<0.002
Calculated Parameters				1											T 1
Bicarbonate	mg/L	1	-	-	-	-	185	140	141	138	353	327	388	101	88
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	3.98	3.18	3.06	2.84	10.99	14.46	10.51	2.98	2.93
Anion sum	meq/L	-	-	-	-	-	3.91	2.89	2.87	2.82	10.00	13.31	10.60	2.85	2.78
% difference	-	-	-	-	-	-	0.83	4.86	3.18	0.42	4.72	4.14	-0.45	2.30	2.56
Theoretical Conductivity	μS/cm	-	-	-	-	-	393	293	285	271	1107	1552	1099	298	302
Hardness	mg/L	-	-	-	-	-	155	116	109	102	468	632	437	123	125
Ion Sum	mg/L	-	-	-	-	-	287	212	210	203	715	927	739	195	190
Saturation pH	-	-	-	-	-	-	7.89	8.17	8.19	8.21	7.26	7.13	7.26	8.30	8.32
Langelier Index	-	-	-	-	-	-	-0.05	-0.14	-0.11	0.10	0.87	1.07	-0.33	-0.42	-0.12
BOD ₅	/I	2	I	1				1	1	1	1				T 1
	mg/L	3	-	-			-	-	-	-	-	- 24	-	-	
COD	mg/L	1	-	- 45	-	-	<1	<1	3	2	7 4	21	16	<1	<1
Color	TCU	0	-	≤ 15	-	-	6	5	13	40 F		10	5	15	10.5
Kjeldahl Nitrogen	mg/L	0.5	-	- 500	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L		-	≤ 500			-	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	7	1	2	20	<1	10	3	5	6

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 13 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	11-24-	1	GC	DWQ ²	Atlantic	: RBCA⁴	MW52S	MW53D	MW53D	MW53D	MW54S	MW54S	MW54S	MW54U	MW54U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2020/04/30
Alkalinity	mg/L	1	-	-	-	-	96	5	2	7	143	154	152	126	126
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	18.090	-	3.960	0.588	0.291	3.960	0.588	0.588
Calcium	mg/L	-	-	-	-	-	37.5	4.6	2.7	2.9	44.7	44.9	52.2	37.4	38.7
Chloride	mg/L	0.2	-	≤ 250	250	1200	4.0	2.5	2.1	1.9	5.9	6.3	5.3	6.9	6.9
Conductivity	μS/cm	-	-	-	-	-	354	24	28	65	296	335	313	341	341
Copper	mg/L	0.001	2	1	2	0.02	<0.001	0.001	0.009	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.003	<0.002	<0.002	0.007	<0.002	<0.002	0.003	<0.002	<0.002
Magnesium	mg/L	-	-	-	-	-	5.0	0.9	0.5	0.5	8.7	8.5	6.4	5.1	5.2
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	< 0.002			<0.002			0.003		
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	0.34	0.34
рН		-	-	7.0-10.5	-	6.5 to 9	7.8				7.8	7.9	7.0	7.8	7.8
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	2.8	0.6	0.3	0.6	1.3	0.7	2.1	2.5	2.6
r-Silica	mg/L	-	-	-	-	-	11.2	5.5	5.9	6.9	22.6	20.7	21.5	33.5	34.1
Sodium	mg/L	-	-	≤ 200	200	-	11.7	2.3	2.6	4.7	8.6	7.7	8.7	27.2	27.3
Sulfate	mg/L	2	-	≤ 500	-	1280	27	2	2	2.4	6	5	5	18	19
Total Organic Carbon	mg/L	1	-	-	-	-	<1	<1	1	1	<1	1	2	1	1
Turbidity	NTU	-	-	≤ 1.0	-	-		0.44	8.0	0.67			1	0.46	0.46
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.009	0.005	<0.002	0.008	<0.002	<0.002	0.007	<0.002	<0.002
Calculated Parameters			1					_			1.10	154	150	100	100
Bicarbonate	mg/L	1	-	-	-	-	96	5	2	7	143	154	152	126	126
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	2.87	0.42	0.30	0.41	3.38	3.31	3.56	3.54	3.62
Anion sum	meq/L	-	-	-	-	-	2.62	0.38	0.33	0.45	3.38	3.49	3.47	3.77	3.80
% difference	-	-	-	-	-	-	4.43	4.69	-4.24	-4.71	-0.02	-2.72	1.38 331	-3.15	-2.38
Theoretical Conductivity	μS/cm	-	-	-	-	-	280 114	36 15	25 9	35 9	311 147	316 147	157	328 114	333 118
Hardness	mg/L	-	-	-	-	-	184	18	12	20	219	228	232	224	226
Ion Sum	mg/L	-	-	-	-	-	8.31	10.51			8.06	8.03	7.97	8.19	8.18
Saturation pH	-	-	-	-	-	-	-0.47	-4.33	11.14 -5.44	10.56 -3.77	-0.26	-0.18	-0.96	-0.43	-0.40
Langelier Index	-	-	-	-	-	-	-0.47	-4.33	-5.44	-3.77	-0.26	-0.18	-0.96	-0.43	-0.40
BOD ₅	ma/l	3	1					1	1	1	I	1	1		
COD	mg/L	1	-	-			- <1	- <1	3	3	- <1	2	5	2	2
Color	mg/L TCU	0	-	- ≤ 15		-	<u> </u>	5	9	4	<u> </u>	12	9		<u> </u>
Kjeldahl Nitrogen		0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Kjeidani Nitrogen Total Dissolved Solids	mg/L mg/L	0.5	-	- ≤ 500	-	-	<0.5	\U. 5	\U. 5	<0.5	<0.5	<0.5	<0.5	<0.5	\U.5
	Ü	- 1	-	≥ 500				-	- 41					- 8	-
Total Suspended Solids	mg/L	1	-	-	-	-	32	1	41	2	9	<1	11	ŏ	8

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	exceed	the MA	care red	font and	holded

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 14 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:		-		DWQ ²	Atlantic		MW54U	MW54U DUP	MW54U	MW54U DUP	MW55S	MW55S	MW55S	MW56S	MW56S
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco ⁵	2022/07/21	2022/07/21	2022/09/15	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2020/07/21
Alkalinity	mg/L	1	-	-	-	-	130	130	110	110	117	113	112	76	70
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.410	0.410	0.410	0.410	0.197	0.103	0.141	0.588	0.410
Calcium	mg/L	-	-	-	-	-	38.4	37.7	35.5	34.6	24.0	21.3	26.4	33.2	26.3
Chloride	mg/L	0.2	-	≤ 250	250	1200	5.9	6.0	5.5	5.5	5.1	3.5	10.2	5.5	3.6
Conductivity	μS/cm	-	-	-	-	-	339	340	316	316	261	244	231	192	176
Copper	mg/L	0.001	2	1	2	0.02	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	< 0.002	<0.002	0.003	0.004	<0.002	<0.002	0.005	<0.002	<0.002
Magnesium	mg/L	-	-	-	-	-	5.2	5.0	2.9	2.7	5.1	4.4	3.5	2.2	1.8
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43									0.017
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	1.9	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
pH		-	-	7.0-10.5	-	6.5 to 9	7.9	7.9	7.9	7.9	8.1	8.2	8.4	7.9	7.9
Phenols	mg/L	0.002	-	-	0.57	0.04	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	1.0	1.0	2.0	2.1	2.4	1.8	3.0	0.9	0.3
r-Silica	mg/L	-	-	-	-	-	32.2	36.5	32.4	32.1	11.5	11.8	7.5	9.0	9.0
Sodium	mg/L	-	-	≤ 200	200	-	27.6	27.9	27.9	27.7	24.3	26.4	22.8	3.9	3.6
Sulfate	mg/L	2	-	≤ 500	-	1280	15	15	23	24	3	3	6	9	7
Total Organic Carbon	mg/L	1	-	-	-	-	4	4	3	4	<1	1	1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.68	0.68	0.57	0.58					0.65
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	<0.002	<0.002	0.008	0.008	<0.002	<0.002	0.016	<0.002	<0.002
Calculated Parameters				-											
Bicarbonate	mg/L	1		-	-	-	130	130	110	110	117	113	112	76	70
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	3.58	3.54	3.28	3.21	2.74	2.62	2.68	2.03	1.63
Anion sum	meq/L	-	-	-	-	-	3.68	3.83	3.51	3.52	2.51	2.41	2.53	1.89	1.69
% difference	-	-	-	-	-	-	-1.43	-3.90	-3.42	-4.57	4.35	4.29	2.78	3.61	-2.08
Theoretical Conductivity	μS/cm	-	-	-	-	-	325	323	307	305	248	234	261 80	198	162
Hardness	mg/L	-	-	-	-	-	117	115	101 207	98 207	81 181	71 173		92 131	73 113
Ion Sum	mg/L	-	-	-	-	-	223	223					186		
Saturation pH	-	-	-	-	-	-	8.17 -0.29	8.18	8.28	8.29	8.42 -0.37	8.49	8.40 0.00	8.47	8.60
Langelier Index	-	-		-		-	-0.29	-0.30	-0.39	-0.40	-0.37	-0.34	0.00	-0.55	-0.66
DOD			1			1		1	ı	1			1	ı	
BOD₅	mg/L	3	-	-			-	-	-	-		-	-	4	
COD Color	mg/L	1	-	- 45	-	-	10	10	9	11	<1	2	3	<1	<1
_	TCU	0	-	≤ 15	-	-	<0.5	<0.5	0.0	0.8	14 <0.5	15	8	9 <0.5	8 <0.5
Kjeldahl Nitrogen	mg/L	0.5	-	- 500	-	-		<0.5	0.8			<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	- 07	- 07		-	-	-	-
Total Suspended Solids	mg/L	1	-	-		-	1] 1	37	37	4	1	10	3	8

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 15 of 70

AppC1_2022 Analytical Data-(MW)-KT.xisx

Sample Station:	Units	MDL ¹		DWQ ²	Atlanti	c RBCA⁴	MW56S	MW57S	MW57D
Date:	Units	MIDL	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/09/15	2022/09/22	2022/09/22
Alkalinity	mg/L	1	-	-	-	-	68	14	77
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L		-	-	-		0.141	1.270	0.410
Calcium	mg/L	-	-	-	-	-	30.3	7.4	23.6
Chloride	mg/L	0.2	-	≤ 250	250	1200	4.9	4.0	21.4
Conductivity	μS/cm	-	-	-	-	-	139	109	275
Copper	mg/L	0.001	2	1	2	0.02	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	3	0.004	0.048	0.019
Magnesium	mg/L	-	-	-	-	-	1.4	0.4	2.9
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	<0.002		<0.002
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	2.0	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	<0.05	< 0.05	<0.05
pH		-	-	7.0-10.5	-	6.5 to 9	8.1	7.1	7.7
Phenols	mg/L	0.002	-	-	0.57	0.04	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	0.7	0.7	4.1
r-Silica	mg/L	-	-	-	-	-	8.7	9.3	8.2
Sodium	mg/L	-	-	≤ 200	200	-	3.7	4.8	22.6
Sulfate	mg/L	2	-	≤ 500	-	1280	7	2	9
Total Organic Carbon	mg/L	1	-	-	-	-	<1	6	3
Turbidity	NTU	-	-	≤ 1.0	-	-			
Zinc	mg/L	0.002	-	≤ 5.0	5	0.07	0.015	0.03	0.01
Calculated Parameters							•		
Bicarbonate	mg/L	1	-	-	-	-	68	14	77
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	1.81	0.64	2.51
Anion sum	meq/L	-	-	-	-	-	1.73	0.69	2.32
% difference	-	-	-	-	-	-	2.24	-4.02	3.84
Theoretical Conductivity	μS/cm	-	-	-	-	-	178	57	253
Hardness	mg/L	-	-	-	-	-	81	20	71
Ion Sum	mg/L	-	-	-	-	-	118	34	160
Saturation pH	-	-	-	-	-	-	8.55	9.85	8.61
Langelier Index	-	-	-	-	-	-	-0.44	-2.71	-0.96
DOD		_	1	1			1	ı	ı
BOD ₅	mg/L	3	-	-			-	-	-
COD	mg/L	1	-	-	-	-	<1	17	9
Color	TCU	0	-	≤ 15	-	-	9		
Kjeldahl Nitrogen	mg/L	0.5	-	-	-	-	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	11	2	61

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Regulte that	haanva	the MAC:	are red fon	and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 16 of 70

AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:	Units	1	GCD)WQ ²	Atlantic	: RBCA⁴	MW36L	MW36L	MW36S	MW36S	MW36U	MW36U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11
Alkalinity	mg/L	1	-	-	-	-	89	85	23	86	89	89
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L						0.282	0.41	2.68	3.96	0.282	0.282
Calcium	mg/L	-	-	-	-	-	10.2	10.8	11.1	25.5	12.7	12.5
Chloride	mg/L	0.2	-	≤ 250	250	120	4.7	7.6	4.9	4.7	3.9	3.8
Conductivity	μS/cm	-	-	-	-	-	329	319	82	238	192	192
Copper	mg/L	0.001	2	1	2	0.002	0.001	<0.001	0.007	0.005	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	0.3	0.007	0.002		0.239	0.027	0.024
Magnesium	mg/L	-	-	-	-	-	1.0	1.1	2.1	3.4	1.2	1.2
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.008	<0.002	0.674	4.495	0.011	0.008
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	0.4	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
рН		-	-	7.0-10.5	-	6.5 to 9	8.1	7.9	7.4		8.1	8.1
Phenols	mg/L	0.002	-	-	0.57	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	-	-	-	1.7	1.9	1.5	2.8	0.9	0.9
r-Silica	mg/L	-	-	-	-	-	8.4	7.5	8.7	18.6	11.4	11.3
Sodium	mg/L		-	≤ 200	200	-	60.2	54.0	4.4	8.4	29.2	29.3
Sulfate	mg/L	2	-	≤ 500	-	128	56	43	10	4	3	3
Total Organic Carbon	mg/L	1	-	-	-	-	<1	3	1	9	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.58					
Zinc	mg/L	0.002	-	≤ 5.0	5	0.007	< 0.002	<0.002	0.014	<0.002	<0.002	<0.002
Calculated Parameters												
Bicarbonate	mg/L	1	-	-	-	-	89	85	23	86	89	89
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	-	-	-	3.25	3.03	1.04	2.17	2.03	2.02
Anion sum	meq/L	-	-	-	-	-	3.05	2.75	1.02	2.24	2.02	2.01
% difference		-	-	-	-	-	3.30	4.76	0.96	-1.74	0.25	0.24
Theoretical Conductivity	μS/cm	-	-	-	-	-	329	301	96	190	185	184
Hardness	mg/L	-	-	-	-	-	30	31	36	78	37	36
Ion Sum	mg/L	-	-	-	-	-	223	203	59	140	140	140
Saturation pH	-	-	-	-	-	-	8.91	8.91	9.46	8.53	8.81	8.82
Langelier Index	-	-	-	-	-	-	-0.86	-1.06	-2.08	-1.83	-0.76	-0.77
POD			1	1			ı	ı	1	ı	ı	
BOD₅	mg/L	3	-	-								
COD	mg/L	1	-		-	-	<1	8	4	24	<1	<1
Color	TCU	0	-	≤ 15	-	-	10	8	0.5			
Kjeldahl Nitrogen	mg/L	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-	-	-	-
Total Suspended Solids	mg/L	1	-	-	-	-	3	11	150	81	11	11

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (< 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed the MAC are red font an	d bolded

Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 17 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:		,)WQ ²		: RBCA⁴	MW36U	MW36U DUP	MW37S	MW37S	MW38L	MW38L	MW38S	MW38S	MW38U
Date:	Units	MDL ¹	MAC ³	AO/OG ³	HH ⁵	Eco ⁵	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/03/07
Alkalinity	mg/L	1	WAC -	AU/UG		-	86	86	181	186	120	119	205	199	206
Ammonia	mg/L	0.5				Variable ⁶	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L	0.0				Valiable	0.41	0.41	0.855	1.27	0.197	0.41	0.282	0.41	0.197
Calcium	mg/L	-	_	-	-	-	13.1	12.8	52.2	53.3	25.3	27.2	56.9	60.7	51.4
Chloride	mg/L	0.2	-	≤ 250	250	120	3	3	12.2	7	10.4	7.9	12.2	9.1	13.1
Conductivity	μS/cm	_	-	-	-	-	192	196	369	369	291	285	414	411	375
Copper	mg/L	0.001	2	1	2	0.002	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	0.3	0.042	0.011	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002
Magnesium	mg/L	-	-	-	-	-	1.1	1.0	8.9	7.2	3.9	3.1	9.4	7.9	8.7
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.018	0.004	0.007	0.003	0.006	0.002	0.002	0.002	0.891
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
pH	Ĭ	-	-	7.0-10.5	-	6.5 to 9	7.7	7.7	8.0	7.2	8.2	7.8	8.1	7.6	7.8
Phenols	mg/L	0.002	-	-	0.57	0.004	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	< 0.002
Potassium	mg/L	-	-	-	-	-	0.8	0.9	1.5	2.3	1.6	1.6	1.5	2.7	0.6
r-Silica	mg/L	-	-	-	-	-	10.5	10.7	24.9	23.8	12.9	11.4	21.3	21.8	14.3
Sodium	mg/L	-	-	≤ 200	200	-	25.2	24.9	10.1	11.6	29.7	28.3	9.5	10.8	12
Sulfate	mg/L	2	-	≤ 500	-	128	3	3	2	<2	10	9	<2	2	<2
Total Organic Carbon	mg/L	1	-	-	-	-	3	3	<1	<1	<1	<1	<1	<1	<1
Turbidity	NTU	-	-	≤ 1.0	-	-			0.45			0.88	0.97		0.89
Zinc	mg/L	0.002	-	≤ 5.0	5	0.007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calculated Parameters	/I			1		1	86	86	181	186	120	119	205	199	206
Bicarbonate	mg/L	1	-	-		-	86 <1	80 <1	181 <1	<1	120 <1	<1	205 <1	199 <1	206 <1
Carbonate	mg/L	·	-	-	-	-									
Hydroxide	mg/L	1	-	-	-	-	<1 1.86	<1 1.83	<1 3.81	<1 3.82	<1 2.92	<1 2.88	<1 4.06	<1 4.22	<1
Cation sum	meq/L	-	-	-	-	-						2.88			3.85
Anion sum	meq/L	-	-	-	-	-	1.90 -1.03	1.91 -2.27	4.17 -4.48	4.06 -3.12	2.90 0.21	2.74	4.44 -4.44	4.28 -0.68	4.22 -4.60
% difference		-	-	-	-	-	172	170	372	366	282	2.49	404		389
Theoretical Conductivity	μS/cm	-	-	-		-	37	36	167	163	79	274 81	181	404 184	389 164
Hardness Ion Sum	mg/L	-	-	-	-	-	132	132	268	269	201	196	296	292	293
Saturation pH	mg/L	-	-	-		-	8.82	8.83	7.89	7.87	8.39	8.36	7.80	7.79	7.84
	-	-	-	-		-	-1.08	-1.09	0.15	-0.69	-0.21	-0.56	0.25	-0.19	-0.02
Langelier Index	-	-	-	-	-		-1.06	-1.09	0.15	-0.09	-0.21	-0.56	0.25	-0.19	-0.02
BOD ₅	mg/L	3	-	-											-
COD	mg/L	1	-	-	_	-	9	8	<1	<1	<1	<1	<1	1	<1
Color	TCU	0	-	≤ 15	-	-	Ť	-	4	8		5	4	2	2
Kjeldahl Nitrogen	mg/L	0.5	-	-	_	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-	-	-	-	-		-		-
Total Suspended Solids	mg/L	1	-	-	-	-	32	32	<1	9	6	3	<1	<1	4
		· ·													

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (< 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that	ovecod	the MAC	are red	font and	holded
Results that	exceeu	THE WAC	are reu	ioni and	Dolueu

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 18 of 70

AppC1_2022 Analytical Data-(MW)-KT.xisx

Sample Station:	Halta	MDL ¹	GCE	DWQ ²	Atlantic	RBCA⁴	MW38U	MW38U	MW38U	MW38U
Date:	Units	MDL.	MAC ³	AO/OG ³	HH⁵	Eco⁵	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Alkalinity	mg/L	1	-	-	-	-	214	181	204	186
Ammonia	mg/L	0.5	-	-	-	Variable ⁶	<0.5	<0.5	<0.5	<0.5
Ammonia (Sample Specific Guideline)	mg/L					Vallable	0.855	0.141	0.41	1.3
Calcium	mg/L	-	-	-	-	-	55.3	56.5	59.6	48.5
Chloride	mg/L	0.2	-	≤ 250	250	120	12.7	14.1	9.2	9.6
Conductivity	μS/cm	-	-		-	-	412	425	423	414
Copper	mg/L	0.001	2	1	2	0.002	< 0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.002	-	≤ 0.3	0.3	0.3	< 0.002	<0.002	<0.002	< 0.002
Magnesium	mg/L	-	-	-	-	-	9.7	9.1	7.6	9.2
Manganese	mg/L	0.002	0.12	≤ 0.02	0.12	0.43	0.181	0.100	0.003	0.062
Nitrate + Nitrite (as N)	mg/L	0.2	1	-	-	-	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	-	-	-	< 0.05	< 0.05	<0.05	< 0.05
pH		-	-	7.0-10.5	-	6.5 to 9	8.2	8.2	7.8	7.9
Phenols	mg/L	0.002	-	-	0.57	0.004	< 0.002	<0.002	<0.002	< 0.002
Potassium	mg/L	-	-	-	-	-	1.6	1.1	2.6	2.7
r-Silica	mg/L	-	-	-	-	-	19.1	18.1	16.4	15.0
Sodium	mg/L	-	-	≤ 200	200	-	11.8	11.0	10.9	14.7
Sulfate	mg/L	2	-	≤ 500	-	128	<2	2	<2	<2
Total Organic Carbon	mg/L	1	-	-	-	-	<1	3	<1	1
Turbidity	NTU	-	-	≤ 1.0	-	-	0.26	0.92	0.64	0.64
Zinc	mg/L	0.002	-	≤ 5.0	5	0.007	< 0.002	< 0.002	<0.002	< 0.002
Calculated Parameters										
Bicarbonate	mg/L	1	_	_	-	_	214	181	204	186
Carbonate	mg/L	1	-	-	-	-	<1	<1	<1	<1
Hydroxide	mg/L	1	-	-	-	-	<1	<1	<1	<1
Cation sum	meg/L	-	-	-	-	-	4.12	4.08	4.14	3.89
Anion sum	meg/L	-	-	-	-	-	4.51	4.01	4.16	3.82
% difference	-	-	-	-	-	-	-4.52	0.86	-0.20	0.90
Theoretical Conductivity	μS/cm	-	-	-	-	-	411	392	401	370
Hardness	ma/L	-	-	-	-	-	178	179	180	159
Ion Sum	mg/L	-	-	-	-	-	306	275	294	271
Saturation pH	-	-	-	-	-	-	7.79	7.86	7.78	7.91
Langelier Index	-	-	-	-	-	-	0.41	0.32	0.00	0.00
			•							
BOD₅	mg/L	3	-	-						
COD	mg/L	1	-	-	-	-	<1	7	<1	3
Color	TCU	0	-	≤ 15	-	-	5	9	2	8
Kjeldahl Nitrogen	mg/L	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	-	-	≤ 500			-			
Total Suspended Solids	mg/L	1	-	_	_	_	<1	8	<1	1

Notes:

- 1. MDL = Method Detection Limit
- Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
 Maximum Allowable Concentration (MAC).
 Aesthetic Objective (AO) / Operational Guideline (OG).

- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (< 10m from a freshwater surface water body)

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS quidelines (Human Health) are underlined
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 19 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		up. 1	GCD)WQ ²	Atlantic R	BCA ⁵	MW31L	MW31L	MW31S	MW31S	MW31U	MW31U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG ⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	<5	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	2	<1	<1	<1	<1
Barium	μg/L	10	2000	-	1000	10000	<10	<10	<10	<10	<10	<10
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	210	202	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	1	<1	3	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	41	12	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	7	<2	9	<2	<2	3
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	35	38	<10	<10	19	19
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	8.0	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	4	<2	4	<2	2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 20 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		up 1	GCD	WQ ²	Atlantic R	BCA ⁵	MW31U	MW31U DUP	MW32U1	MW32U1	MW32U2	MW32U2
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	<5	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	<1	<1	<1	<1	<1
Barium	μg/L	10	2000	-	1000	10000	<10	<10	<10	<10	7	<10
Beryllium	μg/L	1	•	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	•	-		-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	3	<1	2	<1
Iron	μg/L	2	•	≤ 300	300	3000	<2	<2	<2	<2	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	<2	<2				
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	•	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	•	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	24	24	75	83	136	153
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	•	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium⁵	μg/L	0.5	20	-	20	150	<0.5	<0.5	<0.5	<0.5	2.1	0.6
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 21 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission

Project Number: 4662.09

Environmental Monitoring Program Crane Mountain Sanitary Landfill 2022 Annual Report

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		up. 1	GCD	WQ ²	Atlantic R	BCA⁵	MW33S	MW33S	MW33U	MW33U DUP	MW33U	MW33U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	15	8	10	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	<1	1	<1	<1	<1
Barium	μg/L	10	2000	-	1000	10000	11	14	19	18	14	15
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	2	<1	<1	<1	<1	<1
Iron	μg/L	2	•	≤ 300	300	3000	<2	<2	<2	<2	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	4	6	12	11	<2	<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	•	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	48	95	53	55	61	62
Thallium [®]	μg/L	0.50	•	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	<0.5	<0.5	10.4	10.1	<0.5	<0.5
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	4	<2	<2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 22 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic RI	BCA ⁵	MW34S	MW34S	MW34U	MW34U	MW35L	MW35L
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	7	<5	26	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	1	4	4	8	8
Barium	μg/L	10	2000	-	1000	10000	22	27	41	40	15	19
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	•	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	<2	<2	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	8	<2	19	<2		7
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	16	14
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	139	186	95	90	77	87
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	1.3	3.0	7.5	0.3	1.6	<0.5
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	<2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 23 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Project Number: 4662.09

Environmental Monitoring Program Crane Mountain Sanitary Landfill 2022 Annual Report

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA⁵	MW35S1	MW35S1	MW35S2	MW35S2	MW40S	MW40S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/25	2022/09/22
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	34	18	18	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	1	1	1	1	1
Barium	μg/L	10	2000	-	1000	10000	15	15	12	14	10	14
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	10	6	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	6	<2	6	<2	8	3
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	17	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	131	150	90	103	69	139
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ⁸	μg/L	0.5	20	-	20	150	5.0	<0.5	2.1	3.9	<0.5	0.9
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	3	<2	<2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 24 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD)WQ ²	Atlantic R	BCA ⁵	MW40U	MW40U	MW41L	MW41L	MW41S	MW41S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Aluminium	μg/L	5	2900	<100	100	50	17	8	<5	7		
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	1	1	<1	<1	<1
Barium	μg/L	10	2000	-	1000	10000	45	<10	58	47	<10	15
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	2	4
Iron	μg/L	2	-	≤ 300	300	3000	20	2	<2	2	151	270
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	3	2	2	<2		
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	17	14	11	14	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	83	80	84	95	<10	<10
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	<0.5	0.7	<0.5	<0.5	0.7	0.6
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	<2	<2	18	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA ⁵	MW41U	MW41U DUP	MW41U	MW41U DUP	MW42L	MW42L
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/04/25	2022/09/22	2022/09/22	2022/04/25	2022/09/22
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	5	10	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	4	4	1	4	<1	<1
Barium	μg/L	10	2000	-	1000	10000	60	60	62	69	10	<10
Beryllium	μg/L	1	•	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	•	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	•	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	•	≤ 300	300	3000	<2	<2	<2	<2	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300			2	<2	7	5
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	•	-	70	730	12	10	8	5	<5	<5
Nickel	μg/L	2	•	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	•	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	74	77	96	86	68	71
Thallium ^o	μg/L	0.50	1	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	•	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	<0.5	<0.5	<0.5	<0.5	2.1	2.3
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	7	<2	3	3

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 26 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA⁵	MW42S	MW42S	MW42U	MW42U	MW43S	MW43S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	5	5	10		94
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	1	1	1	<1	1
Barium	μg/L	10	2000	-	1000	10000	<10	11	<10	<10	18	16
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	•	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	1	<1	<1	<1	7	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	3	<2	2	240	93
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300			10	<2		5
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	9	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	82	75	90	95	55	78
Thallium [®]	μg/L	0.50		-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium⁵	μg/L	0.5	20	-	20	150	<0.5	1.1	0.5	5.1	0.7	0.5
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	4	10	<2	9	3	10

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 27 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		up. 1	GCD)WQ ²	Atlantic R	BCA ⁵	MW43U	MW43U	MW44S	MW44S	MW44U	MW44U DUP
Date:	Units	MDL ¹	MAC ³	AO/OG ⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11
Aluminium	μg/L	5	2900	<100	100	50			7	7	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	4	6	<1	1		
Barium	μg/L	10	2000	-	1000	10000	<10	<10	<10	<10	11	13
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	173	67	<2	4	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	16	2	2	<2	11	12
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	7	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	13	19	32	37	56	55
Thallium⁵	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium [®]	μg/L	0.5	20	-	20	150	8.0	1.1	0.6	0.7	4.3	4.6
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	11	<2	20	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 28 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDL ¹	GCD	WQ ²	Atlantic R	BCA⁵	MW44U	MW44U DUP	MW45L	MW45L	MW45U	MW45U
Date:	Units	MDL.	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	6	6	9	<5	15
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50					1	2
Barium	μg/L	10	2000	-	1000	10000	15	14	<10	<10	<10	<10
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	3	3	<2	4	<2	3
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	<2	<2	6	<2	11	<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	13	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	66	64	47	54	109	121
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	•	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ⁸	μg/L	0.5	20	-	20	150	1.0	2.9	<0.5	1.6	<0.5	<0.5
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	8	8	<2	9	<2	10

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 29 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Sample Station:		toring Wells (great		DWQ ²	Atlantic R	DCA ⁵	MW46L	MW46L	MW48L	MW48L	MW48S	MW48S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/09/22	2022/04/25	2022/09/15	2022/04/25	2022/09/15
Aluminium		5			100		<5	5	<5	8	<5	6
	μg/L		2900	<100		50		-		,		
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	1	2	3	1	2
Barium	μg/L	10	2000	-	1000	10000	<10	<10	31	39	38	64
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	2	<2	11	<2	4
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	18	<2	7	<2		<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	147	176	88	90	87	110
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	6.6	1.3	0.9	0.9	<0.5	0.7
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	_	≤ 5000	5000	70	<2	8	<2	8	<2	8

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 30 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA ⁵	MW48U	MW48U	MW49L	MW49L	MW49S	MW49S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Aluminium	μg/L	5	2900	<100	100	50	<5	9	<5	7	<5	5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	2	1	1	<1	1
Barium	μg/L	10	2000	-	1000	10000	53	74	<10	<10	<10	<10
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	3	<2	3	<2	3
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300		<2	12	<2	9	3
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	135	120	51	53	34	38
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	<0.5	<0.5	6.8	6.0	1.8	0.6
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	8	<2	10	<2	8

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 31 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA ⁵	MW49U	MW49U	MW50L	MW50L	MW50S	MW50S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/25	2022/09/22	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	5	<5	9	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	1	<1	1	<1	1
Barium	μg/L	10	2000	-	1000	10000	<10	<10	17	22	16	15
Beryllium	μg/L	1	•	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	•	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	•	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	3	<2	2	<2	2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	3	<2	18	2	11	<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	•	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	41	44	117	128	99	91
Thallium ^o	μg/L	0.50	•	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	3.3	0.8	<0.5	3.2	<0.5	0.5
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	9	<2	8	<2	9

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 32 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA⁵	MW51D	MW51D	MW51D	MW51S1	MW51S1	MW51S1
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	5	<5	6	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	<1	1	<1	<1	1
Barium	μg/L	10	2000	-	1000	10000	13	11	12	20	20	19
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	4	<2	<2	2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	4	3	<2	3	5	<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	12	7	<5	9	7	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	85	80	96	141	131	148
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium⁵	μg/L	0.5	20	-	20	150	1.2	3.4	1.7	3.6	3.8	2.4
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	8	<2	<2	7

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 33 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Project Number: 4662.09

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:			GCD	WQ ²	Atlantic RI	BCA ⁵	MW51S2	MW51S2	MW51S2	MW52D	MW52D	MW52D
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	6	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	<1	1	<1	<1	1
Barium	μg/L	10	2000	-	1000	10000	20	19	18	46	48	42
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	•	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	1815	1311	2217
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	2	<2	<2	3
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	3	4	3			<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	11	10	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	•	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	11	163	120	348	315	332
Thallium [®]	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium [®]	μg/L	0.5	20	-	20	150	1.7	6.9	5.9	6.4	1.4	2.8
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	8	<2	<2	7

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 34 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:			GCD	WQ ²	Atlantic R	BCA ⁵	MW52S	MW52S	MW52S	MW53D	MW53D	MW53D
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	12	6	<5	14
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	1	<1	1	<1	<1	1
Barium	μg/L	10	2000	-	1000	10000	12	10	14	<10	<10	<10
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	104	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	1	9	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	3	<2	<2	7
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300	6	5	<2			<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	8	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	85	68	90	6	15	10
Thallium [®]	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium [®]	μg/L	0.5	20	-	20	150	<0.5	1.4	3.4	1.1	<0.5	0.5
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	9	5	<2	8

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Project Number: 4662.09

Environmental Monitoring Program Crane Mountain Sanitary Landfill 2022 Annual Report

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic R	BCA ⁵	MW54S	MW54S	MW54S	MW54U	MW54U DUP	MW54U
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/04/11	2022/07/21
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	<5	<5	<5	<5
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	2	2	3	4	5	3
Barium	μg/L	10	2000	-	1000	10000	21	19	15	20	19	15
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	3	<2	<2	<2
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300			3			
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	<5	<5	<5	7	7	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	83	74	86	97	94	75
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	150	<0.5	<0.5	0.5	<0.5	<0.5	<0.5
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	7	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 36 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDI 1	GCD	WQ ²	Atlantic RI	BCA ⁵	MW54U DUP	MW54U	MW54U DUP	MW55S	MW55S	MW55S
Date:	Units	MDL ¹	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/07/21	2022/09/15	2022/09/15	2022/04/11	2022/07/21	2022/09/15
Aluminium	μg/L	5	2900	<100	100	50	<5	<5	9	9	7	29
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	3	3	4	1	<1	1
Barium	μg/L	10	2000	-	1000	10000	16	13	12	11	<10	19
Beryllium	μg/L	1	•	-	4	1.5	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-		-	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	•	≤ 300	300	3000	<2	3	4	<2	<2	5
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300						
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	•	-	70	730	<5	<5	<5	32	22	<5
Nickel	μg/L	2	•	-	100	250	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	•	-	•	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	77	88	88	103	80	112
Thallium [®]	μg/L	0.50	•	-	2	8	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	•	-	2400	-	<1	<1	<1	<1	<1	<1
Uranium [®]	μg/L	0.5	20	-	20	150	<0.5	<0.5	0.8	<0.5	<0.5	3.1
Vanadium	μg/L	10	•	-	6.2*	1200	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	8	8	<2	<2	16

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded
Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 37 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-3: Trace Metals, Monitoring Wells (greater than 10m from a surface water body)

Sample Station:		MDL ¹)WQ ²	Atlantic R	BCA ⁵	MW56S	MW56S	MW56S	MW57S	MW57D
Date:	Units	MDL.	MAC ³	AO/OG ⁴	HH ⁶	Eco ⁷	2022/04/11	2022/07/21	2022/09/15	2022/09/22	2022/09/22
Aluminium	μg/L	5	2900	<100	100	50	7	<5	12		77
Antimony	μg/L	2	6	-	6	90	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	50	<1	<1	1	1	1
Barium	μg/L	10	2000	-	1000	10000	<10	<10	<10	<10	<10
Beryllium	μg/L	1	-	-	4	1.5	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	15000	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.9	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	-	50	89	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	10	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	20	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	3000	<2	<2	4	48	19
Lead	μg/L	1	5	-	5	10	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	4300		17	<2		<2
Mercury	μg/L	0.02	1	-	1	0.26	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	730	10	7	<5	<5	<5
Nickel	μg/L	2	-	-	100	250	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	10	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	2.5	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	210000	18	14	18	11	89
Thallium ^o	μg/L	0.50	-	-	2	8	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1
Uranium⁵	μg/L	0.5	20	-	20	150	1.6	<0.5	1.4	1.1	0.9
Vanadium	μg/L	10	-	-	6.2*	1200	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	70	<2	<2	15	30	10

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (> 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 38 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-4: Trace Metals, Monitoring Wells (less than 10m from a surface water body)

Sample Stat		MDL ¹	GCD	WQ ²	Atlantic	RBCA⁵	MW36L	MW36L	MW36S	MW36S	MW36U	MW36U DUP	MW36U	MW36U DUP	MW37S
Date:	Units	MIDL	MAC ³	AO/OG⁴	HH ⁶	Eco ⁷	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11
Aluminium	μg/L	5	2900	<100	100	5	50	9			79	80	54	24	<5
Antimony	μg/L	2	6	-	6	9	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	5	8	9	1	1	1	1	<1	<1	<1
Barium	μg/L	10	2000	-	1000	1000	14	18	13	22	14	12	12	14	15
Beryllium	μg/L	1	-	-	4	0.15*	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	ı	-	ı	ı	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	1500	437	433	<100	<100	273	271	268	271	<100
Cadmium	μg/L	0.02	7	-	5	0.09	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	8.9	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	ı	-	3.8	1*	<2	<2	<2	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	2	1	<1	7	5	<1	<1	<1	<1	<1
Iron	μg/L	2	1	≤ 300	300	300	7	2		239	27	24	42	11	<2
Lead	μg/L	1	5	-	5	1	<1	<1	1	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	430	8	<2			11	8	18	4	7
Mercury	μg/L	0.02	1	-	1	0.026*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	1	-	70	73	13	12	<5	<5	6	5	<5	<5	<5
Nickel	μg/L	2	-	-	100	25	<2	<2	<2	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	21000	44	49	24	69	39	35	42	42	97
Thallium°	μg/L	0.50	-	-	2	8.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium ^o	μg/L	0.5	20	-	20	15	<u>28.0</u>	2.0	0.9	<0.5	6.4	6.2	<0.5	<0.5	<0.5
Vanadium	μg/L	10	-	-	6.2*	120	<10	<10	<10	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	7	<2	<2	14	<2	<2	<2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil

- 6. HH = Human Health
- 7. Eco = Ecological (< 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are underlined

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 39 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Appendix C1-4: Trace Metals, Monitoring Wells (less than 10m from a surface

Sample Stat		MDL ¹	GCD	WQ ²	Atlantic	: RBCA⁵	MW37S	MW38L	MW38L	MW38S	MW38S	MW38U	MW38U
Date:	Units	MDL	MAC ³	AO/OG ⁴	HH ⁶	Eco ⁷	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Aluminium	μg/L	5	2900	<100	100	5	<5	9	6	<5	<5	<5	<5
Antimony	μg/L	2	6	-	6	9	<2	<2	<2	<2	<2	<2	<2
Arsenic	μg/L	1	10	-	10	5	<1	1	1	4	4	1	5
Barium	μg/L	10	2000	-	1000	1000	18	24	28	32	33	14	39
Beryllium	μg/L	1	-	-	4	0.15*	<1	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	-	-	-	<1	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	-	5000	1500	<100	<100	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	7	-	5	0.09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
Chromium	μg/L	1	50	-	50	8.9	<1	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	-	3.8	1*	<2	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	2000	1000	2000	2	<1	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	-	≤ 300	300	300	<2	<2	<2	<2	<2	<2	<2
Lead	μg/L	1	5	-	5	1	<1	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	120	20	120	430	3	6	2	2	2		3
Mercury	μg/L	0.02	1	-	1	0.026*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	-	70	73	<5	17	13	<5	<5	< 5	<5
Nickel	μg/L	2	-	-	100	25	<2	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	-	50	1	<1	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	-	-	0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	-	2400	21000	116	85	96	137	140	129	146
Thallium ^o	μg/L	0.50	-	-	2	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tin	μg/L	1	-	-	2400	-	<1	<1	<1	<1	<1	<1	<1
Uranium ⁸	μg/L	0.5	20	-	20	15	<0.5	<0.5	<0.5	3.6	3.7	0.7	2.4
Vanadium	μg/L	10	-	-	6.2*	120	<10	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	-	≤ 5000	5000	7	<2	<2	<2	<2	<2	<2	<2

Notes:

- 1. MDL = Method Detection Limit
- 2. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Ser
- 3. Maximum Allowable Concentration (MAC).
- 4. Aesthetic Objective (AO) / Operational Guideline (OG).
- 5. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (E for an industrial, potable site with coarse-grained soil
- 6. HH = Human Health
- 7. Eco = Ecological (< 10m from a freshwater surface water body)
- 8. Analysis conducted by RPC in Fredericton, NB
- DUP = Field Duplicate
- "-" = None established/ not measured.

Results that exceed the MAC are red font and bolded

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Human Health) are Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded to the Equippe (Ecological) are shaded to the Equi

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	RBCA ²	MW31L	MW31L	MW31S	MW31S	MW31U	MW31U DUP	MW31U	MW31U DUP	MW32U1	MW32U1
Date:	Ullits	MDL ¹	RBCA	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 41 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	RBCA ²	MW32U2	MW32U2	MW33S	MW33S	MW33U	MW33U DUP	MW33U	MW33U DUP	MW34S	MW34S
Date:	Units	MDL ¹	RBCA	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	RBCA ²	MW34U	MW34U	MW35L	MW35L	MW35S1	MW35S1	MW35S2	MW35S2	MW36L	MW36L
Date:	Units	MDL ¹	RBCA	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	RBCA ²	MW36S	MW36S	MW36U	MW36U DUP	MW36U	MW36U DUP	MW37S	MW37S	MW38L	MW38L
Date:	Units	MDL ¹	RBCA	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	RBCA ²	MW38S	MW38S	MW38U	MW38U	MW40S	MW40S	MW40U	MW40U	MW41L	MW41L
Date:	Uillis	MDL1	RBCA	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW41S	MW41S	MW41U	MW41U DUP	MW41U	MW41U DUP	MW42L	MW42L	MW42S	MW42S
Date:	Units	MDL ¹	RBCA ²	2022/04/25	2022/09/22	2022/04/25	2022/04/25	2022/09/22	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW42U	MW42U	MW43S	MW43S	MW43U	MW43U	MW44S	MW44S	MW44U	MW44U DUP
Date:	Units	MDL ¹	RBCA ²	2022/04/25	2022/09/22	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 47 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDCA ²	MW44U	MW44U DUP	MW45L	MW45L	MW45U	MW45U	MW46L	MW46L	MW48L	MW48L
Date:	Ullits	MDL ¹	RBCA ²	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 48 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW48S	MW48S	MW48U	MW48U	MW49L	MW49L	MW49S	MW49S	MW49U	MW49U
Date:	Ullis	MDL'	RBCA ²	2022/04/25	2022/09/15	2022/04/25	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 49 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW50L	MW50L	MW50S	MW50S	MW51D	MW51D	MW51D	MW51S1	MW51S1	MW51S1
Date:	Units	MDL ¹	RBCA ²	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 50 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW51S2	MW51S2	MW51S2	MW52D	MW52D	MW52D	MW52S	MW52S	MW52S	MW53D
Date:	Uillis	MDL ¹	RBCA ²	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 51 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW53D	MW53D	MW54S	MW54S	MW54S	MW54U	MW54U DUP	MW54U	MW54U DUP	MW54U
Date:	Units	MDL ¹	RBCA ²	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/04/11	2022/07/21	2022/07/21	2022/09/15
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 52 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-5: Petroleum Hydrocarbons, Monitoring Wells

Sample Station:	Units	MDI 1	DDC 42	MW54U DUP	MW55S	MW55S	MW55S	MW56S	MW56S	MW56S	MW57S	MW57D
Date:	Units	MDL ¹	RBCA ²	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/09/22	2022/09/22
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	24.0	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH C6-C10 Range	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
TPH C10-C21 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C21-C32 Range	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

1. MDL = Method Detection Limit

2. Atlantic Risk-Based Corrective Action Tier I Environmental Quality Standards (EQS)

for an industrial, potable site with coarse-grained soil (July, 2022)

DUP = Field Duplicate

"-" = None established/ not measured.

"*" = Guideline less than reporting limit

Results that exceed the Atlantic RBCA Tier I EQS guidelines (Ecological) are shaded

Page 53 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW31L	MW31L	MW31S	MW31S	MW31U	MW31U DUP	MW31U	MW31U DUP	MW32U1	MW32U1
Date:	Units	GCDWQ ^{1,2}	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11	2022/09/15
рН	-	7.0 - 10.5	7.9	8.38		7.13	7.7	7.7	7.19	7.19	8.2	7.65
Temperature	°C	15	10.6		11.2		10.7	10.5			10.3	
Conductivity	μS/cm	-	159	168	34	177	145	145	524	524	447	533
Dissolved Oxygen	mg/L	-	3.5	4.49	5.11	4.02	6.4	6.33	4.13	4.13	4.63	5.15

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 54 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW32U2	MW32U2	MW33S	MW33S	MW33U	MW33U DUP	MW33U	MW33U DUP	MW33U	MW33U DUP
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/03/07	2022/03/07	2022/04/11	2022/04/11	2022/07/21	2022/07/21
рН	-	7.0 - 10.5	8.2	7.32	7.8	7.05	8.2	8.2	8.0	8.0	7.68	7.68
Temperature	°C	15	10.3		11.3		9.5	9.5	10.8	10.8		
Conductivity	μS/cm	-	895	741	243	292	197	196	212	212	214	214
Dissolved Oxygen	mg/L	-	4.39	3.02	7.26	4.63	6.21	6.22	6.07	6.19	4.86	4.81

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 55 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW33U	MW33U DUP	MW33U	MW33U DUP	MW34S	MW34S	MW34S	MW34S	MW34S	MW34U
Date:	Ullits	GCDWQ ^{1,2}	2022/09/15	2022/09/15	2022/11/24	2022/11/24	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/03/07
рН	-	7.0 - 10.5	7.57	7.57	8.1	8.1	7.9	8.1	8.08	7.26	7.2	7.9
Temperature	°C	15			5.2	5.2	7	11.6			4.9	8.9
Conductivity	μS/cm	-	298	298	210	208	350	442	555	527	369	306
Dissolved Oxygen	mg/L	-	3.97	3.97	3.36	3.41	4.81	4.96	2.73	4.79	4.52	4.68

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 56 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW34U	MW34U	MW34U	MW34U	MW35L	MW35L	MW35L	MW35L	MW35L	MW35S1
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/04/11
рН	-	7.0 - 10.5	8.0	8.3	7.80	7.9	8.0	8.0	8.2	7.88	7.9	8.2
Temperature	°C	15	11.4			5.1	9.1	9.4			5.6	10.3
Conductivity	μS/cm	-	343	330	343	312	203	239	228	274	229	305
Dissolved Oxygen	mg/L	-	5.11	4.88	3.92	3.57	4.02	3.59	3.84	3.12	2.24	5.77

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 57 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW35S1	MW35S2	MW35S2	MW35S2	MW35S2	MW35S2	MW36L	MW36L	MW36S	MW36S
Date:	Ullits	GCDWQ ^{1,2}	2022/09/15	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/04/11	2022/09/15	2022/04/11	2022/09/15
рН	-	7.0 - 10.5	7.94	7.9	8.0	8.2	7.95	8.1	8.1	7.85	7.4	
Temperature	°C	15		9.3	10.9			4.4	8.8	16.3	9.5	
Conductivity	μS/cm	-	311	225	258	254	294	255	329	319	82	238
Dissolved Oxygen	mg/L	,	2.86	5.45	5.78	3.05	3.15	3.41	4.03	5.14	2.9	2.18

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 58 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW36U	MW36U DUP	MW36U	MW36U DUP	MW37S	MW37S	MW38L	MW38L	MW38S	MW38S
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/04/11	2022/09/15	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15
рН	-	7.0 - 10.5	8.1	8.1	7.74	7.74	8.0	7.18	8.2	7.80	8.1	7.60
Temperature	°C	15	9.2	9			9.8		10.1		9.7	
Conductivity	μS/cm	-	192	192	192	196	369	369	291	285	414	411
Dissolved Oxygen	mg/L	,	4.89	5.03	2.7	2.7	7.8	5.86	6.64	4.59	3.86	3.93

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 59 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	GCDWQ ^{1,2}	MW38U	MW38U	MW38U	MW38U	MW38U	MW40S	MW40S	MW40U	MW40U	MW41L
Date:	Ullits	GCDWQ	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25
рН	-	7.0 - 10.5	7.8	8.2	8.2	7.78	7.9	8.0	8.52	8.0	8.24	7.9
Temperature	°C	15	9.4	11.4			4.0	10.5		11.2		10.7
Conductivity	μS/cm	-	375	412	425	423	414	268	205	209	256	244
Dissolved Oxygen	mg/L	-	3.72	4.3	3.09	3.47	3.7	6.76	4.96	2.64	6.06	3.16

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 60 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW41L	MW41S	MW41S	MW41S	MW41S	MW41S	MW41U	MW41U	MW41U DUP	MW41U
Date:	Ullits	GCDWQ ^{1,2}	2022/09/22	2022/03/07	2022/04/25	2022/07/21	2022/09/22	2022/11/24	2022/03/07	2022/04/25	2022/04/25	2022/07/21
рН	-	7.0 - 10.5	8.39	-					-	7.9	7.9	8.1
Temperature	°C	15		-	9.8			3.8	-	9.7	9.9	
Conductivity	μS/cm	-	227	-	37	34	43	40	-	243	243	244
Dissolved Oxygen	mg/L	-	4.66	-	7.18	3.77	5.33	7.37	-	3.89	3.54	2.40

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 61 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW41U DUP	MW41U	MW41U DUP	MW41U	MW42L	MW42L	MW42S	MW42S	MW42U	MW42U
Date:	Ullits	GCDWQ ^{1,2}	2022/07/21	2022/09/22	2022/09/22	2022/11/24	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22
рН	-	7.0 - 10.5	8.1	7.95	7.95	7.6	8.0	8.16	7.9	7.01	8.0	7.43
Temperature	°C	15				4.0	9.9		8.6		9.5	
Conductivity	μS/cm	-	244	234	234	230	235	230	253	258	241	224
Dissolved Oxygen	mg/L	-	2.51	5.38	5.38	3.34	3.71	4.53	5.53	4.1	4.13	5.07

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 62 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW43S	MW43S	MW43U	MW43U	MW44S	MW44S	MW44U	MW44U DUP	MW44U	MW44U DUP
Date:	Ullis	GCDWQ ^{1,2}	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/11	2022/04/11	2022/09/15	2022/09/15
рН	-	7.0 - 10.5	7.4		8.1	8.46	7.7		8.2	8.2	7.58	7.58
Temperature	°C	15	11.5		11.6		11.8		12	11.7		
Conductivity	μS/cm	-	295	351	250	242	243	247	467	469	461	461
Dissolved Oxygen	mg/L	-	1.58	3.95	4.12	3.02	3.55	3.42	7.04	7.06	2.69	2.69

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 63 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW45L	MW45L	MW45U	MW45U	MW46L	MW46L	MW48L	MW48L	MW48S	MW48S
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/09/15	2022/04/11	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/15	2022/04/25	2022/09/15
рН	-	7.0 - 10.5	7.9	7.97	7.9	7.98	7.9	7.98	7.9	8.64	7.8	8.50
Temperature	°C	15	12		11.7		8.9		10.2		9.3	
Conductivity	μS/cm	-	227	248	399	251	698	697	238	587	187	212
Dissolved Oxygen	mg/L	-	6.54	4.39	7.43	5.37	5.29	6.02	2.87	3.69	4.17	3.73

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 64 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW48U	MW48U	MW49L	MW49L	MW49S	MW49S	MW49U	MW49U	MW50L	MW50L
Date:	Ullits	GCDWQ ^{1,2}	2022/04/25	2022/09/15	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/25	2022/09/22	2022/04/11	2022/09/15
рН	-	7.0 - 10.5	7.9	8.10	7.9	8.05	7.6	7.92	7.8	8.19	7.9	8.09
Temperature	°C	15	9.4		10		8.8		9.8		10.3	
Conductivity	μS/cm	-	221	210	200	204	162	104	184	186	813	674
Dissolved Oxygen	mg/L	-	3.74	4.21	4.36	4.82	4.85	5.34	5.19	5.86	5	3.89

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 65 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW50S	MW50S	MW51D	MW51D	MW51D	MW51S1	MW51S1	MW51S1	MW51S2	MW51S2
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21
рН	-	7.0 - 10.5	8.0	7.86	7.9	8.2	8.3	8.0	8.0	7.84	8.0	8.1
Temperature	°C	15	9.8		8.9	17.9	15.9	10.7			10.4	
Conductivity	μS/cm	-	570	499	251	254	255	411	417	398	286	293
Dissolved Oxygen	mg/L	-	3.88	3.36	4.01	2.85	3.58	7.17	3.94	3.9	3.27	3.57

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 66 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW51S2	MW52D	MW52D	MW52D	MW52S	MW52S	MW52S	MW53D	MW53D	MW53D
Date:	Ullits	GCDWQ ^{1,2}	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15
рН	-	7.0 - 10.5	8.31	8.1	8.2		7.9	8.2	7.84			
Temperature	°C	15		11			10.7			10.3		
Conductivity	μS/cm	-	297	1093	1328	1253	313	279	354	24	28	65
Dissolved Oxygen	mg/L	-	2.89	3.56	3.32	2.96	5.53	3.60	3.83	8.78	6.54	6.52

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 67 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	CCDWO ^{1,2}	MW54S	MW54S	MW54S	MW54U	MW54U DUP	MW54U	MW54U DUP	MW54U	MW54U DUP	MW55S
Date:	Ullits	GCDWQ ^{1,2}	2022/04/11	2022/07/21	2022/09/15	2022/04/11	2022/04/11	2022/07/21	2022/07/21	2022/09/15	2022/09/15	2022/04/11
рН	-	7.0 - 10.5	7.8	7.9	7.01	7.8	7.8	7.9	7.9	7.89	7.89	8.1
Temperature	°C	15	11.6			11	10.8					11.4
Conductivity	μS/cm	-	296	335	313	341	341	339	340	316	316	261
Dissolved Oxygen	mg/L	-	3.35	2.50	6.48	2.45	2.4	2.47	2.55	1.48	1.48	2.16

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 68 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-6: Field Data, Monitoring Wells

Sample Station	Units	GCDWQ ^{1,2}	MW55S	MW55S	MW56S	MW56S	MW56S	MW57S	MW57D
Date:	Ullits	GCDWQ	2022/07/21	2022/09/15	2022/04/11	2022/07/21	2022/09/15	2022/09/22	2022/09/22
pH	-	7.0 - 10.5	8.2	8.40	7.9	7.9	8.11	7.14	7.65
Temperature	°C	15			11.3				
Conductivity	μS/cm	-	244	231	192	176	139	109	275
Dissolved Oxygen	mg/L	-	0.59	1.84	4.92	5.89	5.09	5.67	5.91

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

2. Aesthetic Objective (AO) / Operational Guideline (OG).

DUP = Field Duplicate

"-" = None established/ not measured.

Page 69 of 70 AppC1_2022 Analytical Data-(MW)-KT.xlsx

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C1-7: Groundwater guideline criteria for Ammonia - Ecological Health

CCME reports the guideline criteria for Ammonia as follows:

as NH	1	рН									
as IVI	13	6	6.5	7	7.5	8	8.5	9	10		
	0	231	73	23.1	7.32	2.33	0.749	0.25	0.042		
	5	153	48.3	15.3	4.84	1.54	0.502	0.172	0.034		
	10	102	32.4	10.3	3.26	1.04	0.343	0.121	0.029		
Temp (°C)	15	69.7	22	6.98	2.22	0.715	0.239	0.089	0.026		
	20	48	15.2	4.82	1.54	0.499	0.171	0.067	0.024		
	25	33.5	10.6	3.37	1.08	0.354	0.125	0.053	0.022		
	30	23.7	7.5	2.39	0.767	0.256	0.094	0.043	0.021		

To convert to Ammonia as Nitrogen, multiply above by 0.8224

as N		рН									
as IV		6	6.5	7	7.5	8	8.5	9	10		
	0	189.97	60.04	19.00	6.02	1.92	0.616	0.206	0.035		
	5	125.83	39.72	12.58	3.98	1.27	0.413	0.141	0.028		
	10	83.88	26.65	8.47	2.68	0.855	0.282	0.100	0.024		
Temp (°C)	15	57.32	18.09	5.74	1.83	0.588	0.197	0.073	0.021		
-	20	39.48	12.50	3.96	1.27	0.410	0.141	0.055	0.020		
	25	27.55	8.72	2.77	0.888	0.291	0.103	0.044	0.018		
	30	19.49	6.17	1.97	0.631	0.211	0.077	0.035	0.017		

2

16

Appendix C2-1: General Chemistry, Underdrains

Sample Station:	Units	MDL ¹	GCDWQ ²	UD3	UD3	UD3	UD3	UD3
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022-11-24
Alkalinity	mg/L	1	_	149	172	223	192	172
Ammonia	mg/L	0.50	_	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/L	-	_	42.0	60.2	67.9	67.8	55.7
Chloride	mg/L	0.2	250	9.4	9.6	11.3	8.0	6.3
Conductivity	μS/cm	1	-	325	392	454	445	431
Copper	mg/L	0.001	1 / 2 ³	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.00	0.3	<0.002	<0.002	<0.002	0.003	<0.002
Magnesium	mg/L	-	-	6.4	8.9	9.0	7.3	8.7
Manganese	mg/L	0.002	0.02/0.12 ³	0.261	0.008	0.011	<0.002	0.016
Nitrate + Nitrite	mg/L	0.20	10	0.4	<0.2	<0.2	<0.2	<0.2
o-Phosphate	mg/L	0.05	-	<0.05	<0.05	<0.05	< 0.05	<0.05
H		-	7.0 - 10.5	7.7	8.1	8.1	7.1	7.2
Phenols	mg/L	0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	0.9	2.6	1.4	2.2	1.5
r-Silica	mg/L	-	-	10.0	11.0	15.9	12.5	10.8
Sodium	mg/L	-	200	9.6	11.5	12.5	13.3	13.3
Sulfate	mg/L	2	500	15	21	25	26	25
Total Organic Carbon	mg/L	1	-	3	<1	2	8	1
Turbidity	NTU	0.1	1	0.47	0.29	0.43	0.59	0.38
Zinc	mg/L	0.002	5	0.015	0.026	0.008	0.006	<0.002
Calculated Parameters								
Bicarbonate	mg/L	1	-	149	172	223	192	172
Carbonate	mg/L	1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	3.07	4.30	4.71	4.62	4.11
Anion sum	meq/L	-	-	3.36	3.90	5.02	4.32	3.88
% difference	mg/L	-	-	-4.45	4.90	-3.24	3.33	2.95
Theoretical Conductivity	μS/cm	-	-	322	420	489	457	406
Hardness	mg/L	-	-	131	187	207	199	175
Ion Sum	mg/L	-	-	233	286	350	316	283
Saturation pH		-	-	8.07	7.85	7.69	7.75	7.89
Langelier Index		-	-	-0.35	0.20	0.43	-0.62	-0.73
BOD ₅	mg/L	1	_	<1	<1	1	<1	1
COD	mg/L	1	_	8	<1	7	23	3
Color	TCU	<u> </u>	15	1	7	7	6	4
Kjeldahl Nitrogen	mg/L	0.50	-	<0.5	<0.5	0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	1	500	-	-	-	-	-
T / 10 110 111			+			_		

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

Total Suspended Solids

2. Canadian Drinking Water Quality Guidelines (Health Canada, June 2019).

mg/L

- 3. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic
Results that exceed the GCDWQ MAC are bold and shaded.

Client: Fundy Regional Services Commission

17

2

Appendix C2-1: General Chemistry, Underdrains

Sample Station:	Units	MDL ¹	GCDWQ ²	UD4	UD4	UD4	UD4	UD4
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Alkalinity	mg/L	1	-	124	155	169	192	182
Ammonia	mg/L	0.50		<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/L	-	-	36.0	57.8	59.2	67.3	57.4
Chloride	mg/L	0.2	250	9.6	10.8	10.7	9.6	7.4
Conductivity	µS/cm	1	230	276	385	421	458	464
Copper	mg/L	0.001	1/23	<0.001	0.002	<0.001	<0.001	<0.001
Iron	mg/L	0.00	0.3	<0.001	<0.002	<0.001	0.003	<0.001
Magnesium	mg/L	-	-	5.5	9.2	8.4	7.5	8.6
Manganese	mg/L	0.002	0.02/0.12 ³	0.024	0.012	0.003	<0.002	0.002
Nitrate + Nitrite	mg/L	0.20	10	0.024	<0.2	<0.2	<0.002	0.002
o-Phosphate	mg/L	0.20	-	<0.05	<0.2	<0.2	<0.2	<0.05
рН	IIIg/L	0.05	7.0 - 10.5	7.7	8.1	8.1	7.4	7.4
Phenols	mg/L	0.002	7.0 - 10.5	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	0.002	-	1.4	2.0	1.5	2.4	1.8
r-Silica	mg/L	<u> </u>	-	8.7	17.1	12.2	15.5	7.3
Sodium	mg/L		200	8.8	12.1	12.3	14.0	13.9
Sulfate	mg/L	2	500	16	25	22	33	29
Total Organic Carbon	mg/L	1	-	3	<1	2	6	<1
Turbidity	NTU	0.1	1	0.78	0.26	0.4	0.57	0.22
Zinc	mg/L	0.002	5	<0.002	<0.002	<0.002	0.006	<0.002
ZIIIC	IIIg/L	0.002	<u> </u>	₹0.002	40.002	₹0.002	0.000	40.002
Calculated Parameters								
Bicarbonate	mg/L	1	-	124	155	169	192	182
Carbonate	mg/L	1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	2.67	4.22	4.22	4.65	4.22
Anion sum	meq/L	-	-	2.93	3.93	3.94	4.61	4.04
% difference	mg/L	-	-	-4.74	3.51	3.46	0.33	2.22
Theoretical Conductivity	μS/cm	-	-	285	410	416	472	428
Hardness	mg/L	-	-	113	182	182	199	179
Ion Sum	mg/L	-	-	202	272	283	325	300
Saturation pH		-	-	8.22	7.92	7.87	7.76	7.85
Langelier Index		-	-	-0.48	0.14	0.18	-0.36	-0.45
BOD			1	<1	<1		<1	<1
BOD ₅	mg/L	1	-		•	1		•
COD	mg/L	1	-	7	<1	4	17	<1
Color	TCU	-	15	3	5	4	3	4
Kjeldahl Nitrogen	mg/L	0.50	-	<0.5	<0.5	0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	1	500	-	-	-	-	-

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

Total Suspended Solids

2. Canadian Drinking Water Quality Guidelines (Health Canada, June 2019).

mg/L

- 3. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic
Results that exceed the GCDWQ MAC are bold and shaded.

Client: Fundy Regional Services Commission

Appendix C2-1: General Chemistry, Underdrains

Sample Station:	Units	MDL ¹	GCDWQ ²	UD5	UD5	UD5	UD5	UD5
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Alkalinity	mg/L	1	_	179	125	143	181	155
Ammonia	mg/L	0.50	_	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/L	-	_	52.0	45.9	54.2	74.5	54.5
Chloride	mg/L	0.2	250	14.4	10.5	11.6	11.3	8.5
Conductivity	μS/cm	1	-	420	324	386	454	443
Copper	mg/L	0.001	1 / 2 ³	<0.001	<0.001	0.003	<0.001	<0.001
Iron	mg/L	0.00	0.3	<0.002	<0.002	<0.002	0.002	<0.002
Magnesium	mg/L	-	-	8.0	8.4	7.9	7.2	8.3
Manganese	mg/L	0.002	0.02/0.12 ³	0.029	<0.002	0.005	<0.002	<0.002
Nitrate + Nitrite	mg/L	0.20	10	<0.2	<0.2	<0.2	<0.2	0.2
o-Phosphate	mg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
pH	mg/L	-	7.0 - 10.5	7.6	8.1	8.1	7.0	7.3
Phenols	mg/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	_	0.5	2.0	1.7	2.3	2.4
r-Silica	mg/L	-	_	13.1	9.9	11.2	14.0	9.5
Sodium	mg/L	-	200	15.5	9.5	10.5	15.6	12.8
Sulfate	mg/L	2	500	26	27	26	43	41
Total Organic Carbon	mg/L	1	-	3	<1	1	6	2
Turbidity	NTU	0.1	1	0.43	0.31	0.54	0.49	0.26
Zinc	mg/L	0.002	5	<0.002	<0.002	<0.002	0.01	<0.002
Calculated Parameters								
Bicarbonate	mg/L	1	-	179	125	143	181	155
Carbonate	mg/L	1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	3.94	3.45	3.85	5.05	4.02
Anion sum	meq/L	-	-	4.32	3.23	3.59	4.65	3.95
% difference	mg/L	-	-	-4.56	3.25	3.62	4.07	0.88
Theoretical Conductivity	μS/cm	-	-	419	346	385	508	419
Hardness	mg/L	-	-	163	149	168	216	170
Ion Sum	mg/L	-	-	295	228	255	335	283
Saturation pH		-	-	7.90	8.11	7.98	7.74	7.94
Langelier Index		-	-	-0.34	0.03	0.16	-0.74	-0.68
BOD ₅	mg/L	1	<u> </u>	<1	<1	<1	1 1	<1
COD	mg/L	<u>'</u> 1	-	8	<1	4	18	4
Color	TCU	<u> </u>	15	o <1	5	8	4	4
Kjeldahl Nitrogen	mg/L	0.50	10	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	1	500	<0.5 -			<0.5 -	-
T t 10	mg/L		500	-				-

<1

5

2

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

Total Suspended Solids

2. Canadian Drinking Water Quality Guidelines (Health Canada, June 2019).

mg/L

- 3. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic
Results that exceed the GCDWQ MAC are bold and shaded.

Client: Fundy Regional Services Commission

<1

2

Appendix C2-1: General Chemistry, Underdrains

	7,							
Sample Station:	Units	MDL ¹	GCDWQ ²	UD6	UD6	UD6	UD6	UD6
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Alkalinity	mg/L	1	-	88	118	144	177	156
Ammonia	mg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/L	-	-	27.5	46.9	50.3	56.2	54.3
Chloride	mg/L	0.2	250	8.8	11.4	12.9	8.1	8.8
Conductivity	μS/cm	1	-	213	330	387	497	457
Copper	mg/L	0.001	1 / 2 ³	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.00	0.3	<0.002	<0.002	<0.002	0.002	<0.002
Magnesium	mg/L	-	-	4.1	8.8	8.0	7.6	8.5
Manganese	mg/L	0.002	0.02/0.12 ³	0.170	<0.002	0.003	<0.002	<0.002
Nitrate + Nitrite	mg/L	0.20	10	0.6	<0.2	<0.2	<0.2	0.2
o-Phosphate	mg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
pH		-	7.0 - 10.5	7.8	8.2	8.1	7.2	7.2
Phenols	mg/L	0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	0.5	2.7	2.0	2.7	2.3
r-Silica	mg/L	-	-	7.0	10.7	12.2	13.6	13.0
Sodium	mg/L	-	200	8.2	10.0	11.0	13.6	13.0
Sulfate	mg/L	2	500	13	31	16	28	44
Total Organic Carbon	mg/L	1	-	1	<1	3	6	1
Turbidity	NTU	0.1	1	1.15	0.28	0.28	0.5	0.18
Zinc	mg/L	0.002	5	0.004	<0.002	<0.002	0.01	<0.002
Calculated Parameters								
Bicarbonate	mg/L	11	-	88	118	144	177	156
Carbonate	mg/L	1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	1	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	2.09	3.57	3.70	4.09	4.03
Anion sum	meq/L	-	-	2.20	3.26	3.46	4.16	4.15
% difference	mg/L	-	-	-2.77	4.55	3.27	-0.82	-1.48
Theoretical Conductivity	μS/cm	-	-	219	357	363	418	425
Hardness	mg/L	-	-	86	153	159	172	171
Ion Sum	mg/L	-	-	151	229	244	293	287
Saturation pH		-	-	8.48	8.13	8.01	7.87	7.94
Langelier Index		-	-	-0.64	0.02	0.11	-0.68	-0.72
BOD ₅	mg/L	1	I	<1	<1	<1	<1	<1
COD			-	-				·
	mg/L	1	-	3	<1	8	18	3
Color	TCU	-	15	4	5	8	4	5
Kjeldahl Nitrogen	mg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.5
Total Dissolved Solids	mg/L	1	500	-	-	<u> </u>	-	-

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

Total Suspended Solids

2. Canadian Drinking Water Quality Guidelines (Health Canada, June 2019).

mg/L

- 3. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic
Results that exceed the GCDWQ MAC are bold and shaded.

Client: Fundy Regional Services Commission

3

Appendix C2-1: General Chemistry, Underdrains

Sample Station:	Units	MDL ¹	GCDWQ ²	Leach Surge Pond UD				
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Alkalinity	mg/L	1	-	123	153	168	185	178
Ammonia	mg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/L	-	_	42.2	54.6	56.6	70.3	52.1
Chloride	mg/L	0.2	250	10.0	10.5	27.5	9.1	7.4
Conductivity	μS/cm	1	-	285	384	460	422	430
Copper	mg/L	0.001	1 / 2 ³	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.00	0.3	<0.002	<0.002	<0.002	0.002	<0.002
Magnesium	mg/L	-	-	5.2	9.1	8.3	7.4	9.0
Manganese	mg/L	0.002	0.02/0.12 ³	0.097	<0.002	0.034	0.002	0.102
Nitrate + Nitrite	mg/L	0.20	10	0.5	<0.2	<0.2	<0.2	0.2
o-Phosphate	mg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
pH	g/ _	-	7.0 - 10.5	7.7	8.0	8.2	7.2	7.2
Phenols	mg/L	0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002
Potassium	mg/L	-	-	1.4	2.1	13.5	2.4	2.0
r-Silica	mg/L	-	-	9.2	11.6	12.7	13.1	12.8
Sodium	mg/L	-	200	8.5	11.7	12.3	13.7	15.0
Sulfate	mg/L	2	500	16	25	10	32	31
Total Organic Carbon	mg/L	1	-	<1	1	2	4	3
Turbidity	NTU	0.1	1	1.12	0.29	0.29	0.41	0.21
Zinc	mg/L	0.002	5	0.013	<0.002	<0.002	0.007	<0.002
G	T T			1	T	T	1	1
Calculated Parameters								
Bicarbonate	mg/L	1	-	123	153	168	185	178
Carbonate	mg/L	1	-	<1	<1	<1	<1	<1
Hydroxide	mg/L	11	-	<1	<1	<1	<1	<1
Cation sum	meq/L	-	-	2.94	4.04	4.39	4.77	4.05
Anion sum	meq/L	-	-	2.95	3.72	4.16	4.40	4.20
% difference	mg/L	-	-	-0.04	4.09	2.67	4.13	-1.82
Theoretical Conductivity	μS/cm	-	-	301	398	447	473	417
Hardness	mg/L	-	-	127	174	175	206	167
Ion Sum	mg/L	-	-	207	266	296	320	295
Saturation pH		-	-	8.15	7.95	7.89	7.75	7.90
Langelier Index		-	-	-0.49	0.00	0.33	-0.52	-0.69
BOD ₅	mg/L	1	_	<1	<1	<1	<1	<1
COD	mg/L	1	-	<1	2	6	12	7
Color	TCU		15	1	5	9	1	4
Kjeldahl Nitrogen	mg/L	0.50	-	0.6	0.9	0.5	0.8	<0.5
Total Dissolved Solids	mg/L	1	500	202	183	219	300	325
	g/ =	<u>:</u>			100		000	020

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

Total Suspended Solids

2. Canadian Drinking Water Quality Guidelines (Health Canada, June 2019).

mg/L

- 3. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic
Results that exceed the GCDWQ MAC are bold and shaded.

Client: Fundy Regional Services Commission

Appendix C2-2: Trace Metals, Underdrains

Sample Station:		MDL ¹	GCDWQ ²	UD3	UD3	UD3	UD3	UD3
Date:	Units			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Aluminium	μg/L	5	100	<5	10	41	7	<5
Antimony	μg/L	2	6	<1	<2	<2	<2	<1
Arsenic	μg/L	1	10	<1	<1	<1	1	<1
Barium	μg/L	10	1000	12	<10	13	<10	19
Beryllium	μg/L	1	-	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	5	< 0.02	<0.02	<0.02	<0.02	< 0.02
Chromium	μg/L	1	50	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	<2	<2	<2	<2	<2
Copper	μg/L	1	1000 / 2000 ⁴	<1	<1	<1	<1	<1
Iron	μg/L	2	300	<2	<2	<2	3	<2
Lead	μg/L	1	5	<1	<1	<1	<1	<1
Manganese	μg/L	2	20 / 120 ⁴	261	8	11	<2	16
Mercury	μg/L	0.02	1	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	88	19	89	119	131
Thallium ³	μg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.2
Tin	μg/L	1	-	<1	<1	<1	<1	<1
Uranium ³	μg/L	0.5	20	2.2	<0.5	3.2	3.0	4.0
Vanadium	μg/L	10	-	<10	<10	<10	<10	<10
Zinc	μg/L	2	5000	15	26	8	6	<2

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. Canadian Drinking Water Quality Guidelines (Health Canada, Sept. 2022).
- 3. Analysis conducted by RPC in Fredericton, NB
- 4. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Appendix C2-2: Trace Metals, Underdrains

Sample Station:		MDL ¹	GCDWQ ²	UD4	UD4	UD4	UD4	UD4
Date:	Units			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Aluminium	μg/L	5	100	12	27	<5	<5	5
Antimony	μg/L	2	6	<1	<2	<2	<2	<1
Arsenic	μg/L	1	10	<1	<1	<1	1	<1
Barium	μg/L	10	1000	10	<10	14	15	21
Beryllium	μg/L	1	-	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	<100	<100	<100	<100	<100
Cadmium	μg/L	0.02	5	<0.02	<0.02	<0.02	<0.02	< 0.02
Chromium	μg/L	1	50	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	<2	<2	<2	<2	<2
Copper	μg/L	1	1000 / 2000 ⁴	<1	2	<1	<1	<1
Iron	μg/L	2	300	<2	<2	<2	3	<2
Lead	μg/L	1	5	<1	<1	<1	<1	<1
Manganese	μg/L	2	20 / 120 ⁴	24	12	3	<2	2
Mercury	μg/L	0.02	1	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	87	<10	109	141	152
Thallium ³	μg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.2
Tin	μg/L	1	-	<1	<1	<1	<1	<1
Uranium ³	μg/L	0.5	20	2.7	<0.5	2.9	2.5	4.7
Vanadium	μg/L	10	-	<10	<10	<10	<10	<10
Zinc	μg/L	2	5000	<2	<2	<2	6	<2

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. Canadian Drinking Water Quality Guidelines (Health Canada, Sept. 2022).
- 3. Analysis conducted by RPC in Fredericton, NB
- 4. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Appendix C2-2: Trace Metals, Underdrains

Sample Station:		MDL ¹	GCDWQ ²	UD5	UD5	UD5	UD5	UD5	UD6	UD6
Date:	Units			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	2022/03/07	2022/04/11
Aluminium	μg/L	5	100	7	<5	<5	5	<5	25	<5
Antimony	μg/L	2	6	<1	<2	<2	<2	<1	<1	<2
Arsenic	μg/L	1	10	<1	<1	<1	1	<1	<1	<1
Barium	μg/L	10	1000	12	<10	20	13	31	<10	16
Beryllium	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	<100	<100	<100	<100	113	<100	<100
Cadmium	μg/L	0.02	5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	<1	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	<2	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	1000 / 2000 ⁴	<1	<1	3	<1	<1	<1	<1
Iron	μg/L	2	300	<2	<2	<2	2	<2	<2	<2
Lead	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	20 / 120 ⁴	29	<2	5	<2	<2	170	<2
Mercury	μg/L	0.02	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	<2	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	<1	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	120	104	105	135	154	67	118
Thallium ³	μg/L	0.50	-	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<0.5
Tin	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1
Uranium ³	μg/L	0.5	20	1.4	0.7	2.2	2.9	4.3	0.6	0.8
Vanadium	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	5000	<2	<2	<2	10	<2	4	<2

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. Canadian Drinking Water Quality Guidelines (Health Canada, Sept. 2022).
- 3. Analysis conducted by RPC in Fredericton, NB
- 4. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

Results that exceed the GCDWQ AO are bold and italic

Appendix C2-2: Trace Metals, Underdrains

Sample Station:		MDL ¹	GCDWQ ²	UD6	UD6	UD6	Leach Surge Pond UD				
Date:	Units			2022/07/21	2022/09/15	2022/11/24	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Aluminium	μg/L	5	100	<5	26	<5	<5	5	<5	<5	14
Antimony	μg/L	2	6	<2	<2	<1	<1	<2	<2	<2	<1
Arsenic	μg/L	1	10	<1	1	<1	<1	<1	<1	1	<1
Barium	μg/L	10	1000	19	20	30	<10	14	26	18	22
Beryllium	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1	<1
Bismuth	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1	<1
Boron	μg/L	100	5000	<100	176	124	<100	<100	<100	101	<100
Cadmium	μg/L	0.02	5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium	μg/L	1	50	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt	μg/L	2	-	<2	<2	<2	<2	<2	<2	<2	<2
Copper	μg/L	1	1000 / 2000 ⁴	<1	<1	<1	<1	<1	<1	<1	<1
Iron	μg/L	2	300	<2	2	<2	<2	<2	<2	2	<2
Lead	μg/L	1	5	<1	<1	<1	<1	<1	<1	<1	<1
Manganese	μg/L	2	20 / 120 ⁴	3	<2	<2	97	<2	34	2	102
Mercury	μg/L	0.02	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	μg/L	5	-	<5	<5	<5	<5	<5	<5	<5	<5
Nickel	μg/L	2	-	<2	<2	<2	<2	<2	<2	<2	<2
Selenium	μg/L	1	50	<1	<1	<1	<1	<1	<1	<1	<1
Silver	μg/L	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Strontium	μg/L	10	7000	102	155	149	83	126	111	139	157
Thallium ³	μg/L	0.50	-	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2
Tin	μg/L	1	-	<1	<1	<1	<1	<1	<1	<1	<1
Uranium ³	μg/L	0.5	20	1.0	1.5	4.5	1.1	0.7	2.2	2.0	2.8
Vanadium	μg/L	10	-	<10	<10	<10	<10	<10	<10	<10	<10
Zinc	μg/L	2	5000	<2	10	<2	13	<2	<2	7	<2

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. Canadian Drinking Water Quality Guidelines (Health Canada, Sept. 2022).
- 3. Analysis conducted by RPC in Fredericton, NB
- 4. Aesthetic Objective/Maximum Allowable Concentration (MAC).
- "-" = None established/ not measured.

ı	Results	that	exceed	the	GCDWQ	AO	are	bold	and	italic	:

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C2-3: Petroleum Hydrocarbons, Underdrains

Sample Station	Units	MDL ¹	RBCA ²	UD3	UD3	UD3	UD3	UD3
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Benzene	μg/L	1	5	<1	<1	<1	<1	<1
Toluene	μg/L	1	24	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1
C6 - <c10< td=""><td>μg/L</td><td>5</td><td>-</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></c10<>	μg/L	5	-	<5	<5	<5	<5	<5
>C10 - <c21< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c21<>	μg/L	10	-	<10	<10	<10	<10	<10
>C21 - <c32< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c32<>	μg/L	10	-	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. RBCA = Atlantic Risk Based Corrective Action Screening Levels (Tier I) for Groundwater at an Industrial site with potable water (July, 2022).
- "-" = None established/ not measured.

Results that exceed the RBCA screening levels are bold and shaded.

Client: Fundy Regional Services Commission Project Number: 4662.09

Appendix C2-3: Petroleum Hydrocarbons, Underdrains

Sample Station	Units	MDL ¹	RBCA ²	UD4	UD4	UD4	UD4	UD4
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Benzene	μg/L	1	5	<1	<1	<1	<1	<1
Toluene	μg/L	1	24	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1
C6 - <c10< td=""><td>μg/L</td><td>5</td><td>-</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></c10<>	μg/L	5	-	<5	<5	<5	<5	<5
>C10 - <c21< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c21<>	μg/L	10	-	<10	<10	<10	<10	<10
>C21 - <c32< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c32<>	μg/L	10	-	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. RBCA = Atlantic Risk Based Corrective Action Screening Levels (Tier I) for Groundwater at an Industrial site with potable water (July, 2022).
- "-" = None established/ not measured.

Results that exceed the RBCA screening levels are bold and shaded.

Appendix C2-3: Petroleum Hydrocarbons, Underdrains

Sample Station	Units	MDL ¹	RBCA ²	UD5	UD5	UD5	UD5	UD5
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
Benzene	μg/L	1	5	<1	<1	<1	<1	<1
Toluene	μg/L	1	24	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1
C6 - <c10< td=""><td>μg/L</td><td>5</td><td>-</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></c10<>	μg/L	5	-	<5	<5	<5	<5	<5
>C10 - <c21< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c21<>	μg/L	10	-	<10	<10	<10	<10	<10
>C21 - <c32< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c32<>	μg/L	10	-	<10	<10	<10	<10	<10
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. RBCA = Atlantic Risk Based Corrective Action Screening Levels (Tier I) for Groundwater at an Industrial site with potable water (July, 2022).
- "-" = None established/ not measured.

Results that exceed the RBCA screening levels are bold and shaded.

Appendix C2-3: Petroleum Hydrocarbons, Underdrains

Sample Station	Units	MDL ¹	RBCA ²	UD6	UD6	UD6	UD6	UD6	
Date:	1			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	
Toluene	μg/L	1	24	<1	<1	<1	<1	<1	
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	
C6 - <c10< td=""><td>μg/L</td><td>5</td><td>-</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></c10<>	μg/L	5	-	<5	<5	<5	<5	<5	
>C10 - <c21< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c21<>	μg/L	10	-	<10	<10	<10	<10	<10	
>C21 - <c32< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c32<>	μg/L	10	-	<10	<10	<10	<10	<10	
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. RBCA = Atlantic Risk Based Corrective Action Screening Levels (Tier I) for Groundwater at an Industrial site with potable water (July, 2022).
- "-" = None established/ not measured.

Results that exceed the RBCA screening levels are bold and shaded.

Appendix C2-3: Petroleum Hydrocarbons, Underdrains

Sample Station	Units	MDL ¹	RBCA ²	Leach Surge Pond UD					
Date:				2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24	
Benzene	μg/L	1	5	<1	<1	<1	<1	<1	
Toluene	μg/L	1	24	<1	<1	<1	<1	<1	
Ethylbenzene	μg/L	1	1.6	<1	<1	<1	<1	<1	
Xylenes	μg/L	1	20	<1	<1	<1	<1	<1	
C6 - <c10< td=""><td>μg/L</td><td>5</td><td>-</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></c10<>	μg/L	5	-	<5	<5	<5	<5	<5	
>C10 - <c21< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c21<>	μg/L	10	-	<10	<10	<10	<10	<10	
>C21 - <c32< td=""><td>μg/L</td><td>10</td><td>-</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></c32<>	μg/L	10	-	<10	<10	<10	<10	<10	
Modified TPH	μg/L	10	3200	<10	<10	<10	<10	<10	

Collection of samples and analysis provided by

Saint John Laboratory Services Ltd.

Notes:

- 1. MDL = Method Detection Limit
- 2. RBCA = Atlantic Risk Based Corrective Action Screening Levels (Tier I) for Groundwater at an Industrial site with potable water (July, 2022).
- "-" = None established/ not measured.

Results that exceed the RBCA screening levels are bold and shaded.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	UD3	UD3	UD3	UD3	UD3
Date:	1		2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
рН		7.0 - 10.5	7.7	8.1	8.1	7.1	7.2
Temperature	°C	15	11.8	11.6	19.7	16.9	5.2
Conductivity	μS/cm	-	325	392	454	445	431
Dissolved Oxygen	mg/L	-	9.7	9.09	4.02	5.53	5.84

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

"-" = None established/ not measured.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	UD4	UD4	UD4	UD4	UD4
Date:			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
рН		7.0 - 10.5	7.7	8.06	8.05	7.4	7.4
Temperature	°C	15	11.3	11.8	20.0	17.1	5.7
Conductivity	μS/cm	-	276	385	421	458	464
Dissolved Oxygen	mg/L	-	9.51	8.07	7.37	6.41	9.14

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

"-" = None established/ not measured.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	UD5	UD5	UD5	UD5	UD5
Date:			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
рН		7.0 - 10.5	7.6	8.14	8.14	7.0	7.3
Temperature	°C	15	13.3	11.1	19.8	17.0	4.9
Conductivity	μS/cm	-	420	324	386	454	443
Dissolved Oxygen	mg/L	-	9.3	8.97	7.27	5.89	5.64

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

"-" = None established/ not measured.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	UD6	UD6	UD6	UD6	UD6
Date:			2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
рН		7.0 - 10.5	7.8	8.15	8.12	7.2	7.2
Temperature	°C	15	11.5	10.8	21.1	17.3	5.3
Conductivity	μS/cm	-	213	330	387	497	457
Dissolved Oxygen	mg/L	-	9.77	8.88	5.92	7.04	5.6

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

"-" = None established/ not measured.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	Leach Surge Pond UD	Leach Surge Pond UD	Leach Surge Pond UD	Leach Surge Pond UD	
Date:			2022/03/07	2022/04/11	2022/07/21	2022/09/15	
рН		7.0 - 10.5	7.7	7.95	8.2	7.2	
Temperature	°C	15	11.9	11.0	20.2	17.4	
Conductivity	μS/cm	-	285	384	460	422	
Dissolved Oxygen	mg/L	-	9.5	8.62	6.52	5.96	

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

"-" = None established/ not measured.

Appendix C2-4: Field Data, Underdrains

Sample Station	Units	CDWQG ¹	Leach Surge Pond UD		
Date:	1		2022/11/24		
pH		7.0 - 10.5	7.2		
Temperature	°C	15	5.9		
Conductivity	μS/cm	-	430		
Dissolved Oxygen	mg/L	-	5.34		

Collection of samples and measurements provided by Saint John Laboratory Services Ltd.

Notes:

1.CDWQG = Guidelines for Canadian Drinking Water Quality (Health Canada, Sept. 2022).

[&]quot;-" = None established/ not measured.

Environmental Monitoring Program Crane Mountain Sanitary Landfill 2022 Annual Report

Appendix C3-4: Field Data, Surface Water

Sample Station:	Units	MDL	CCME	SW1	SW1 DUP	SW1	SW1 DUP	SW2	SW2	SW3	SW3	SW4	SW4	SW5	SW5	SW6
Date:			FWAL ²	2022/04/25	2022/04/25	2022/09/29	2022/09/29	2022/04/25	2022/09/29	2022/04/25	2022/09/15	2022/04/25	2022/09/29	2022/04/25	2022/09/29	2022/04/11
рН			6.5 - 9.0	7.3	7.3	7.72	7.72	7.9	7.98	7.6	8.00	6.8	7.89	7.4	7.84	7.2
Temperature	°C		-	13.2	12.9	17.2	17.2	10.7	18.3	10.8	17.8	11.8	18.4	11.3	17.8	12.4
Conductivity	μS/cm	1	-	196	196	128	128	632	619	283	413	101	121	200	188	128
Dissolved Oxygen	mg/L	1	-	10.46	10.45	8.63	8.63	11.11	8.78	10.89	7.88	9.67	9.06	10.90	8.76	9.83

Samples collected and analyzed by Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

2. CCME FWAL = CCME Canadian Water Quality Guidelines

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed CCME FWAL are bold and shaded.

Environmental Monitoring Program Crane Mountain Sanitary Landfill 2022 Annual Report

Appendix C3-4: Field Data, Surface Water

Sample Station:	Units	MDL	CCME	SW6	SWR1	SWR1	SWR2	SWR2	Sed Pond				
Date:			FWAL ²	2022/09/15	2022/04/11	2022/09/29	2022/04/11	2022/09/21	2022/03/07	2022/04/11	2022/07/21	2022/09/15	2022/11/24
рН			6.5 - 9.0	7.94	6.8	8.04	6.5	8.23	8.3	6.7	8.2	7.55	7.3
Temperature	°C		-	17.6	11.6	16.7	6.3	18.9	7.8	12.3	22.2	17.8	2.8
Conductivity	μS/cm	1	-	173	457	197	39	272	198	107	64	95	52
Dissolved Oxygen	mg/L	1		7.13	7.81	8.95	11.71	11.42	11.65	9.94	7.05	6.36	7

Samples collected and analyzed by Saint John Laboratory Services Ltd.

Notes:

1. MDL = Method Detection Limit

2. CCME FWAL = CCME Canadian Water Quality Guidelines

DUP = Field Duplicate

"-" = None established/ not measured.

Results that exceed CCME FWAL are bold and shaded.

Appendix C5-1: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹					Admin E	Building						
Date:	Units	MAC ²	AO/OG ³	06-Nov-02	22-Oct-03	01-Oct-04	29-Sep-05	16-Oct-06	05-Oct-07	06-Oct-08	01-Oct-09	23-Sep-10	19-Sep-11	13-Sep-12	10-Oct-13
Alkalinity	mg/L		-	94	77	76	84	79	81	86	81	85	84	86	83
Antimony	mg/L	0.006	-	<0.0005	<0.0004	<0.001	< 0.001	<0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	0.004	0.001
Boron	mg/L	5	-	0.08	<0.1	<0.1	<0.1	0.15	0.2	0.19	<0.1	0.12	<0.1	<0.1	0.11
Ca/Mg Hardness	mg/L	-	-	19	54	50	55	55	52.2	61	59	54	59	133	50
Calcium	mg/L	-	-	6.5	19	17.2	19.3	19.3	17.6	19.5	20.8	18.5	20.1	46.2	17.1
Chloride	mg/L	-	≤ 250	5	5.5	5.6	6.5	5.5	4.9	5.4	4.9	6.5	7.2	5.6	6.4
Copper	mg/L	2	1	0.007	0.008	< 0.001	< 0.001	0.002	< 0.001	0.005	< 0.002	0.001	<0.001	0.005	0.017
Fluoride	mg/L	1.5	-	0.24	0.19	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	0.1
Iron	mg/L	-	≤ 0.3	0.044	0.39	0.02	0.02	0.009	0.01	0.031	0.018	0.089	< 0.002	0.018	0.036
Lead	mg/L	0.005	-	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	0.58	1.6	1.6	1.7	1.7	2	3.1	1.7	1.9	2.1	4.1	1.7
Manganese	mg/L	0.12	≤ 0.02	0.012	0.01	0.01	0.01	0.005	0.01	0.017	0.009	0.015	0.013	0.028	0.007
Nitrate	mg/L	45	-	<0.5	< 0.05	<0.2	< 0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5	< 0.5	<0.2
рН	-	1	7.0-10.5	-	8.1	8.2	8.3	8.3	8	7.9	8	7.99	8.04	7.97	8
Potassium	mg/L	-	-	0.2	0.32	0.4	0.2	0.4	0.2	0.1	0.3	0.3	0.2	1.5	0.6
Sodium	mg/L	-	≤ 200	5.7	15.6	15.1	17	16.4	18.3	16.1	16.3	15.9	15	19.6	16.1
Sulphate	mg/L	-	≤ 500	0.5	<1	3.5	5.6	34.8	5	4.6	2.3	6	7	6	6
Thallium⁴	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium ⁴	mg/L	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	mg/L	-	5	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.016	< 0.002	0.002
Total Coliforms	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	4*	15*	2*
E.Coli	cfu/100mL	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Fecal Coliforms	cfu/100mL	-	-	0	0	-	-	-	-	-	-	-	-	-	-

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-1: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹			Adm	in Building					
Date:	Units	MAC ²	AO/OG ³	08-Sep-14	31-Aug-15	20-Sep-16	28-Sep-17	27-Sep-18	1-Oct-19	21-Sep-20	28-Sep-21	20-Oct-22
Alkalinity	mg/L		-	83	84	85	90	76	81	80	83	78
Antimony	mg/L	0.006	-	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	<0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	0.001
Boron	mg/L	5	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.059
Ca/Mg Hardness	mg/L	ı	-	48	59	53	61	54	67	52	69	86
Calcium	mg/L	ı	-	16.1	20.8	21.4	21.2	19	23.4	18	24.7	31.7
Chloride	mg/L	ı	≤ 250	6.2	5.8	5.9	6.1	7.4	7.1	7.7	7.5	8.1
Copper	mg/L	2	1	0.114	0.006	0.017	0.004	0.008	<0.001	<0.001	0.002	<0.001
Fluoride	mg/L	1.5	-	0.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Iron	mg/L	ı	≤ 0.3	0.029	0.02	0.005	0.006	0.007	0.034	0.015	0.008	0.005
Lead	mg/L	0.005	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	ı	-	1.9	1.8	2.2	1.9	1.7	2.1	1.6	1.8	1.7
Manganese	mg/L	0.12	≤ 0.02	<0.002	0.006	0.014	0.012	0.004	0.008	0.015	0.007	0.007
Nitrate	mg/L	45	-	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
pH	-	1	7.0-10.5	7.84	8.03	7.98	8.1	8.1	7.95	7.88	7.98	7.97
Potassium	mg/L	ı	-	0.1	0.4	0.4	0.5	0.3	0.9	0.1	0.6	0.2
Sodium	mg/L	ı	≤ 200	17	14.6	16.5	16.8	16.6	16.1	16	17.1	16.4
Sulphate	mg/L	1	≤ 500	6	5	4	6	5	5	4	4	4
Thallium ⁴	mg/L	ı	-	-		< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001
Uranium ⁴	mg/L	0.02	-	-	•	0.0011	0.0013	0.0035	0.039	0.0029	0.001	0.002
Zinc	mg/L	ı	5	0.007	0.002	0.005	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002
Total Coliforms	cfu/100mL	0	-	0	8*	2	17	0	5	5	209	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	1	0	0
Fecal Coliforms	cfu/100mL	-	-	-	-	-	-	-		-	-	-

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-2: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹						Operation	s Building					
Date:	Ullits	MAC ²	AO/OG ³	06-Nov-02	22-Oct-03	01-Oct-04	29-Sep-05	16-Oct-06	05-Oct-07	06-Oct-08	01-Oct-09	23-Sep-10	19-Sep-11	13-Sep-12	10-Oct-13
Alkalinity	mg/L	-	-	102	84	83	85	83	79	82	82	83	82	84	81
Antimony	mg/L	0.006	-	<0.0005	< 0.0004	<0.001	<0.001	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.003	0.003	<0.001
Boron	mg/L	5	-	0.13	<0.1	0.15	<0.1	0.17	0.2	0.16	<0.1	<0.1	0.13	<0.1	<0.1
Ca/Mg Hardness	mg/L	-	-	14	35	34	34	36	34.7	38	37	30	35	66	27
Calcium	mg/L	-	-	5.1	13	12.4	12.6	12.9	12.4	11.9	13.9	10.9	12.5	20.8	9.7
Chloride	mg/L	-	≤ 250	3.7	3.2	3.8	5.2	4.4	3.3	3.2	3.1	3.8	4.1	3.3	3.5
Copper	mg/L	2	11	0.008	0.03	<0.001	<0.001	<0.001	0.005	0.005	0.005	0.001	<0.001	<0.001	0.002
Fluoride	mg/L	1.5	-	0.46	0.7	0.47	0.53	0.38	0.51	0.48	<0.1	0.5	0.7	0.6	0.5
Iron	mg/L	-	≤ 0.3	0.034	0.07	0.04	0.05	0.043	0.04	0.039	0.019	0.072	0.002	0.052	0.053
Lead	mg/L	0.005	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	0.26	0.7	0.7	0.7	8.0	0.9	2	0.5	0.7	1	3.3	0.7
Manganese	mg/L	0.12	≤ 0.02	0.012	0.013	0.014	0.01	0.009	0.015	0.008	0.003	0.011	0.007	0.029	0.01
Nitrate	mg/L	45	-	<0.5	<0.05	0.5	<0.5	<0.5	0.09	<0.2	<0.2	0.3	<0.5	<0.5	<0.2
pH	-	-	7.0-10.5	-	8.3	8.4	8.4	8.3	8.2	8.1	8.15	8.2	8.27	8.34	8.14
Potassium	mg/L	-	-	0.3	0.7	0.8	0.6	0.8	0.7	0.5	0.8	0.8	0.2	2.9	1
Sodium	mg/L	-	≤ 200	10.7	28.8	29	30.9	29.9	31.1	29.5	29.9	30	28.9	35.3	29.2
Sulphate	mg/L	-	≤ 500	20.5	<1	11.9	20.1	13.5	14.3	13.6	8.3	14	16	15	14
Thallium ⁴	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium ⁴	mg/L	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	mg/L	-	5	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.009	0.004	<0.002
Total Coliforms	cfu/100mL	0	-	0	0	0	0	0	0	0	0	25	0	0	55*
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	0	0	0

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-2: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹				Opera	tions Buildir	ng			
Date:	Ullits	MAC ²	AO/OG ³	08-Sep-14	31-Aug-15	20-Sep-16	28-Sep-17	27-Sep-18	1-Oct-19	21-Sep-20	28-Sep-21	20-Oct-22
Alkalinity	mg/L		-	84	86	86	90	84	84	82	87	83
Antimony	mg/L	0.006	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001
Boron	mg/L	5	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.040
Ca/Mg Hardness	mg/L	ı	-	39	37	37	39	35	44	31	46	36
Calcium	mg/L	ı	-	13.5	13.6	13.2	14.7	12.9	15.9	11.4	17.2	13.4
Chloride	mg/L	ı	≤ 250	4.2	3.2	3.6	3.8	3.8	3.3	3.7	2.9	2.9
Copper	mg/L	2	1	< 0.001	< 0.001	0.007	<0.001	0.01	<0.001	< 0.001	<0.001	<0.001
Fluoride	mg/L	1.5	-	0.6	0.6	0.4	0.5	0.5	0.4	0.4	0.4	0.2
Iron	mg/L	-	≤ 0.3	0.029	<0.002	0.041	0.031	0.04	<0.002	0.023	0.039	0.036
Lead	mg/L	0.005	-	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	1.2	0.7	1	0.5	0.7	1.1	0.6	0.8	0.6
Manganese	mg/L	0.12	≤ 0.02	0.016	0.004	0.016	0.014	0.013	0.009	0.011	0.009	0.010
Nitrate	mg/L	45	-	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
pH	-	-	7.0-10.5	8.15	8.21	8.27	8.25	8.1	8.18	7.95	8.09	8.07
Potassium	mg/L	-	-	0.5	0.8	8.0	1.3	0.6	1.3	0.6	1.0	0.2
Sodium	mg/L	-	≤ 200	29.3	27	29.7	31.1	27.8	30.6	29.6	31.2	28.6
Sulphate	mg/L	-	≤ 500	14	14	13	12	14	14	14	13	10
Thallium ⁴	mg/L	-	-	-	-	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Uranium ⁴	mg/L	0.02	-	-	-	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Zinc	mg/L	-	5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Total Coliforms	cfu/100mL	0	-	0	0	2	5	0	6	0	0	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).

- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-3: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹						Haz Wast	e Building					
Date:	Ullits	MAC ²	AO/OG ³	01-Oct-03	01-Oct-04	29-Sep-05	16-Oct-06	05-Oct-07	06-Oct-08	01-Oct-09	23-Sep-10	19-Sep-11	13-Sep-12	10-Oct-13	08-Sep-14
Alkalinity	mg/L		-	120	120	160	78	131	134	154	169	190	200	118	236
Antimony	mg/L	0.006	-	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004	0.004	0.001	<0.001
Boron	mg/L	5	-	0.28	0.28	<0.1	0.56	0.3	0.35	0.28	0.28	0.28	0.19	<0.1	0.17
Ca/Mg Hardness	mg/L	-	-	75	75	128	118	84.8	90	107	121	148	173	63	174
Calcium	mg/L	-	-	26	26	43.9	20.4	29	29.6	37.1	40.9	49.4	54.4	21.2	56.4
Chloride	mg/L	-	≤ 250	15	15	22.4	14	11.3	12.6	12.9	19.6	17.8	16.1	10.3	17.6
Copper	mg/L	2	1	<0.001	<0.001	0.09	0.16	0.015	0.032	0.014	0.038	<0.001	0.031	0.117	0.019
Fluoride	mg/L	1.5	-	0.12	0.12	0.17	<0.1	0.17	0.14	<0.1	0.2	0.2	0.2	0.2	0.2
Iron	mg/L	-	≤ 0.3	0.004	0.004	0.03	0.025	0.009	0.054	0.044	0.136	0.007	0.246	0.02	0.085
Lead	mg/L	0.005	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
Magnesium	mg/L	-	-	2.4	2.4	4.5	3.9	3	3.9	3.4	4.6	5.9	9.1	2.4	8.1
Manganese	mg/L	0.12	≤ 0.02	0.005	0.005	0.1	0.64	0.7	0.49	0.011	2.01	0.392	0.355	0.23	1.739
Nitrate	mg/L	45	-	1.6	1.6	4.8	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5	< 0.5	<0.2	<0.2
рН	-	1	7.0-10.5	7.9	7.9	7.7	7.5	7.5	7.15	7.1	7.36	7.08	7.12	7.31	6.95
Potassium	mg/L	-	-	0.9	0.9	0.9	1.1	0.9	0.68	1	1	0.1	2.7	1	1.1
Sodium	mg/L	•	≤ 200	31.8	31.8	36.5	29.9	31.9	28.9	20.6	28.5	26.7	31.8	27.7	23.9
Sulphate	mg/L	-	≤ 500	8.9	8.9	10.3	10.5	6.4	6.2	3.1	7	7	7	6	6
Thallium ⁴	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium ⁴	mg/L	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	mg/L	-	5	<0.002	<0.002	0.005	<0.002	0.01	0.03	0.006	0.014	0.025	0.014	0.006	0.008
Total Coliforms	cfu/100mL	0	-	4	4	0	0	0	0	0	0	0*	0	1*	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	0	0	0

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-3: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹				Haz Waste	Building			
Date:	Units	MAC ²	AO/OG ³	31-Aug-15	20-Sep-16	28-Sep-17	27-Sep-18	1-Oct-19	21-Sep-20	28-Sep-21	20-Oct-22
Alkalinity	mg/L	-	-	247	265	124	134	119	134	146	116
Antimony	mg/L	0.006	-	< 0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	< 0.002
Arsenic	mg/L	0.01	-	< 0.001	<0.001	<0.001	<0.001	< 0.001	0.002	<0.001	0.001
Boron	mg/L	5	-	0.104	<0.1	<0.1	<0.1	<0.1	0.106	0.147	0.141
Ca/Mg Hardness	mg/L	-	-	205	241	4	2	9	2	11	20
Calcium	mg/L	-	-	66.9	76.5	1.4	0.5	2.8	0.6	4.1	7.6
Chloride	mg/L	-	≤ 250	15	21.4	16.4	26.4	20.0	52.7	18.3	9.2
Copper	mg/L	2	1	0.023	0.035	0.021	0.081	0.022	0.095	<0.001	0.026
Fluoride	mg/L	1.5	-	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1
Iron	mg/L	-	≤ 0.3	<0.002	0.069	0.007	0.008	<0.002	0.351	0.027	0.087
Lead	mg/L	0.005	-	<0.001	<0.001	<0.001	<0.001	<0.001	0.005	<0.001	<0.001
Magnesium	mg/L	-	-	9.2	12	0.2	0.1	0.4	0.1	0.2	0.2
Manganese	mg/L	0.12	≤ 0.02	2.14	2.018	<0.002	<0.002	<0.002	0.004	<0.002	0.004
Nitrate	mg/L	45	-	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
pH	-	-	7.0-10.5	7.01	7.03	7.5	7.74	7.65	8.07	7.97	7.95
Potassium	mg/L	-	-	1.9	2.5	0.6	0.5	1.2	0.1	1.0	0.1
Sodium	mg/L	-	≤ 200	18.7	23.7	64.7	72.7	67.4	87	76.7	59.7
Sulphate	mg/L	-	≤ 500	5	4	5	7	5	4	4	5
Thallium ⁴	mg/L	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium ⁴	mg/L	0.02	-	-	0.0017	0.0015	0.0005	0.0031	38	0.0039	0.0019
Zinc	mg/L	-	5	0.023	0.022	<0.002	<0.002	<0.002	0.01	<0.002	<0.002
Total Coliforms	cfu/100mL	0	-	0	0	0	0	0	0	1	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0

Collection of samples and analysis provided

by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-4: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹						Scale	House					
Date:	Ullits	MAC ²	AO/OG ³	16-Oct-06	05-Oct-07	06-Oct-08	01-Oct-09	23-Sep-10	19-Sep-11	13-Sep-12	10-Oct-13	08-Sep-14	31-Aug-15	20-Sep-16	28-Sep-17
Alkalinity	mg/L	-	ı	63	61	82	62	60	59	58	62	61	63	59	60
Antimony	mg/L	0.006	ı	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
Arsenic	mg/L	0.01	ı	< 0.001	<0.001	<0.001	0.011	0.05	0.05	0.012	0.043	0.057	0.056	0.038	0.042
Boron	mg/L	5	ı	0.13	<0.1	0.16	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ca/Mg Hardness	mg/L	-	ı	50	50.8	38	51	45	50	70	36	43	52	52	55
Calcium	mg/L	-	ı	15.7	15.7	11.9	16.6	13.9	15.7	21	12.2	12.9	16.7	16.4	17.8
Chloride	mg/L	-	≤ 250	5	4.1	3.2	3.7	4.6	5	3.9	4.2	5.2	4.1	3.8	4.1
Copper	mg/L	2	1	< 0.001	<0.001	0.005	0.002	0.002	<0.001	0.003	0.002	0.002	<0.001	<0.001	<0.001
Fluoride	mg/L	1.5	-	0.16	0.28	0.48	<0.1	0.3	0.4	0.3	0.3	0.3	0.4	0.2	0.3
Iron	mg/L	-	≤ 0.3	0.017	0.008	0.039	0.01	0.029	< 0.002	0.022	0.004	0.005	0.004	0.009	0.01
Lead	mg/L	0.005	-	< 0.001	< 0.001	< 0.001	< 0.001	0.008	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	2.5	2.8	2	2.3	2.5	2.7	4.3	1.3	2.5	2.6	2.6	2.6
Manganese	mg/L	0.12	≤ 0.02	0.002	0.002	0.008	0.006	0.004	0.005	0.002	0.002	0.007	0.003	0.003	0.003
Nitrate	mg/L	45	-	0.7	<0.5	<0.2	<0.2	<0.2	0.5	<0.5	<0.2	<0.2	0.2	<0.2	<0.2
pH	-	-	7.0-10.5	8.2	8.1	8.1	8.05	8.19	8.05	8.12	7.89	7.78	8.01	7.6	7.71
Potassium	mg/L	-	ı	0.6	0.5	0.5	0.6	0.6	0.1	1.7	0.8	0.2	0.9	0.5	0.9
Sodium	mg/L	-	≤ 200	14.4	15.1	29.5	14.3	14.9	12.9	18.5	9.5	14.8	12.9	13.4	14.1
Sulphate	mg/L	-	≤ 500	5.8	14.7	13.6	8	15	16	15	15	15	15	13	14
Thallium ⁴	mg/L	-	1	-	-	-		-	-	-		-	-	<0.001	<0.001
Uranium ⁴	mg/L	0.02	ı	-	-	-	•	-	-	-	•	-	-	<0.0005	0.0017
Zinc	mg/L	-	5	<0.002	<0.002	<0.002	<0.002	0.003	0.016	<0.002	0.002	0.003	<0.002	<0.002	0.002
Total Coliforms	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	0	0	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	0	0	0

Collection of samples and analysis provided by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

opendix (C5-4:	General	Chemistry.	Potable Well
-----------	-------	---------	------------	--------------

Sample Station	Units		WQ ¹		S	cale House		
Date:	Units	MAC ²	AO/OG ³	27-Sep-18	1-Oct-19	21-Sep-20	28-Sep-21	20-Oct-22
Alkalinity	mg/L	-	-	62	62	62	62	61
Antimony	mg/L	0.006	-	< 0.002	< 0.002	< 0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	0.049	0.026	0.038	0.031	0.041
Boron	mg/L	5	-	<0.1	<0.1	<0.1	<0.1	0.020
Ca/Mg Hardness	mg/L	-	-	52	63	49	72	58
Calcium	mg/L	-	-	16.5	20.3	15.6	24.8	19.2
Chloride	mg/L	-	≤ 250	4.5	4.3	4.3	3.6	13.4
Copper	mg/L	2	1	< 0.001	<0.001	<0.001	<0.001	<0.001
Fluoride	mg/L	1.5	-	0.3	0.2	0.2	0.2	0.1
Iron	mg/L	-	≤ 0.3	0.006	0.033	0.012	<0.002	0.008
Lead	mg/L	0.005	-	< 0.001	<0.001	< 0.001	< 0.001	<0.001
Magnesium	mg/L	-	-	2.5	3.0	2.4	2.5	2.4
Manganese	mg/L	0.12	≤ 0.02	0.002	< 0.002	< 0.002	< 0.002	0.002
Nitrate	mg/L	45	-	<0.2	<0.2	<0.2	<0.2	<0.2
pH	-	-	7.0-10.5	8	7.95	7.8	7.68	7.93
Potassium	mg/L	-	-	0.6	1.6	0.5	0.9	0.3
Sodium	mg/L	-	≤ 200	13.5	17.1	14.2	15.5	14.1
Sulphate	mg/L	-	≤ 500	16	15	14	13	11
Thallium ⁴	mg/L	-	-	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium⁴	mg/L	0.02	-	0.0018	0.0016	0.0009	0.0007	0.0022
Zinc	mg/L	-	5	< 0.002	< 0.002	< 0.002	<0.002	<0.002
Total Coliforms	cfu/100mL	0	-	2	1	0	0	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0

Collection of samples and analysis provided by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada, Sept. 2022).
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-5: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹						Compost	Building					
Date:	Ullits	MAC ²	AO/OG ³	16-Oct-06	05-Oct-07	06-Oct-08	01-Oct-09	23-Sep-10	19-Sep-11	13-Sep-12	10-Oct-13	08-Sep-14	31-Aug-15	20-Sep-16	28-Sep-17
Alkalinity	mg/L		-	65	65	64	62	64	62	63	64	63	66	65	66
Antimony	mg/L	0.006	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	-	< 0.001	< 0.001	< 0.001	< 0.001	0.002	0.002	0.003	0.001	< 0.001	<0.001	0.001	0.001
Boron	mg/L	5	-	0.13	<0.1	0.16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ca/Mg Hardness	mg/L	-	-	66	70.3	61	63	57	64	81	53	54	104	66	68
Calcium	mg/L	-	-	23.4	24.5	19.6	22.4	19.7	22.2	26.3	18.5	18.5	38.3	22.8	24.1
Chloride	mg/L	-	≤ 250	5.4	3.7	4.4	4.4	4.9	5.4	4.1	4.5	4.5	4.2	3.7	4
Copper	mg/L	2	1	0.004	0.022	0.02	0.008	0.004	<0.001	0.014	0.005	0.016	<0.001	0.01	0.011
Fluoride	mg/L	1.5	-	<0.1	0.11	0.1	<0.1	0.2	0.2	0.2	0.1	<0.1	0.2	<0.1	0.1
Iron	mg/L	•	≤ 0.3	0.004	<0.002	0.004	0.02	0.002	<0.002	0.018	<0.002	0.007	<0.002	0.007	0.002
Lead	mg/L	0.005		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	1.9	2.2	2.9	1.7	1.8	2	3.7	1.7	1.9	2	2.2	1.8
Manganese	mg/L	0.12	≤ 0.02	<0.002	0.003	<0.002	0.011	0.003	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nitrate	mg/L	45	-	<0.5	0.1	<0.2	<0.2	0.3	<0.5	<0.5	0.2	<0.2	0.3	<0.2	<0.2
рН	-	1	7.0-10.5	8.1	7.9	7.7	7.85	8.02	7.95	7.96	7.9	7.76	7.93	7.9	8
Potassium	mg/L		-	0.4	0.3	0.1	0.4	0.4	0.1	1	0.6	0.2	0.5	0.4	0.6
Sodium	mg/L	•	≤ 200	8.5	9.9	8.6	8.2	8.1	7.1	11.6	7.9	8.6	6.4	8.4	8.4
Sulphate	mg/L	•	≤ 500	15.4	10.7	11.8	7.3	14	16	14	14	14	14	12	13
Thallium ⁴	mg/L		-	-	-	-	-			-	-	-	-	<0.001	<0.001
Uranium ⁴	mg/L	0.02		-	-	-	-		1	-	-	-	-	0.0009	0.0011
Zinc	mg/L	-	5	<0.002	0.003	0.003	<0.002	0.005	0.026	<0.002	0.006	0.01	<0.002	0.003	<0.002
Total Coliforms	cfu/100mL	0	-	0	0	0	3	0	0	1*	0	0	3*	2	2
E.Coli	cfu/100mL	0	-	0	0	0	0	0	0	0	0	0	0	0	0

Collection of samples and analysis provided by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ)
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

Appendix C5-5: General Chemistry, Potable Well

Sample Station	Units	GCD	WQ ¹		Con	npost Building	3	
Date:	Units	MAC ²	AO/OG ³	27-Sep-18	1-Oct-19	21-Sep-20	28-Sep-21	20-Oct-22
Alkalinity	mg/L	-	-	64	64	65	67	64
Antimony	mg/L	0.006	-	< 0.002	<0.002	< 0.002	< 0.002	<0.002
Arsenic	mg/L	0.01	-	0.001	<0.001	0.001	<0.001	0.001
Boron	mg/L	5	-	<0.1	<0.1	<0.1	<0.1	0.013
Ca/Mg Hardness	mg/L	-	-	65	73	59	82	71
Calcium	mg/L	-	-	22.9	25.5	20.9	29.7	25.5
Chloride	mg/L	-	≤ 250	4.4	4.0	4.1	3.5	3.0
Copper	mg/L	2	1	0.004	< 0.001	0.004	< 0.001	<0.001
Fluoride	mg/L	1.5	-	<0.1	0.1	<0.1	<0.1	<0.1
Iron	mg/L	-	≤ 0.3	<0.002	0.025	<0.002	<0.002	<0.002
Lead	mg/L	0.005	-	<0.001	< 0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	-	-	1.9	2.2	1.7	1.9	1.7
Manganese	mg/L	0.12	≤ 0.02	<0.002	<0.002	<0.002	<0.002	<0.002
Nitrate	mg/L	45	-	<0.2	<0.2	<0.2	<0.2	<0.2
pH	-	-	7.0-10.5	7.85	7.85	7.8	7.83	7.88
Potassium	mg/L	-	-	0.4	0.4	0.1	8.0	0.2
Sodium	mg/L	-	≤ 200	8.2	8.5	7.8	10.4	8.0
Sulphate	mg/L	-	≤ 500	15	13	12	12	10
Thallium ⁴	mg/L	-	-	<0.001	< 0.001	<0.001	<0.001	<0.001
Uranium ⁴	mg/L	0.02	-	0.0009	0.001	0.0006	0.0014	0.0012
Zinc	mg/L	-	5	<0.002	<0.002	0.004	<0.002	<0.002
Total Coliforms	cfu/100mL	0	-	25	0	0	3	0
E.Coli	cfu/100mL	0	-	0	0	0	0	0

Collection of samples and analysis provided by Saint John Labortory Services Ltd.

Notes:

- 1. Guidelines for Canadian Drinking Water Quality (GCDWQ)
- 2. Maximum Allowable Concentration (MAC).
- 3. Aesthetic Objective (AO) / Operational Guideline (OG).
- 4. Analysis conducted by RPC in Fredericton, NB
- "-" = None established/ not measured.

Results that exceed the AO/OG after 2019 are bold and italic

Results that exceed the MAC after 2019 are shaded.

	Ground	Mid-elev. screen	PVC elevation										Depth to V	Nater (m)									
Well ID	Elevation (m)	(m)	(1999)	Oct-97	Dec-97	Jan-98	Feb-98	Mar-98	Mar-98	May-98	May-98	May-98	Jun-98	Aug-98	Aug-98	Oct-98	Nov-98	Dec-98	Jan-99	Feb-99	Oct-97	Dec-97	Jan-98
17 D	84.72	75.87	85.37						2.84					3.945			1.53						
17 S	84.64	81.49	85.53						2.432					2.704			2.33						
18	71.91	64.76	72.77						1.103					1.796			0.96						
22 S	65.04	51.39	65.77						1.068					1.343			0.77						
22 D	64.99	49.34	65.82	0.005					0.975					1.642		0.005	0.83				0.40		
31 S	78.52	75.58	79.08	0.385					0.793					1.715		0.385	0.731				-0.18		-
31 U 31 L	78.52 78.52	70.14 60.23	79.08 79.07	1.44 2.82					0.914					1.689		1.44 2.82	0.817				0.88		-
32 U1	67.33	63.82	68.22	2.371					1.779					1.36		2.371	1.74				1.48		
32 L	67.33	60.47	68.21	2.3					1.909							2.37	1.619				1.43		
33 S	65.4	63.06	66.4	2.228	2.087	2.033	2.208	1.974	2.338	2.222		2.604	2.71	3.45	2.912	2.228	2.44	2.686	2.563	2.726	1.22	1.08	1.03
33 U	65.4	56.86	66.23	2.161	1.95	1.874	2.06	1.827	2.202	2.068		2.468	2.45	2.971	2.715	2.161	2.25	2.513	2.384	2.529	1.33	1.12	1.04
34 S	64.77	62	65.84	4.219	2.73	2.8	2.962	2.884	2.994	2.976		3.205	3.32	3.588	3.82	4.219	3.17	3.347	3.505	3.668	3.15	1.66	1.73
34 U	64.77	52.58	65.37	4.47	4.182	4.208	4.267	4.003	4.352	4.255		4.345	3.35	4.429	4.764	4.47	4.16	4.501	4.178	4.566	3.87	3.58	3.6
35 S1	63.89	57.8	64.59	2.818	2.425	2.45	2.488	2.438	2.54	2.447		2.624	2.72	2.949	2.862	2.818	2.68	2.865	2.911	3.073	2.12	1.72	1.75
35 S2	63.86	54.72	64.65	2.612	2.446	2.461	2.513	2.398	2.562	2.465		2.611		2.91	2.893	2.612	2.673	2.798	2.81	3.019	1.82	1.66	1.67
35 L	63.88	42.7	64.46	4.252	1.601	1.583	1.632	1.395	1.681	1.616		1.803	1.888	2.14	2.024	4.252	1.945	2.115	1.952	2.19	3.68	1.02	1.01
36 S	62.12	59.07	63.16	2.32					2.53					2.915		2.32	2.29				1.28		
36 U	62.12	49.92	62.37	2.067					1.186					1.655		2.067	1.14				1.82		
36 L	62.12	40.76	62.35	20.028					4.168					2.77		20.028	4.53				19.8		
37 S	61.8	56.46	62.84	2.102					2.388					2.822		2.102	2.11				1.06		<u> </u>
37 A	62.08	0	62.67																				<u> </u>
38 S	62.43	56.33	63.34	3.123	2.973	2.973	3.022	2.779	3.15	3.031			3.23	2.53	3.41	3.123	2.87	3.322	3.084	3.384	2.21	2.06	2.06
38 U	62.43	48.25	63.43	3.562	3.174	3.385	3.418	3.249	3.55	3.541			3.64	4.856	4.486	3.562	3.672	4.476	3.476	4.481	2.56	2.17	2.38
38 L	62.43	42.31	63.39	3.873	3.265	3.29	3.388	3.253	3.462	3.456			3.58	3.799	4.152	3.873	3.722	4.65	3.44	4.556	2.92	2.31	2.33
39 S	61.65	58.3	62.53	3.524					3.573					3.58		3.524	3.5				2.64		<u> </u>
39 A 40 S	60.78	0	61.36 61.48	2.20					2.398					2.396		2.20	2.5				2.59		—
40 S 40 U	60.69	54.6		3.38					2.398				0.705			3.38	3.5						
40 U	60.85 58.53	42.57 57.01	61.15 59.56	0.991 1.62	1.508	1.485	1.535	1.437	1.543	1.505		1.647	0.785	1.028	1.68	0.991	0.77 1.44	1.714	1.48	1.659	0.7	0.48	0.45
41U	58.53	42.93	59.56	1.59	1.451	1.465	1.48	1.437	1.493	1.455		1.595	1.58 1.535	1.779	1.64	1.65 1.59	1.52	1.551	1.40	1.557	0.62	0.46	0.44
41L	58.53	39.48	59.49	1.378	1.222	1.19	1.225	1.121	1.276	1.197		1.378	1.335	1.733	2.7	1.378	1.15	1.273		1.557	0.42	0.26	0.44
42 S	60	58.02	61.1	1.711	1.222	1.10	1.220	1.121	1.294	1.101		1.570	1.010	2.29	2.1	1.711	3.05	1.275			0.42	0.20	0.23
42 U	60	50.85	61.06	1.533					1.204					3.58		1.533	0.901				0.47		
42 L	60	42.15	61.02	1.259					0.285					1.144		1.259	0.38				0.24		
43 S	71.27	69.14	72	1.405					1.072					1.651		1.405	0.93				0.67		
43 U	71.27	63.2	71.53	2.938					0.649					1.023		2.938	0.48				2.68		
44 S	65.79	64.19	66.68	2.39					1.573					2.529		2.39	1.38				1.5		
44 U	65.79	59.7	66.14	6.4					1.305					2.225		6.4	1.18				6.05		
45 U	66.75	61.17	67.88	2.41					1.685					1.975		1.84	1.08				1.28		
45 L	66.75	48.14	67.88	1.84					1.251					2.55		22.41	1.55				0.71		
46 U	58.06	54.25	58.79	1.263					1.089					1.525		1.263	1				0.53		
46 L	58.06	47.55	58.73	1.174					0.887					1.376		1.174	0.75				0.5		
47 S	51.16	49.43	51.81	1.075					0.994		1.04			1.32		1.075	0.98				0.42		
47 U	51.16	44.4	51.81	1.092		 	 		1.008		1.044	 	 	1.33		1.092	0.985				0.44	 	—
47 L 48 S	51.16 35.17	35.77 33.8	51.84 36.09	2.075 0.853					0.65		0.878	1	1	1.124 0.945		2.075	0.935				1.39 -0.07		\vdash
48 S 48 U	35.17 35.09	33.8 30.52							0.65					0.945		0.853	0.68				-0.07 -0.17	-	
48 U 48 L	35.09	30.52 22.53	36 35.88	0.737					1.025					0.871		0.737	0.6				-0.17		
48 L 49 S	46.5	43.68	47.41	1.556					1.025		1.385			1.666		1.556	1.353				0.65		
49 U	46.5	34.15	47.41	1.335		 	 		1.385		1.046	1	 	1.393		1.335	1.035				0.65	 	
49 L	46.5	31.12	47.47	0.762		l	l		1.000		0.262	†	†	0.718		0.762	1.000				-0.21	l	†
50 S	56.02	54.35	56.99	1.07					0.817		J.202			1.145		1.07	0.66				0.1		
50 U	56.02	49.93	56.96	1.03					0.75					1.5		1.03	0.62				0.09		
50 L	56.02	42.01	56.9	0.945					0.625					1.105		0.945	0.55				0.07		
51 D	64.36	40.16	64.96																				
51 S1	64.37	56.75	65.17																				
51 S2	64.36	52.78	64.96											<u></u>									
52 S	77.28	69.66	78.08																				
52 D	77.4	61.85	78.29																				
53 D	101.99	92.75	102.71																				
54 S																							
54 U																							

Appendix D - Water Elevations.xisx

54 U

Appendix D: Water Elevations Depth to Water (m) Mid-elev. screen PVC elevation Ground Well ID Elevation (m) (1999)Feb-98 Mar-98 May-98 May-98 May-98 May-98 Jun-98 Aug-98 Aug-98 Oct-98 Oct-97 Dec-97 Jan-98 Feb-98 Mar-98 Mar-98 May-98 May-98 May-98 Jun-98 84.72 75.87 85.37 2.19 3.29 82.53 17 D 17 S 84 64 81.49 85.53 1.54 1.81 83.14 18 71.91 64.76 72.77 0.24 0.94 71.67 22 S 65.04 51 39 65.77 0.34 0.61 64.7 22 D 49 34 64 99 65.82 0.15 0.81 64.85 78.7 31 S 78.52 75.58 79.08 0.23 1.15 -0.18 78.29 70.14 31 U 78.52 79.08 0.35 1.13 0.88 77.64 78.17 31 I 78 52 60.23 79.07 1.03 2 27 76 25 32 U1 67.33 63.82 68.22 0.89 -0.89 1 48 65.85 66 44 67.33 60.47 68.21 1.03 -0.88 1.43 65.91 66.3 32 | 33 S 65.4 63.06 66.4 12 0.97 1.33 1 22 16 2 45 1 91 64 17 64 32 64 37 64 19 64 43 64 06 64 18 63.8 63.69 1 71 1 22 33 U 65.4 56.86 66.23 1 23 1 1.37 1 24 1 64 1.62 2 14 1.89 1.33 64.07 64.28 64.35 64.17 64.4 64.03 64.16 63.76 63.78 34 S 64.77 65.84 1.81 1.92 1.91 2.25 2.75 3.15 61.62 63.11 63.04 62.88 62.85 62.64 62.52 62 34 U 64.77 52.58 65.37 3.66 3.4 3.75 3.65 3.74 2.75 3.83 4.16 60.9 61.19 61.17 61.11 61.37 61.02 61.12 61.03 62.02 3.87 61.77 62.17 62.14 62.1 62.15 35 S1 63.89 57.8 64.59 1.79 1.74 1.84 1.75 1.92 2.02 2.25 2.16 2.12 62.05 62.14 61.97 61.87 63.86 54.72 64.65 1.72 1.61 1.77 1.67 1.82 2.1 1.82 62.04 62.2 62.19 62.14 62.09 62.19 62.04 35 L 63.88 42.7 64.46 1.06 0.82 1.1 1.04 1.23 1.31 1.56 1.45 3.68 60.2 62.86 62.87 62.83 63.06 62.78 62.84 62.65 62.57 59.07 36 S 62.12 63.16 1.49 1 87 1.28 60.84 60.63 36 U 62.12 49.92 62.37 0.94 1.41 1.82 60.3 61.18 36 L 62.12 40.76 62.35 3.94 2.54 19.8 42.32 58.18 1.78 60.46 37 S 61.8 56.46 62.84 1.35 1.06 60.74 37 A 62.08 38 S 62.43 56.33 63.34 1.86 2.23 2.11 1.61 2.49 60.22 60.37 60.37 60.32 60.56 60.19 60.31 60.11 59.87 60.26 60.05 60.02 60.19 38 U 62.43 48.25 63.43 2.41 2.247 2.54 2.53 2.63 3.85 3.48 2.56 59.88 59.89 57.79 2.43 38 L 62.43 42.31 63.39 2.3 2.5 2.5 2.62 2.84 3.19 2.92 59.51 60.12 60.1 60 60.13 59.92 59.93 59.81 39 S 61.65 58.3 62.53 2.69 2.7 2.64 59 58.95 39 A 60.78 61.36 40 S 60.69 54.6 61.48 1.61 1.61 2.59 58.1 59.08 0.49 40 U 60.85 42.57 61.15 0.73 0.7 60.15 60.36 41 S 58.53 57.01 59.56 0.41 0.51 0.47 0.62 0.55 0.75 0.65 0.62 57.91 58.05 58.08 58.03 58.12 58.02 58.06 57.98 58.53 59.51 0.5 57.92 58.06 58.09 58.03 58.1 58.06 41U 42.93 0.4 0.51 0.48 0.62 0.56 0.76 0.66 0.61 58.02 57.92 57.98 58.53 59 49 0.42 58.11 58.27 58.3 58.27 58.37 58.29 58.11 58.18 411 39.48 0.26 0.16 0.32 0.24 0.35 0.62 1.74 0.42 58.21 42 S 60 58.02 61.1 0.19 1.19 0.61 59.39 42 U 60 50.85 61.06 2.52 0.47 59.53 42 I 60 42 15 61 02 -0.74 0.12 0.24 59 76 60.74 43 S 71.27 69.14 72 0.34 0.92 0.67 70.6 70.93 43 U 71.27 63.2 71.53 0.39 0.76 2.68 68.59 70.88 44 S 65 79 64.19 66 68 0.68 1 64 1.5 64 29 65 11 44 | | 65.79 59.7 66.14 0.96 1.88 6.05 59.74 64.84 45 U 66.75 61.17 67.88 0.56 0.85 0.71 65.47 66.2 45 L 66.75 48.14 67.88 0.12 1.42 66.04 66.63 21.28 4611 58.06 54.25 58 79 0.53 57.53 57.7 0.36 0.8 46 L 58.06 47.55 58.73 0.22 0.71 0.5 57.56 57.84 47 S 51.16 49.43 51.81 0.34 0.39 0.67 0.42 50.74 50.82 50.77 47 U 51.16 51.81 44.4 0.39 0.68 0.44 50.72 50.8 50.77 0.36 47 L 51.16 35.77 51.84 0.2 0.44 1.39 49.77 50.96 35.17 35.09 48 S 33.8 36.09 -0.27 0.02 -0.07 35.24 35.44 -0.89 48 U 35.98 30.52 36 -0.04 -0.17 35.26 48 L 35.02 22.53 35.88 0.17 -0.34 -0.42 35.44 34.86 49 S 46.5 0.48 0.48 45.85 43.68 0.76 0.65 46.03 49 U 46.5 34.15 47.39 0.18 0.16 0.5 0.44 46.06 46.32 46.34 47.47 -0.71 47.21 491 46.5 31 12 -0.25 -0.21 46 71 -0.15 56.17 50 S 56.02 54.35 56.99 0.18 0.1 55.92 50 U 56.02 49.93 56.96 -0.19 0.56 0.09 55.93 56.21 50 I 56.02 42.01 56.9 -0.25 0.23 0.07 55.96 56.28 51 D 64 36 40 16 64 96 51 S1 64.37 56.75 65.17 51 S2 64.36 52.78 64.96 78.08 52 S 77 28 69 66 52 D 77.4 61.85 78.29 53 D 101.99 92.75 102.71 54 S

Appendix D - Water Elevations.xlsx

Appendix D: Water Elevations

Appendix D: Wa	ater Elevations	1		1																			
Well ID	Ground	Mid-elev. screen	PVC elevation								1	Gro	undwater	Elevation	n (m)	1							
Well ID	Elevation (m)	(m)	(1999)	Aug-98	Aug-98	Oct-98	Nov-98	Dec-98	Jan-99	Feb-99	Mar-99	Apr-99	May-99	Jun-99	Jul-99	Aug-99	Sep-99	Oct-99	Nov-99	Dec-99	Feb-00	Sep-00	Nov-00
17 D	84.72	75.87	85.37	81.43			83.84																
17 S	84.64	81.49	85.53	82.83			83.2									83.12			83.13				
18	71.91	64.76	72.77	70.97			71.81									71.68			71.68				<u> </u>
22 S 22 D	65.04 64.99	51.39 49.34	65.77 65.82	64.43 64.18			65 64.99									64.85 64.9			64.98 64.84				
31 S	78.52	75.58	79.08	77.37		78.7	78.35					78.2				78.35			78.22			78.21	
31 U	78.52	70.14	79.08	77.39		77.64	78.26					78.14				78.16			78.19			78.13	
31 L	78.52	60.23	79.07	77.49		76.25	78.42					78.23				78.25			78.41			78.23	
32 U1	67.33	63.82	68.22	68.22		65.85	66.48					66.152	1			66.29			66.05				
32 L 33 S	67.33 65.4	60.47 63.06	68.21 66.4	68.21 62.95	63.49	65.91 64.17	66.59 63.96	63.72	63.84	63.676	63.94	66.248 63.872	64	63.75	63.47	66.35 63.88	64.02	64	66.24 63.99	63.94			
33 U	65.4	56.86	66.23	63.26	63.51	64.07	63.98	63.72	63.84	63.699	64.02	63.878	63.98	63.74	63.52	63.85	64.05	64.02	63.99	63.97	64.71	65.35	66.23
34 S	64.77	62	65.84	62.25	62.02	61.62	62.67	62.49	62.34	62.17	62.33	62.8	62.59	62.43	62.21	62.24	62.51	62.77	62.81	63	62.89	62.29	63.02
34 U	64.77	52.58	65.37	60.94	60.61	60.9	61.21	60.87	61.2	60.81	60.82	61.133	60.97	60.52	60.54	60.72	61.01	61.22	61.15	61.16	61	60.92	61.17
35 S1	63.89	57.8	64.59	61.64	61.73	61.77	61.91	61.73	61.68	61.52	61.52	62.13	62.09	61.91	61.62	61.84	61.98	62.21	62.23	62.27	61.97	62	62.16
35 S2 35 L	63.86 63.88	54.72 42.7	64.65 64.46	61.74 62.32	61.76 62.43	62.04 60.2	61.98 62.51	61.85 62.34	61.84 62.51	61.63 62.27	61.8 62.41	62.16 62.667	62.15 62.56	61.98 62.29	61.64 62.14	61.93 62.29	62.03 62.5	62.2 62.71	63.32 62.65	62.32 62.71	62.02 62.63	61.76 62.56	62.23 62.46
36 S	62.12	59.07	63.16	60.25	02.43	60.84	60.87	02.34	02.51	02.21	02.41	60.49	02.30	02.29	02.14	60.86	62.3	02.71	60.71	02.71	02.03	62.29	02.40
36 U	62.12	49.92	62.37	60.71		60.3	61.23					61.176				61.19			61.04			61.07	
36 L	62.12	40.76	62.35	59.58		42.32	57.82					57.867				53.89			53002			55.08	
37 S	61.8	56.46	62.84	60.02		60.74	60.73					60.444				60.69			60.78			60.61	
37 A	62.08	0	62.67																58.56				
38 S 38 U	62.43 62.43	56.33 48.25	63.34 63.43	60.81 58.58	59.93	60.22 59.87	60.47 59.76	60.02 58.96	60.26 59.96	59.96 58.95	60.42 59.55	60.16 59.524	60.44 59	59.93 57.86	59.77 58.08	60.47 58.41	60.59 58.73	60.52 59.3	60.51 59.15	60.45	59.14	60.39 58.6	58.83
38 U	62.43	48.25	63.43	59.59	58.95 59.23	59.87	59.76	58.74	59.95	58.83	59.55	59.525	58.91	57.86	58.08	58.31	58.73	59.31	59.15	59.18 59.14		58.64	58.83
39 S	61.65	58.3	62.53	58.95	33.23	59	59.03	30.74	33.33	30.03	33.40	58.956	30.31	51.5	30.04	30.31	30.72	33.31	62.53	62.53		30.04	
39 A	60.78	0	61.36																59.03				
40 S	60.69	54.6	61.48	59.08		58.1	57.98					59.119				59.14			59.15			59.1	
40 U	60.85	42.57	61.15	60.12		60.15	60.38					60.175				60.1			60.33				
41 S 41U	58.53 58.53	57.01 42.93	59.56 59.51	57.78 57.78	57.88	57.91 57.92	58.12 57.99	57.85	58.08	57.9 57.95	58.08	57.99	58.1	57.84 57.88	57.94 57.98	58.04	58.05 58.11	58.08	58.05	58.01 58.06	58.04 57.99	58.6 57.05	58 58.07
41U 41L	58.53	42.93 39.48	59.51	57.78	57.87 56.79	58.11	58.34	57.96 58.22		57.95	58.13 58.39	58.06 58.28	58.16 58.38	58.06	57.98	58.1 58.34	58.35	58.13 58.37	58.12 58.34	58.33	57.99	58.3	58.07
42 S	60	58.02	61.1	58.81	30.73	59.39	58.05	30.22			30.33	59.74	30.30	30.00	30	59.85	30.33	30.37	59.83	30.33		59.75	
42 U	60	50.85	61.06	57.48		59.53	60.16					59.95				60.08			60.19				
42 L	60	42.15	61.02	59.88		59.76	60.64					60.3				60.39			51.11				
43 S	71.27	69.14	72	70.35		70.6	71.07					70.7				71.02			70.86				ļ
43 U 44 S	71.27 65.79	63.2 64.19	71.53 66.68	70.51 64.15		68.59 64.29	71.05 65.3					70.71 65.15				70.99 65.12			70.8 65.15			70.8	
44 S 44 U	65.79	59.7	66.14	63.92		59.74	64.96					64.8				64.77			64.84				
45 U	66.75	61.17	67.88	65.91		66.04	66.8					66.64				66.68			66.7			66.58	
45 L	66.75	48.14	67.88	65.33		45.47	66.33					66.14				66.19			66.26			66.23	
46 U	58.06	54.25	58.79	57.27		57.53	57.79					57.66				57.69			57.67				
46 L	58.06	47.55	58.73	57.35		57.56	57.98					57.81				57.84			57.88				
47 S 47 U	51.16 51.16	49.43 44.4	51.81 51.81	50.49 50.48		50.74 50.72	50.83 50.83		-			50.64 50.63	1			51.01 50.14			50.71 50.81		-		
47 U	51.16	35.77	51.84	50.48		49.77	50.83		 			50.69	 			49.99	1		50.81	1	 		
48 S	35.17	33.8	36.09	35.15		35.24	35.41					35.25				35.29			35.32				
48 U	35.09	30.52	36	35.13		35.26	35.4					35.29				35.259			35.31	35.35			
48 L	35.02	22.53	35.88	35.36		35.44						35.63				35.56			35.78				
49 S	46.5	43.68	47.41	45.74	ļ	45.85	46.06		ļ			45.95	<u> </u>			46.02	1		46.06	1	ļ		
49 U 49 L	46.5 46.5	34.15 31.12	47.39 47.47	46 46.75	 	46.06 46.71	46.36		 			46.33 47.02	 	-	-	46.3 47.18	1		46.38 47.25	1	 	-	-
50 S	56.02	54.35	56.99	55.85		55.92	56.33					56.1				56.13			56.16			56.09	
50 U	56.02	49.93	56.96	55.46		55.93	56.34					56.14				56.17			56.39			56.11	
50 L	56.02	42.01	56.9	55.8		55.96	56.35					55.98				56.17			56.2			55.99	
51 D	64.36	40.16	64.96																				<u> </u>
51 S1	64.37	56.75	65.17	1									 				1			1			├
51 S2 52 S	64.36 77.28	52.78 69.66	64.96 78.08																				—
52 D	77.4	61.85	78.29																				
53 D	101.99	92.75	102.71														1						
54 S																							
54 U																							

Appendix D - Water Elevations.xisx 3

	ater Elevations Ground	Mid-elev. screen	PVC elevation									Gro	undwater	Elevatio	n (m)								
Well ID	Elevation (m)	(m)	(1999)	Feb-01	Apr-01	Jul-01	Sep-01	Feb-02	Apr-02	Sep-02	Dec-02	Feb-03	Apr-03	Jul-03	Sep-03	Dec-03	Apr-04	Jul-04	Sep-04	Nov-04	Feb-05	Apr-05	Jul-05
17 D	84.72	75.87	85.37																				
17 S	84.64	81.49	85.53																				
18	71.91	64.76	72.77																				
22 S	65.04	51.39	65.77	<u> </u>																			<u> </u>
22 D 31 S	64.99 78.52	49.34 75.58	65.82 79.08		78.27	78.27	78.27		78.3	78.22			78.13		78.25		78.23		77.1			78.26	
31 U	78.52	70.14	79.08		78.17	78.17	78.17		78.18	78.13			78.05		78.12		78.13		77.9			78.08	
31 L	78.52	60.23	79.07		78.27	78.27	78.27		78.22	78.24			78.29		78.19		78.26		78.02			78.62	
32 U1	67.33	63.82	68.22												65.85								
32 L	67.33	60.47	68.21												65.98								
33 S	65.4	63.06	66.4												63.88				63.7	63.87	62.96	66.402	
33 U	65.4	56.86	66.23	63.88	63.99	63.76	63.23	64.41	64.09	64.11	63.93	63.7	64.73	63.79	63.83	63.97	64.01	63.89	63.73	63.1	62.26	63.908	63.74
34 S	64.77	62	65.84	63.16	63.19	60.91	62.31	63.62	63.28	63.2	63.3	62.94	63.14	62.94	62.93	63.04	63.24	62.87	63.04	61.47	61.07	63.34	62.65
34 U 35 S1	64.77 63.89	52.58 57.8	65.37 64.59	60.89	61.16 62.19	61.97 61.85	60.57 62.13	60.87 62.49	60.77 62.21	60.84 62.15	60.82 62.12	59.65 61.59	64.02 62.04	60.74	60.94 62.14	60.09 62.21	60.62 62.15	61.01 62.07	60.67 62.36	62.37 62.37	61.91 62.02	61.473 62.39	61.3 62.19
35 S2	63.86	54.72	64.65	61.75	62.19	61.92	61.95	62.49	62.26	60.65	62.12	60.45	62.04	61.93	62.14	62.26	62.13	62.18	61.89	62.65	62.62	62.46	62.18
35 SZ 35 L	63.88	42.7	64.46	61.75	62.47	62.16	61.46	62.56	62.45	62.51	62.36	61.86	62.44	61.96	62.38	62.47	62.23	62.59	62.56	02.00	02.02	62.46	62.16
36 S	62.12	59.07	63.16	00	60.52	323	60.56	02.00	60.92	60.71	32.00	31.00	60.64	31.00	60.64	J	60.79	02.00	60.62			60.82	02.0
36 U	62.12	49.92	62.37		60.93		60.77		60.93	60.93			60.926		60.99		61.026		60.916			61.316	
36 L	62.12	40.76	62.35		60.05		60.32		61.04	60.86			60.897		60.91		61.107		61.047			61.247	
37 S	61.8	56.46	62.84		60.71		60.26		60.79	60.86			60.824		60.89		61.104		60.789			61.194	
37 A	62.08	0	62.67																				
38 S	62.43	56.33	63.34	50.00	60.51	50.04	60.25	57.47	60.89	60.83	57.40	50.05	60.633	57.70	60.77		60.913	50.00	60.843	50.00	50.70	63.343	50.04
38 U	62.43	48.25 42.31	63.43	58.23	58.75	56.94	57.32	57.17	57.33	57.87 57.82	57.18	56.95	56.99 60.65	57.72	58.91		56.99	58.98	59.53 60.59	59.93	59.78	59.734 59.805	59.34
38 L 39 S	62.43 61.65	58.3	63.39 62.53				57.12		57.03	57.82			60.00		58.5		56.79		60.59			59.805	
39 A	60.78	0	61.36																				
40 S	60.69	54.6	61.48		59.09		59.02		56.98	59.04			58.279		59.04		59.049		58.879			59.039	
40 U	60.85	42.57	61.15				59.8								60.31		60.045		60.115			60.335	
41 S	58.53	57.01	59.56	57.9	58.16	57.67	57.91	58.04	57.96	57.86	58.26		57.73	57.9	57.68		57.91	57.64	56.67	57.79	57.87	57.885	58.69
41U	58.53	42.93	59.51	57.86	57.91	57.81	58.01		58.01	57.29	57.91	56.54	57.73	57.84	57.96	57.93	57.93	57.81	57.78	57.8	57.95	57.95	57.74
41L	58.53	39.48	59.49		58.24		55		58.1	58.02			57.99		58.15		58.11		57.9			58.14	
42 S	60	58.02 50.85	61.1		59.67		59.92		59.7	59.76			59.5		59.66		59.7		59.49			59.62	<u>, </u>
42 U 42 L	60 60	50.85 42.15	61.06 61.02	ļ			59.79 59.81		59.91 60.31						59.93 60.13		59.94 60.23		59.7 60.05			61.06 61.02	
43 S	71.27	69.14	72		70.95		70.9		70.9	70.8			70.9		70.92		70.9		70.72			70.95	
43 U	71.27	63.2	71.53		70.73		70.78		70.79	70.78			70.83		70.74		70.81		70.705			70.83	
44 S	65.79	64.19	66.68																				
44 U	65.79	59.7	66.14																				
45 U	66.75	61.17	67.88		65.74		65.53		65.77	65.88			65.76		65.81		65.87		65.68			65.88	
45 L	66.75	48.14	67.88		66.08		65.77		66.09	66.13			58.68		65.78		65.98		65.98			66.06	
46 U	58.06	54.25	58.79				57.48								57.72				57.45			58.79	<u> </u>
46 L 47 S	58.06 51.16	47.55 49.43	58.73 51.81				57.53 50.51								57.47 50.52				57.66 50.24			58.73 51.81	
47 U	51.16	49.43	51.81	 			50.64								50.56			 	50.24	 		51.81	
47 L	51.16	35.77	51.84	†			50.72								50.65				50.46			51.84	
48 S	35.17	33.8	36.09												35.09				35.15			36.09	
48 U	35.09	30.52	36				35.08								35.06				35.165			36	
48 L	35.02	22.53	35.88				35.52								35.88				35.88			35.88	
49 S	46.5	43.68	47.41	 			45.87								45.99			ļ	46.26			47.41	<u> </u>
49 U 49 L	46.5 46.5	34.15 31.12	47.39 47.47	1			46.15	-					-		46.2 46.97	-		 	45.89 46.875	 	-	47.39 47.47	
49 L 50 S	46.5 56.02	31.12 54.35	56.99	-	56.14		46.92 56.04		56.14	56.09			56.04		46.97 56.01				56.12	59.93		56.1	
50 U	56.02	49.93	56.96	 	56.21		56.04		56.16	56.08			55.98		56.03		56.06		55.98	62.08		56.16	
50 L	56.02	42.01	56.9		56.17		55.92		56.12	56.07			55.92		55.98		55.99		55.98	61.77		48.2	
51 D	64.36	40.16	64.96						61.36	59.94			63.61		59.76		59.88		59.78	76.2		59.96	
51 S1	64.37	56.75	65.17						62.37	62.42			62.43		62.37		62.32		62.27	75.56		62.37	
51 S2	64.36	52.78	64.96						62.01	62.18			62.1		61.95		62.09		61.91	99.01		62.15	
52 S	77.28	69.66	78.08						76.87	76.98			76.78		76.93		76.88		76.79			76.89	
52 D	77.4	61.85	78.29						76.72	76.92			76.84		76.9		76.84		76.875			76.94	
53 D 54 S	101.99	92.75	102.71	-					99.23	98.99			98.55		98.06		99.18		98.18			99.32	—
					1		1																

Appendix D - Water Elevations.xisx

Appendix D: Water Elevations

Well ID 17 D	Ground Elevation (m)	Mid-elev. screen	PVC elevation																				
17 D	Elevation (m)											Grou	indwater	Elevation	(111)								
	Elevation (III)	(m)	(1999)	Sep-05	Nov-05	Mar-06	Apr-06	Jul-06	Sep-06	Nov-06	Feb-07	Apr-07	Jul-07	Sep-07	Nov-07	Feb-08	Apr-08	Jul-08	Sep-08	Feb-09	Apr-09	Jul-09	Sep-09
	84.72	75.87	85.37																				
17 S	84.64	81.49	85.53																				
18	71.91	64.76	72.77																				<u> </u>
22 S 22 D	65.04 64.99	51.39 49.34	65.77 65.82																				<u> </u>
31 S	78.52	75.58	79.08	78.13	79.08		78.26		78.2			78.2		77.63			78.21		78.18		78.08		78.1
31 U	78.52	70.14	79.08	77.87	79.08		78.12		77.93			78.14		77.57			78.14		77.93		78.03		77.89
31 L	78.52	60.23	79.07	78.15	79.07		78.2		78.18			78.21		77.67			78.22		78.11		78.22		77.97
32 U1	67.33	63.82	68.22									65.88		65.58			66.02		65.872		65.937		65.942
32 L	67.33	60.47	68.21																				
33 S	65.4	63.06	66.4	63.78	66.4	00.70	63.92	63.92	63.74	00.00	00.00	00.00	00.0	63.76	00.0	00.00	63.83	00.070	62.887	00.000	63.902	00.000	63.502
33 U 34 S	65.4 64.77	56.86	66.23 65.84	63.81 62.97	64.04 63.42	63.72 63.09	64.15 63.31	63.93 63.37	63.83 63.2	63.88 63.28	63.88 62.39	63.99 63.05	63.8 62.65	63.83 63.1	62.9 63.44	63.83 63.04	64.15 63	63.878 63.19	63.628 63.11	63.868 63.23	63.888 63.24	63.938 63.48	63.818 62.8
34 U	64.77	62 52.58	65.37	61.43	61.66	61.44	61.51	61.77	61.61	61.76	61.32	61.58	61.46	61.38	61.77	61.45	61.52	61.513	62.603	03.23	61.523	61.723	
35 S1	63.89	57.8	64.59	61.94	62.31	62.04	62.25	62.53	62.35	62.58	61.96	62.28	62.45	62.13	62.34	62.43	62.38	01.010	62.49		62.69	01.720	01.000
35 S2	63.86	54.72	64.65	62.73	62.4	62.08	62.35	62.56	62.37	62.52	61.8	62.41	61.91	62.11			62.25	62.52	62.52	62.69	62.55		
35 L	63.88	42.7	64.46	62.51	62.75	62.57	62.67	62.88	62.64	62.79	62.46	62.65	62.69	63.31	62.59	62.71	62.81	62.767	62.697	62.747	62.747	62.927	
36 S	62.12	59.07	63.16	60.66	63.16		62.08		60.9			60.89		60.96			61		61.06		60.91		60.87
36 U	62.12	49.92	62.37	60.67	62.37		61.2		61.17			61.03		61.01			61.11		61.036		61.256		61.036
36 L 37 S	62.12 61.8	40.76 56.46	62.35 62.84	61.02 60.91	62.35 62.84		61.27 61.15		60.78			61.31 61.18		60.8			61.28 61.17		59.057 61.054		61.347		61.047
37 S	62.08	0	62.84	00.91	0∠.84		01.15		01.04			01.18		01.17	1		01.17	 	01.054	 	01.044	 	00.954
38 S	62.43	56.33	63.34	59.88	63.34		61.04		60.82			61.03		61.06			61		60.773		60.793		60.733
38 U	62.43	48.25	63.43	59.67	59.91	59.95	60.06	60.03	59.96	60.07	59.65	60.01	59.53	59.98	60.12	59.89	60.02	59.934	59.909	60.234	59.984	59.964	
38 L	62.43	42.31	63.39	59.7	63.39		59.94		59.88			59.94		60.04			60.43		59.837		60.095		59.905
39 S	61.65	58.3	62.53																				
39 A	60.78	0	61.36		01.10																		
40 S 40 U	60.69 60.85	54.6	61.48 61.15	58.97 60.04	61.48		58.98 61.15		59.05			59.12	57.73 57.59	59.03			59.16 61.07		59.029 60.16		58.919 60.345		59.009
40 U	58.53	42.57 57.01	59.56	57.86	61.15 57.93		57.86	57.86	.57.81	57.91		60.34 57.83	57.59	60.2 57.71	57.81	57.77	57.75	57.72	57.74		57.74	57.77	60.055 57.71
41U	58.53	42.93	59.51	57.77	57.76	57.81	57.91	58.01	57.84	57.93	57.47	57.87		57.82	57.89	58.04	58.03	57.83	57.795	58.03	57.92	57.97	57.95
41L	58.53	39.48	59.49	57.99	59.49	07.01	58.04	00.01	58.09	07.00	01.11	58.08		58.02	07.00	00.01	57.99	07.00	57.89	00.00	58.1	01.01	57.92
42 S	60	58.02	61.1	59.42	61.1		59.55		59.52			59.57		59.57			59.55		59.65		59.6	59.42	59.42
42 U	60	50.85	61.06	61.06	61.06				59.69			59.81		59.69			59.46		59.77		59.47		59.74
42 L	60	42.15	61.02	59.85	61.02				60.01			59.57		59.9			60.04		60.195		59.44		60.06
43 S	71.27	69.14	72	70.3	72		70.94		71.25			70.85		70.8	1		70.86 70.7		70.84		70.85		70.75
43 U 44 S	71.27 65.79	63.2 64.19	71.53 66.68	69.67	71.53		70.78		70.43			70.78 64.98		70.71 64.79			65.15		70.806 65.01		70.68 65.39		70.68 64.86
44 U	65.79	59.7	66.14									64.78		64.78			64.77		64.75		64.82		64.69
45 U	66.75	61.17	67.88	65.76	67.88		65.9		65.95			65.82		66.22			65.94		66.23		66.07		66.06
45 L	66.75	48.14	67.88	65.53	67.88		65.93		66.06			66.25		65.36			66		66.02		66.04		65.99
46 U	58.06	54.25	58.79	57.46	58.79				57.5			577.39		57.51			57.52		57.365		57.44		57.52
46 L	58.06	47.55	58.73	57.52	58.73				57.7			57.69		57.61			57.76		57.65		57.68		57.68
47 S 47 U	51.16 51.16	49.43 44.4	51.81 51.81	50.29 50.5	51.81 51.81		-		50.32 50.56			50.3 50.58		50.3 50.57	1		50.26 50.58	-	50.16 50.465	 	50.3 50.66	-	├──
47 U 47 L	51.16	35.77	51.81 51.84	50.51	51.81		 		35.13			50.58		50.57	1		50.58	 	50.465	 	50.66	 	\vdash
48 S	35.17	33.8	36.09	34.91	36.09				35.01			35.07		35.14			35.2		35.12		35.185		35.19
48 U	35.09	30.52	36	34.82	36				35.56			35.19		35.06			35.2		35.075		35.13		35.3
48 L	35.02	22.53	35.88	35.88	35.88				46.01					35.46			35.88		35.58				35.68
49 S	46.5	43.68	47.41	45.8	47.41				46.21			45.97		45.92			45.89		45.8		46		45.89
49 U	46.5	34.15	47.39	46.06	47.39		ļ		46.96			46.28		46.21	ļ		46.33	ļ	46.25	 	46.29	ļ	46.29
49 L 50 S	46.5 56.02	31.12 54.35	47.47 56.99	46.98 56.04	47.47		56.09		56.01 55.94			47.14 56.03	59.8	47.07 55.99			47.16 56.09		46.87 55.87		47.05 55.99		47.04 55.93
50 S 50 U	56.02	54.35 49.93	56.99 56.96	56.04	56.99 56.96		56.09		55.88			56.03	61.85	56.01			56.09		55.56		56.11		56.01
50 L	56.02	42.01	56.9	55.7	56.9		56.04		59.91			55.83	62.15	55.92			56.1		55.94		55.96		55.98
51 D	64.36	40.16	64.96	59.59	64.96		59.88		62.2			59.9	76.85	59.73			59.91	61.76	59.82		59.83	59.78	59.61
51 S1	64.37	56.75	65.17	62	65.17		62.21		62.2			62.22	76.79	62			62.02	62.05	62.14		62.16	62.09	62.11
51 S2	64.36	52.78	64.96	61.38	64.96		62.07		62.06			62.11		61.84			61.96	61.95	62.005		62.04	62.14	61.97
52 S	77.28	69.66	78.08	76.89	78.08		73.01		76.99			76.93		76.97			76.88	76.97	76.965		77.03	76.96	76.85
52 D	77.4	61.85	78.29	76.81	78.29		77.13		77.02			76.9		77			76.99	76.87	76.96		77.01	77.22	76.75
53 D 54 S	101.99	92.75	102.71	96.86	102.71		98.99		97.08			98.52		96.64			98.36	98.84	99.31		99.01		\vdash
54 U																							

Appendix D - Water Elevations xlsx

Appendix D: Wa	ter Elevations	, ,	1																				
W-II ID	Ground	Mid-elev. screen	PVC elevation									Gro	undwater	Elevation	n (m)								
Well ID	Elevation (m)	(m)	(1999)	Nov-09	Feb-10	Apr-10	Jul-10	Sep-10	Nov-10	Feb-11	Apr-11	Jul-11	Sep-11	Nov-11	Mar-12	Apr-12	Jul-12	Sep-12	Nov-12	Mar-13	Apr-13	Aug-13	Sep-13
17 D	84.72	75.87	85.37					-			-		-			-					-		
17 S	84.64	81.49	85.53																				
18	71.91	64.76	72.77																				
22 S	65.04	51.39	65.77																				
22 D	64.99	49.34	65.82			70.45					70.00		77.00			70.04		70.00			70.05		70.05
31 S 31 U	78.52 78.52	75.58 70.14	79.08 79.08			78.15 78		77.77 77.73			78.33 78.15		77.86 77.87			78.24 78.07		78.23 78.13		1	78.25 78.15		78.05 77.98
31 L	78.52	60.23	79.08			78.07		77.79			78.27		77.88			78.12		78.18		1	78.21		78.05
32 U1	67.33	63.82	68.22			66.002		65.422			66.072		65.792			65.842		66.082			66.062		65.732
32 L	67.33	60.47	68.21																				
33 S	65.4	63.06	66.4			63.582		63.352			63.902		63.552			63.612		63.742			63.812		63.702
33 U	65.4	56.86	66.23	63.878	63.768	63.738	63.598	63.688	63.778	63.648	64.098	63.958	63.678	63.898	62.998	63.778	63.678	63.868	63.878	63.048	63.918	63.118	63.828
34 S	64.77	62	65.84	63.15	62.84	63.14	62.53	62.26	63.04	63.23	63.56	62.99	62.94	63.3	62.47	63.04	62.92	63.31	63.29	62.81	63.31	63.32	63.14
34 U 35 S1	64.77	52.58	65.37 64.59		61.313	61.443	61.563	62.443	61.723		61.793	61.063	61.663 62.59	61.863	59.493	60.323	60.393	61.823	61.873	61.443	61.033 62.5	61.013	61.563 62.48
35 S1	63.89 63.86	57.8 54.72	64.65			61.075	61.07	62.19 62.01	62.49	61.9	62.83	61.49	62.59	62.72	61.22	62.35	62.31	62.51 62.47	62.46	62.14	62.48	62.38	62.48
35 S2	63.88	42.7	64.46	62.687	62.557	61.417	61.507	62.607	61.517	62.126	63.017	62.667	62.807	61.937	59.357	62.677	62.787	62.917	62.727	60.527	62.677	62.467	62.717
36 S	62.12	59.07	63.16	32.001	32.007	60.83	31.007	60.95	31.017	32.120	61.07	32.001	60.81	31.007	30.001	61.15	32.131	61.04	32.121	30.021	61.14	32.407	60.96
36 U	62.12	49.92	62.37			61.206		60.956			61.236		61.116			61.276		61.026			61.256		61.156
36 L	62.12	40.76	62.35			61.437		61.027			61.387		61.197			61.267		61.077			61.267		61.257
37 S	61.8	56.46	62.84			61.154		60.564			61.214		60.924			61.234		60.544			61.144		60.924
37 A	62.08	0	62.67																ļ				
38 S	62.43	56.33	63.34			60.323		60.313			61.073		60.723			61.123		60.903			60.973	== +=+	60.753
38 U	62.43	48.25 42.31	63.43 63.39	60.184	59.864	58.914	60.004	59.744	59.604	59.744	59.964	57.344	60.084 59.985	60.234	57.904	58.354	59.954	59.984	59.974	59.914	58.094	58.194	59.784
38 L 39 S	62.43 61.65	42.31 58.3	62.53			58.975		59.635			59.935		59.985			58.085		59.945			58.045		59.725
39 A	60.78	0	61.36																				
40 S	60.69	54.6	61.48			58.979		58.989			59.359		60.229			59.179		59.149			59.119		59.129
40 U	60.85	42.57	61.15			59.885		59.835			60.375		60.275			60.305		59.375			60.345		60.285
41 S	58.53	57.01	59.56	57.91	57.46	57.69	57.51	57.35	57.61	57.33	57.81	57.64	57.84	57.9		57.54	57.68	57.87			57.73	57.72	57.75
41U	58.53	42.93	59.51	57.88	57.61	57.8	57.57	57.68	57.7	57.57	57.92	58.04	57.73	57.76	57.6	57.93	57.41	58.01	57.97	57.97	57.84	57.87	57.84
41L	58.53	39.48	59.49			57.99		56.74			58.3		58.16			58.05		58.13		58.2	58.08		58.1
42 S	60	58.02	61.1			59.26		59.19			59.69		59.65			59.63		59.64		<u> </u>	59.59		59.57
42 U 42 L	60 60	50.85 42.15	61.06 61.02			59.76 59.92		59.48 59.49			58.71 59.49		59.74 60.24			59.85 59.04		59.9 60.05			59.91 60.16		59.92 60.33
42 L 43 S	71.27	69.14	72			70.86		70.79			71.97		70.77			70.92		70.59			70.91		70.86
43 U	71.27	63.2	71.53			70.63		70.68			70.73		70.69			71.26		70.74			70.79		70.76
44 S	65.79	64.19	66.68			65.04		64.58			65.13		65.08			65.22		65.09			65.19		64.99
44 U	65.79	59.7	66.14			64.64		64.34			64.77		64.78			62.79		64.75			64.82		64.77
45 U	66.75	61.17	67.88			66.03		65.46			66.18		66.13			66.08		66.14			65.19		65.95
45 L	66.75	48.14	67.88			66.84		65.49			65.53		66.09			65.07		66.18			66.14		65.91
46 U	58.06	54.25	58.79			57.36		57.03			57.59		57.02			57.51		57.66			57.61		58.79
46 L	58.06 51.16	47.55 49.43	58.73 51.81			57.39		57.44			57.02		57.74			57.71		57.74	-		57.71		57.69 50.34
47 S 47 U	51.16	49.43 44.4	51.81	}	1		 	 	-				-	-			 		}	1	1		50.34
47 U	51.16	35.77	51.84	†	1				†				†	†					†	1	1		50.71
48 S	35.17	33.8	36.09			35.04		34.33			35.22		34.9			35.11		35.11			35.06		35.11
48 U	35.09	30.52	36			35.09		34.75			35.27		35.21			35.16		35.09			35.1		35.16
48 L	35.02	22.53	35.88			35.56		35.17			35.88		35.88			34.84		35.88			35.62		35.08
49 S	46.5	43.68	47.41			45.82		45.77			47.08												
49 U	46.5	34.15	47.39	ļ	ļ	46.23	ļ	46.14			46.29						ļ		ļ	 	ļ		
49 L	46.5	31.12	47.47 56.99	ļ		46.93		46.74			47.39								ļ	1			
50 S 50 U	56.02 56.02	54.35 49.93	56.99 56.96			55.94 56.16		55.6 55.74			55.97 56.01		56.1			56.06		56.05			56.08		56.05
50 L	56.02	42.01	56.9			55.93		55.72			55.83		56.02			55.62		55.95			56.05		56.05
51 D	64.36	40.16	64.96	1		59.68	59.43	59.61			60.135	59.88	59.81			59.73	59.75	59.74	1		59.71	61.76	61.91
51 S1	64.37	56.75	65.17			61.96	61.02	62.14			62.3	61.19	62.23			62.06	62.08	62.26		t	62.09	60.01	59.96
51 S2	64.36	52.78	64.96			61.96	60.98	61.83			62.26	62.22	62.16			62.2	62.02	62.2			62.06	61.86	62.1
52 S	77.28	69.66	78.08			76.98	76.82	76.89			76.97	75.91	77.02			75.8	75.69	76.88			76.91	76.84	76.76
52 D	77.4	61.85	78.29			76.8	76.78	76.34			76.98	76.93	75.78			76.46	76.8	76.83			76.9	76.87	76.79
53 D	101.99	92.75	102.71			97.96	96.5	96.01			100.17	98.24	97.62			99.82	97.49	99.06			99.17	98.92	97.71
54 S																							$\overline{}$
54 U																							

Appendix D - Water Elevations.xlsx

Appendix D: Water Elevations

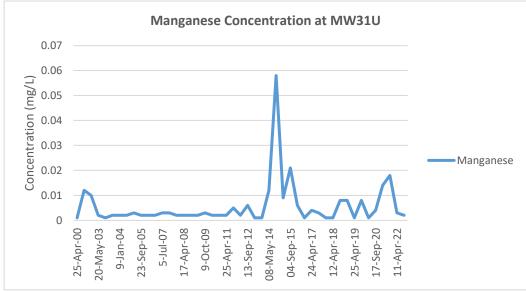
Appendix D: W	ater Elevations																						
Well ID	Ground	Mid-elev. screen	PVC elevation		•	•	•					Gro	undwater	Elevation	n (m)		•						
Well ID	Elevation (m)	(m)	(1999)	Nov-13	Mar-14	May-14	Jul-14	Sep-14	Oct-14	Mar-15	Apr-15	Jul-15	Sep-15	Oct-15	Feb-16	Apr-16	Jul-16	Sep-16	Oct-16	Feb-17	Apr-17	Jul-17	Sep-17
17 D	84.72	75.87	85.37																				
17 S	84.64	81.49	85.53																				
18	71.91	64.76	72.77																	ļ			ļ
22 S	65.04	51.39	65.77																				
22 D 31 S	64.99 78.52	49.34 75.58	65.82 79.08			78.19		78.11			78.34		78.1			78.39		77.58			78.31		77.72
31 U	78.52	70.14	79.08			78.16		77.92			78.21		77.96			78.14		77.47			78.19		77.67
31 L	78.52	60.23	79.07			78.26		77.99			78.35		78.03			78.20		77.54			78.29		77.77
32 U1	67.33	63.82	68.22			65.982		65.852			66.212		65.932			66.09		65.65			66.112		65.692
32 L	67.33	60.47	68.21																				
33 S	65.4	63.06	66.4			63.912		62.622			64.112		63.622			63.93		63.14			63.712		63.742
33 U	65.4	56.86	66.23	63.718		63.998	63.918	60.978	63.918	62.878	61.248		63.768	61.278		63.86	63.02	63.47	63.87		63.89	62.828	
34 S 34 U	64.77 64.77	62 52.58	65.84 65.37	63.18	63.08 59.833	63.35 61.613	63.34 61.263	62.94 61.683	63.39 61.773	62.63 61.093	63.55 61.943	63.1 61.773	63.1 61.903	63.39 61.723	63.64 61.79	63.50 61.83	63.12 61.64	62.71 61.52	63.20 61.38	61.88 61.12	63.15 61.16	62.77 61.523	63.3 61.463
35 S1	63.89	57.8	64.59	01.703	59.655	62.75	01.203	62.56	01.773	01.093	62.74	01.773	62.46	01.723	01.79	62.75	01.04	62.09	01.30	01.12	62.51	01.323	62.28
35 S2	63.86	54.72	64.65	62.61	61.61	62.69	62.6	62.53	62.68	61.62	62.69	62.56	62.45	62.62	62.68	62.71	61.81	62.18	62.39	61.75	62.43	62.32	62.36
35 L	63.88	42.7	64.46	62.967		62.947	62.767	62.907	62.957	62.577	62.957	62.937	62.727	62.837	62.82	62.89	61.04	62.23	62.66	61.74	62.70	61.737	
36 S	62.12	59.07	63.16			61.12		60.33			61.23		60.74			60.97		60.81			61.13		61.04
36 U	62.12	49.92	62.37			61.256		61.146			61.396		60.976			61.29		61.03			61.336		61.166
36 L	62.12	40.76	62.35			61.417		61.057			61.307		61.117			61.36		59.92			60.967		60.667
37 S	61.8	56.46	62.84	 		61.164		59.854	ļ		61.254	ļ	60.684	<u> </u>		61.11		60.66	1	!	61.174		60.834
37 A	62.08	0	62.67			61.043		60.673			61 100		60.703			61.00		60.54	1		60.993		E0.663
38 S 38 U	62.43 62.43	56.33 48.25	63.34 63.43	60.104		59.754	58.954	59.954	59.984		61.193 60.254	60.124	60.703	59.834		60.17	58.73	59.79	60.02	58.58	60.993	59.914	59.663 59.774
38 L	62.43	42.31	63.39	00.104		59.675	30.334	59.935	39.904		60.115	00.124	60.215	39.034		60.12	30.73	59.76	00.02	30.30	60.055	39.914	59.685
39 S	61.65	58.3	62.53			33.073		33.333			00.110		00.213			00.12		33.70			00.000		33.003
39 A	60.78	0	61.36																				
40 S	60.69	54.6	61.48			59.249		57.999			59.249		59.099			59.27		59.29			59.219		59.139
40 U	60.85	42.57	61.15			60.445		60.345			60.285		60.175			60.41		60.38			60.475		60.255
41 S	58.53	57.01	59.56			57.86	57.75	57.68	57.74		57.91	57.69	57.62	57.87	57.64	57.87	57.46	57.48	57.81		57.79	57.84	57.94
41U	58.53	42.93	59.51			58.02	57.95	57.83	57.96		58.08	57.88	57.85	58.01	58.08	58.04	57.42	57.81	57.99		58.02	57.54	57.77
41L 42 S	58.53 60	39.48 58.02	59.49 61.1			58.18 59.69		58.06 59.5			58.22 59.8		58.09 59.38			58.17 59.71		56.30 58.98			58.13 59.69		58.11 59.33
42 U	60	58.02	61.06			60.08		58.61			60.1		59.38			60.06		59.25			59.69		59.53
42 L	60	42.15	61.02			60.49		60.19			60.45		60.12			60.35		59.59			60.26		59.54
43 S	71.27	69.14	72			70.88		70.77			70.2		70.65			70.85		70.83			70.93		70.81
43 U	71.27	63.2	71.53			70.77		70.7			70.82		70.6			70.71		70.59			70.77		70.66
44 S	65.79	64.19	66.68			65.19		64.98			65.26		65.01			65.18		64.16			65.18		65.04
44 U	65.79	59.7	66.14			64.91		64.64			64.92		64.81			64.88		64.4			64.81		64.53
45 U	66.75	61.17	67.88			66.19		65.89															66.18
45 L	66.75	48.14	67.88			66.24		64.95			66.27		65.96			66.21		65.24			66.21		65.78
46 U 46 L	58.06 58.06	54.25 47.55	58.79 58.73			57.8		57.58			57.86		57.64			57.76		57.44		1	57.83		57.58
46 L 47 S	51.16	49.43	58.73			01.0		57.58			37.00		57.04	1		31.10		57.44		1	37.03		37.38
47 U	51.16	44.4	51.81	1		†	†						†	†	†	†		1	1	1	†		†
47 L	51.16	35.77	51.84										1	1		1		1	1	1	1		
48 S	35.17	33.8	36.09			35.15		35.08			35.15		35.06			34.28		35.00			35.11		35.01
48 U	35.09	30.52	36			35.21		35.13			35.22		35.12			34.97		34.96			35.18		35.03
48 L	35.02	22.53	35.88			35.74		35.76			35.88		35.47			35.88		34.11			35.88		35.66
49 S	46.5	43.68	47.41																	 			↓
49 U 49 L	46.5 46.5	34.15 31.12	47.39 47.47	-				<u> </u>	<u> </u>			<u> </u>							1	 			├
50 S	56.02	54.35	56.99					55.54			55.81		55.39			55.15		55.46			55.89		55.76
50 U	56.02	49.93	56.96			56.11		55.95			56.27		55.95			56.04		55.71			56.96		33.70
50 L	56.02	42.01	56.9			56.08		55.58			56.21		55.8			56.01		55.63			56		55.67
51 D	64.36	40.16	64.96			62.08	62.05	62.11			62.2	62.11	61.91			62.02	59.76	61.32	1		61.82	61.66	61.66
51 S1	64.37	56.75	65.17			60.09	60.08	59.96			60.12	60.01	59.95			60.10	60.00	59.87			59.98	59.93	59.87
51 S2	64.36	52.78	64.96			62.25	62.22	62.22			62.32	62.28	62.04			62.25	62.00	61.67			62.05	61.88	61.91
52 S	77.28	69.66	78.08			76.71	76.65	76.8			76.95	76.8	76.83			76.93	76.78	76.72			76.93	76.68	76.82
52 D	77.4	61.85	78.29			77.11	77.09	76.81			76.99	76.85	75.64			76.90	76.28	76.82			77.04	76.8	76.95
53 D	101.99	92.75	102.71			99.14	99.41	97.33			100.15	98.46	97.54	1		100.17	99.59	99.73	1	1	100.03	99.83	
54 S 54 U				-												-				-			
34 U				l				l	l			l											

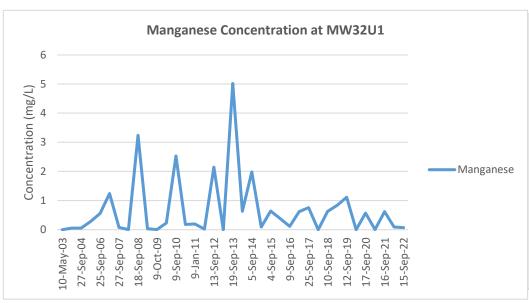
Appendix D - Water Elevations xisx

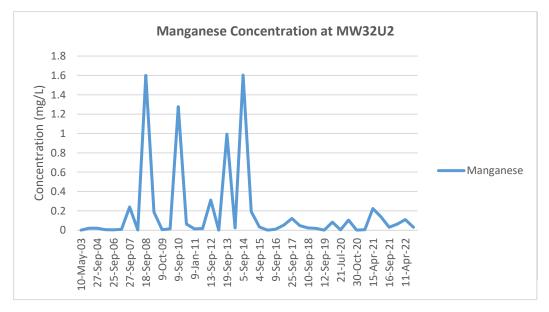
Appendix D: Water Elevations

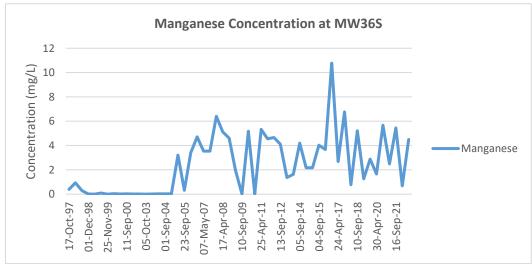
	ater Elevations			1																	
Well ID	Ground	Mid-elev. screen	PVC elevation		1	1						Ground	water Eleva	ation (m)				1			1
weilib	Elevation (m)	(m)	(1999)	Nov-17	Feb-18	Apr-18	Jul-18	Sep-18	Nov-18	Feb-19	Apr-19	Jul-19	Sep-19	Nov-19	Feb-20	Apr-20	Jul-20	Sep-20	Oct-20	Feb-21	Apr-21
17 D	84.72	75.87	85.37																		
17 S	84.64	81.49	85.53																		
18	71.91	64.76	72.77																		
22 S	65.04	51.39	65.77																		
22 D 31 S	64.99 78.52	49.34	65.82 79.08			78.19		77.31			78.03		78.22			78.23		70.40			78.22
31 U	78.52 78.52	75.58 70.14	79.08			78.19		77.2			77.8		78.22			78.23		78.16 78.07			78.22
31 L	78.52	60.23	79.07			78.23		77.21			77.78		78.23			78.18		78.18			78.15
32 U1	67.33	63.82	68.22			66.042		65.252			66.172		66.082			66.082	65.852	65.772	66.042	66.202	66.082
32 L	67.33	60.47	68.21																		
33 S	65.4	63.06	66.4			64.092		63.872			63.962		64.092			63.982		63.732			64.052
33 U	65.4	56.86	66.23	63.758	63.498	63.838	63.498	63.398	64.058	63.518	63.638	63.728	63.918	63.818	63.738	63.798	63.628	63.518	61.948	63.698	63.848
34 S	64.77	62	65.84	63.64	63.4	63.79	63.19	63.01	63.79	63.24	63.92	63.5	63.78	63.89	64.44	63.45	63.27	63.23	63.75	63.47	63.56
34 U	64.77	52.58	65.37	61.713	61.483	61.723	61.483	61.373	61.773	61.623	61.753	61.633	61.763	61.813	61.633	61.513	61.523	61.223	61.743	62.693	61.733
35 S1 35 S2	63.89 63.86	57.8 54.72	64.59 64.65	62.43	62.44	62.51 62.55	62.29	62.09 62.09	61.44	61.48	62.12 62.05	62.43	62.54 62.55	62.56	61.37	62.53 62.5	62.39	62.29 62.29	62.54	62.48	62.64 62.55
35 SZ	63.88	42.7	64.46	62.657	62.677	62.687	62.537	62.397	62.777	62.617	62.347	62.657	62.697	62.667	62.637	62.657	62.587	61.277	62.717	62.637	62.787
36 S	62.12	59.07	63.16	02.007	02.011	61.31	02.001	60.81	02.111	02.011	60.52	02.001	61.16	02.001	02.001	61.17	02.001	60.94	UL.111	02.001	61.2
36 U	62.12	49.92	62.37			61.496		60.906			61.266		61.266			61.266		61.006			61.276
36 L	62.12	40.76	62.35			61.357		60.987			61.297		60.987			61.387		61.007			61.387
37 S	61.8	56.46	62.84			61.204		60.474			61.154		60.984			61.144		60.614			60.994
37 A	62.08	0	62.67																		
38 S	62.43	56.33	63.34			61.093		60.433			60.703		61.003			60.923		60.503			60.493
38 U	62.43	48.25	63.43	60.144	59.964	60.114	59.964	59.584	60.054	60.054	60.174	59.974	59.984	60.004	59.934	60.014	59.834	59.774	59.804	60.034	60.024
38 L	62.43	42.31	63.39			60.035		59.545			60.075		60.045			59.805		59.705			60.005
39 S 39 A	61.65 60.78	58.3 0	62.53 61.36	ļ	ļ																
40 S	60.69	54.6	61.48			59.159		59.049			59.239		59.059			59.099		59.069			60.839
40 U	60.85	42.57	61.15			60.385		60.095			60.535		60.315			60.385		60.255			58.895
41 S	58.53	57.01	59.56	58.11	58.17	58.16	57.92	57.82			00.000	57.94	57.78		57.93	58.03	57.89	57.85	57.93		58.12
41U	58.53	42.93	59.51	57.93	58.01	58	57.72	57.71	58.01	58.04	59.51	57.78	57.78	57.92	57.86	57.88	57.75	57.69	57.9	58.01	57.99
41L	58.53	39.48	59.49			58.13		57.93	58.38	57.75	58.37		58.14			58.11		57.96			58.25
42 S	60	58.02	61.1			59.67		58.97			59.69		59.47			59.95		59.12			59.65
42 U	60	50.85	61.06			60.05		59.43			60.08		59.92			59.9		59.48			59.99
42 L	60	42.15	61.02			60.48		59.7			60.46		60.23			60.2		59.67			60.27
43 S	71.27	69.14	72	1	1	71.1		70.68			71.08		71.09			71.03		70.88			70.99
43 U 44 S	71.27 65.79	63.2 64.19	71.53 66.68			70.86 65.38		70.45 64.57			70.69 65.38		70.82 65.34			70.82 65.34		70.68 65.01			69.82 65.36
44 U	65.79	59.7	66.14			64.82		64.08			64.87		64.75			64.77		64.54			64.82
45 U	66.75	61.17	67.88	1	1	66.7		65.93			66.18		66.5			66.68		66.13			66.63
45 L	66.75	48.14	67.88			66.39		65.38			66.42		66.11			66.25		65.72			66.3
46 U	58.06	54.25	58.79																		
46 L	58.06	47.55	58.73			57.81		57.41			57.92		57.7			57.74		57.41			57.27
47 S	51.16	49.43	51.81																		
47 U	51.16	44.4	51.81	 	 			ļ													
47 L	51.16 35.17	35.77 33.8	51.84			35.01		34.9			35.05		34.9			34.99		34.93			35.01
48 S 48 U	35.17 35.09	33.8 30.52	36.09 36			35.01		34.9			35.05 35.19		34.9			34.99		34.93 34.96			35.01 35.11
48 U 48 L	35.09	22.53	35.88	 	 	35.88		35.88			35.19		35.09			35.06		35.1			35.11
49 S	46.5	43.68	47.41			33.00		33.00			33.00		33.14			33.00		55.1			55.45
49 U	46.5	34.15	47.39																		
49 L	46.5	31.12	47.47																		
50 S	56.02	54.35	56.99			55.95		55.6			56.14		55.89			55.92		55.72			55.93
50 U	56.02	49.93	56.96																		
50 L	56.02	42.01	56.9			55.73	01.05	55.55			56.15		55.82			55.92		55.7			55.91
51 D	64.36	40.16	64.96	!	!	61.85	61.65	61.44			61.78	61.76	61.78			61.77	61.74	61.65			61.84
51 S1	64.37	56.75	65.17			60.02	59.93	61.95			59.93	59.94	60.02			60.02	62.17	60.03			60.06
51 S2 52 S	64.36 77.28	52.78 69.66	64.96 78.08			62.05 77.02	61.86 76.76	59.63 76.62			62.04 77	62.03 76.94	61.04 77			61.98 76.94	59.82 76.78	61.81 76.86			62.07 76.92
52 S 52 D	77.4	61.85	78.08 78.29			77.19	76.76	76.62			77	76.94	77.12			76.94	76.78	76.86			76.92
52 D 53 D	101.99	92.75	102.71			100.01	97.72	96.26			98.04	97.98	98.18			98.59	96.95	98.5			98.79
54 S	101.00	02.70	102.71			100.01	31.12	50.20			30.04	01.00	55.15			55.55	50.55	55.5			55.75
54 U				1																	

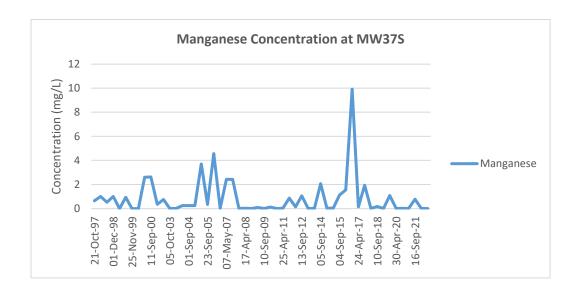
Appendix D - Water Elevations xisx

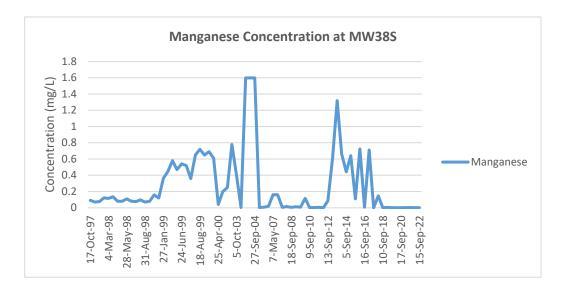

Appendix	D:	Water	Elevat	ion

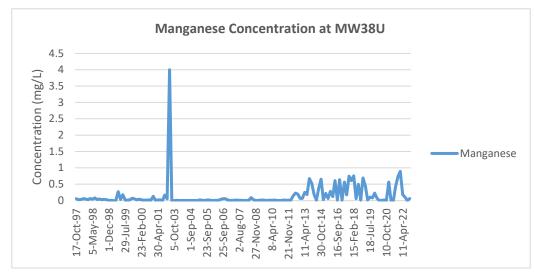

West D Develop (m)	Appendix D: W	later Elevations	I	DVO 1 11	1		G	roundwater	Elevation	(m)		
17	Well ID	Ground Elevation (m)	Mid-elev. screen (m)	PVC elevation (1999)	Jul-21	Sep-21	ı	1			Sep-22	Nov-22
17 S	17 D	84 72	75.87	85.37								
22 S 66.04 51.39 65.77 Percentage Percentage 31 S 76.52 75.58 79.08 77.92 78.35 77.91 31 L 78.52 75.58 79.08 77.92 78.35 77.91 31 L 78.52 60.23 78.07 78.08 78.35 77.91 31 L 78.52 60.23 78.07 78.08 78.34 77.97 31 L 78.52 60.23 78.07 78.08 78.34 77.97 31 L 78.52 60.23 78.07 78.08 78.34 77.97 31 S 66.4 50.06 66.4 63.92 60.02 66.02 65.02 33 U 66.4 50.06 66.4 63.89 61.58 66.23 64.08 38.16 63.88 64.69 63.88 64.59 65.37 61.713 61.613 61.63 61.63 61.73 61.61.61 63.36 62.57 62.71 62.6 62.51 62.37 </td <td></td>												
22 D	18	71.91	64.76	72.77								
31 S												
31 U 78.52 70.14 79.08 77.92 78.35 77.91 31 L 76.52 60.23 79.07 78.05 78.05 78.35 77.91 32 U1 67.33 65.82 68.22 66.302 66.002 66.002 66.052 65.97 32 L 67.33 65.82 68.22 66.302 66.002 66.002 66.052 65.97 32 L 67.33 65.82 68.2 68.20 66.00 66.									==			
32 L												
32 LI 67.33 63.82 68.22 66.302 66.002 66.002 66.002 65.072 32 52 57.28 32 57.34 68.21 68.21 68.30 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.4 63.80 60.30 60.4 64.77 62 65.84 63.87 62.40 63.61 63.61 63.36 61.53 61.5												
32 L 67.33 60.47 68.21 63.88 65.4 63.06 66.4 63.892 64.202 63.886 63.82 63.30 65.4 65.8 66.2 66.2 66.2 64.04 63.892 64.203 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.808 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.078 63.088 63.088 63.078 63.08					66 302		66 002					
33 S 65.4 63.06 66.4 62.892 63.892 63.892 63.892 63.893 63.64 34 S 64.77 62 65.84 63.87 62.40 63.68 61.558 63.806 63.978 63.886 63.64 34 S 64.77 62 65.84 63.87 62.40 63.61 63.61 63.56 17.53 61.63 61.63 61.53 61.53 61.33 61.33 61.43 63.89 78 62.40 64.77 62.65 65.87 61.713 61.613 61.593 61.693 61.753 61.533 61.533 61.533 61.					00.302	00.002	00.032		00.002		00.072	
33 U 65.4 56.86 66.23 64.048 63.87 63.808 63.978 63.888 63.978 63.868 34 S 64.77 52.58 65.37 61.713 61.613 61.593 61.693 61.733 61.633 61.63.83 35 S1 63.86 54.72 64.65 62.63 62.59 62.59 62.275 62.37 35 S2 63.86 54.72 64.65 62.63 62.53 62.43 62.67 62.71 62.6 62.51 62.41 35 S 63 S 62.12 550.07 63.16 62.76 67.71 62.6 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.71 62.6 62.71 62.6 62.71 6						63.892			64.222		63.882	
34 S 64.77 62 65.84 65.87 62.40 63.61 63.63 63.85 64.64 63.38 61.84 34 U 64.77 52.58 65.37 61.73 61.73 61.53 61.63 61.63 61.53 61.53 61.53 61.53 61.63 61.63 61.33 61.53 61.53 61.63					64.048		61.558	63.808		63.888		63.868
35 \$1	34 S	64.77	62	65.84	63.87	62.40		63.63	63.85	64.64	63.38	63.64
35 S2 63.86 54.72 64.65 62.63 62.53 62.53 62.67 62.71 62.6 62.51 62.64 35 L 63.88 42.7 64.46 62.757 62.897 62.697 62.717 62.797 62.797 36 S 62.12 59.07 63.16 61.04 60.5 62.817 62.897 62.697 62.717 62.797 36 S 62.12 59.07 63.16 61.04 60.5 61.336 61.1336 61.1386 61.291 49.92 62.37 61.236 61.336 61.336 61.1386 61.291 40.76 62.35 61.237 61.237 61.277 61.267 61.267 37 A 62.08 0 62.5 61.236 61.237 61.277 61.267 61.267 37 A 62.08 0 62.67 62.817 62.817 62.817 61.287 6					61.713		61.593	61.693		61.533		61.743
S5 C S3.88 42.7												
36 G.212 59.07 63.16 61.04 60.5 61 36 G.212 49.92 62.37 61.237 61.237 61.237 61.277 61.267 37 G.18 56.46 62.84 60.884 61.114 60.884 37 A 62.08 0 62.67 62.35 61.237 61.277 61.267 37 S 61.8 56.46 62.84 60.884 60.773 61.101 60.783 38 S 62.83 56.33 63.34 60.773 61.103 60.783 38 U 62.43 48.25 63.43 59.964 59.924 59.894 60.094 60.064 59.674 59.924 60.034 39 S 61.65 58.3 62.53 59.885 59.935 69.935 60.935 39 S 61.65 58.3 62.53 62.53 60.495 60.495 60.495 60.495 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.944 60.945 60.94												
36 U 62.12 49.92 62.37 61.236 61.336 61.186 36 L 62.12 40.76 62.35 61.237 61.237 61.227 37 S 61.8 56.46 62.84 60.884 61.124 60.884 37 A 62.08 0 62.67 61.27 61.267 38 S 62.43 55.33 63.34 50.0773 60.773 60.783 38 L 62.43 42.25 63.43 59.964 59.924 59.894 60.094 50.664 59.674 59.924 60.034 38 L 62.43 42.31 63.39 59.964 59.924 59.995 60.064 59.674 59.924 60.034 38 L 62.43 42.31 63.39 59.964 59.924 59.995 59.935 59.915 39 A 60.78 0 61.36 61.36 61.40 60.85 42.57 61.15 60.375 60.485 60.49 60.084 57.66 58.05 67.40 41 U 60.85 42.57 61.15 60.375 60.485 60.335 60.485 60.535 41.00 60.85 42.93 59.51 59.51 59.51 58.01 57.76 57.94 57.91 57.85 57.89 57.94 41 U 50.53 42.93 59.51 59.01 57.76 57.94 57.91 57.85 57.89 57.94 41.00 59.02 60.02 61.10 59.92 60.02 62.20 61.10 59.92 60.02 62.20 62					62.757		62.607	62.817		62.677		62.797
38												
37 S												
37 A 62 08 0 62 67 61 103 61 103 60 783 38 S 62 43 48 25 63 3 63 34 66 773 61 103 60 783 38 U 62 43 48 25 63 43 59 964 59 924 59 894 60 094 60 064 59 674 59 924 60 034 38 L 62 43 42 31 63 39 58 865 59 935 59 915 39 A 60 78 0 61 36 60 375 60 485 60 485 40 S 60 69 54 6 61 48 60 149 59 279 59 229 40 U 60 85 42 57 61 15 60 0375 60 485 60 335 41 U 58 53 42 93 59 51 58 01 57 76 57 94 57 91 57 85 57 89 41 U 58 53 39 48 59 49 58 15 58 26 58 23 42 S 60 58 02 61 1 59 51 58 26 59 65 42 U 60 50 85 61 06 59 92 59 99 60 02 42 L 60 42 15 61 02 59 53 60 26 60 29 43 S 71 27 69 14 72 71 05 77 14 70 81 77 06 44 U 65 79 59 79 59 79 66 14 64 73 64 9 64 79 45 U 65 79 59 79 59 79 66 14 64 73 64 9 64 79 45 U 65 79 59 79 59 79 59 79 66 14 45 U 65 79 59 79 59 79 59 79 59 79 47 U 65 79 65 14 64 73 64 9 64 79 45 U 65 79 59 79 59 79 59 79 59 79 47 U 65 79 59 79 59 79 59 79 59 79 48 U 65 79 59 79 59 79 59 79 59 79 47 U 65 79 59 79 66 14 64 73 64 9 64 79 45 U 66 75 61 17 67 88 66 53 66 53 66 72 66 47 47 U 51 16 44 4 51 81 47 47 46 99 47 22 66 79 48 U 35 09 30 52 36 35 13 35 14 35 12 48 U 35 09 30 52 36 35 13 35 14 35 12 48 U 35 09 30 52 36 35 13 35 14 35 12 49 U 46 5 31 12 47 47 46 99 47 28 47 22 50 U 56 02 42 21 56 9 56 96 55 87 50 U 56 02 42 21 56 9 56 96 55 87 51 U 64 36 40 16 64 96 61 94 61 74 61 91 61 79 61 85 51 U 56 02 42 11 56 9 56 96 55 87 56 97 56 97 52 S 77 28 69 66 78 08 76 94 76 8 77 70 76 99 76 99 76 99 53 D 10 199 92 75 10 271 99 72 97 82 98 78 98 26 98 03												
38 S 62 43 56 56 33 63 43 66 773 66 106 59 674 59 924 60 034 60 034 60 034 60 60 65 65 65 60 034 034						00.004			V1.127		55.564	
38 U 62.43 42.51 63.33 59.964 59.924 60.094 60.064 59.674 59.924 60.034 38 L 62.43 42.21 63.39 59.885 59.895 59.955 59.915 59.915 39 S 61.65 58.3 62.53 60.69 54.6 61.48 60.149 59.279 59.229 40 U 60.85 42.57 61.15 60.375 60.485 60.335 41 U 58.53 57.01 59.56 58.1 57.91 58.11 58.04 57.66 58.05 57.89 41 U 58.53 42.93 59.51 58.01 57.76 57.94 57.91 57.81 57.81 58.26 58.25 42.8 60 58.02 61.1 59.51 58.05 59.91 57.91 57.91 57.89 57.99 59.91 58.05 57.89 57.99 60.02 57.89 57.99 60.02 60.02 59.93 60.02 60.02 59.61						60.773			61.103		60.783	
39 S	38 U	62.43		63.43	59.964	59.924	59.894	60.094		59.674		60.034
39 A 60.78						59.885			59.935		59.915	
40 S 60.69 54.6 61.48 60.149 59.279 59.229 40 U 60.85 42.57 61.15 60.375 60.485 60.335 41 S 58.53 57.01 59.56 58.1 57.91 58.11 58.04 57.66 58.05 57.89 41 U 58.53 39.48 59.49 58.15 58.15 58.26 58.23 42 S 60 58.02 61.1 59.51 59.67 59.65 42 U 60 58.02 61.1 59.51 59.67 59.65 42 L 60 42.15 61.02 59.53 60.26 60.29 43 S 71.27 69.14 72 71.05 71.11 71.06 43 S 71.27 69.14 72 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 66.3 44 U 66.75 48.14 67.88 66.52												
40 U 60.85 42.57 61.15 60.375 60.485 60.335 41 S 58.53 57.01 59.56 58.1 57.91 58.11 58.04 57.86 58.05 57.89 41 U 58.53 42.93 59.51 58.01 57.76 57.94 57.91 57.85 57.89 57.89 41 U 58.53 39.48 59.49 58.15 58.26 58.23 42.8 60 58.02 61.1 59.51 59.67 59.65 59.65 42.2 U 60 58.26 58.23 59.99 60.02 42.1 60 42.15 61.06 59.92 59.99 60.02 42.1 60 42.15 61.02 59.53 60.26 60.29 60.29 43.8 71.27 69.14 72 71.05 71.1 71.05 71.1 71.05 71.1 71.05 43.1 71.27 63.2 71.53 70.74 70.81 70.81 70.76 44.9 44.9 44.9												
41 S 58.53 57.01 59.66 58.1 57.91 58.11 58.04 57.66 58.05 57.89 41 U 58.53 42.83 59.51 58.01 57.76 57.94 57.91 57.85 57.89 57.94 41 L 58.53 39.48 59.49 58.15 58.26 58.23 58.23 42 S 60 58.02 61.1 59.51 59.97 59.65 42 U 60 50.85 61.06 59.92 59.99 60.02 42 L 60 42.15 61.02 59.53 60.26 60.29 43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 59.7 66.14 64.7 65.3 44.9 64.79 45 U 66.75 61.17 67.88 66.55 66.25 66.22 66.47												
41U 58.53 42.93 59.51 58.01 57.94 57.94 57.85 57.89 57.94 41L 58.53 39.48 59.49 58.15 58.26 58.23 42 S 60 58.02 61.1 59.51 59.67 59.65 42 U 60 50.85 61.06 59.92 59.99 60.02 43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 L 66.75 61.17 67.88 66.25 66.72 66.02 46 U 58.06 54.25 58.79 9 58.3 57.84 47 S					50 1		50 11			57.66		57.90
41L 58.53 39.48 59.49 58.16 58.26 58.23 42 S 60 58.02 61.1 59.51 59.67 59.65 42 U 60 50.85 61.06 59.92 59.99 60.02 42 L 60 42.15 61.02 59.53 60.26 60.29 43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 61.17 67.88 66.03 66.25 66.25 46 L 58.06 47.55 58.73 57.70 56.83 57.84 47 U 51.16 49.43 51.81												
42 S 60 58.02 61.1 59.51 59.67 59.65 42 U 60 50.85 61.06 59.92 59.99 60.02 42 L 60 42.15 61.02 59.53 60.26 60.29 43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 58.73 57.70 56.83 57.84 47 U 51.16 49.43 51.81 51.81 56.83 35.14 35.12 48 U 35.0					00.01		01.04			07.00		07.01
42 L 60 42.15 61.02 59.53 60.26 60.29 43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 L 58.06 54.25 58.79 57.70 56.83 57.84 47 S 51.16 49.43 51.81 9 51.81 9 47 L 51.16 35.77 51.84 51.81 9 35.06 35.12 48 L 35.02 22.53 36.88 35.54 35.51 35.12 48 L 35.02 22.53 <td></td>												
43 S 71.27 69.14 72 71.05 71.1 71.05 43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 61.17 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 57.70 56.83 57.84 47 S 51.16 49.43 51.81 57.70 56.83 57.84 47 U 51.16 35.77 51.84 51.81 51	42 U	60	50.85	61.06		59.92			59.99		60.02	
43 U 71.27 63.2 71.53 70.74 70.81 70.76 44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 58.79 58.87 57.70 56.83 57.84 47 S 51.16 49.43 51.81 57.70 56.83 57.84 47 L 51.16 35.77 51.84 51.81 57.70 56.83 57.84 48 U 35.17 33.8 36.09 35.00 35.06 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61	42 L		42.15	61.02		59.53						
44 S 65.79 64.19 66.68 65.26 65.47 65.3 44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 58.73 57.70 56.83 57.84 47 S 51.16 49.43 51.81 57.70 56.83 57.84 47 U 51.16 49.43 51.81 57.70 56.83 57.84 48 S 35.17 33.8 36.09 35.00 35.06 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
44 U 65.79 59.7 66.14 64.73 64.9 64.79 45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 57.70 56.83 57.84 47 S 51.16 49.43 51.81 77.70 56.83 57.84 47 U 51.16 49.43 51.81 77.70 56.83 57.84 47 L 51.16 35.77 51.84 77.70 56.83 57.84 48 L 35.09 35.00 35.06 35 35 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 U 46.5 43.68 47.41 45.94 46.18 46.03 49 L 46.5 31.12 47												
45 U 66.75 61.17 67.88 66.55 66.72 66.47 45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 56.02 46 L 58.06 47.55 58.73 57.70 56.83 57.84 47 S 51.16 49.43 51.81 51.81 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.09 30.52 36 35.13 35.14 35.12 35.14 35.12 48 L 35.09 22.53 35.88 35.54 35.51 35.61 35.61 49.14 46.5 34.15 47.14 45.94 46.18 46.03 46.5 43.88 47.41 45.94 46.19 46.5 31.12 47.47 46.99 47.28 47.22 50.5 56.02 54.35 56.99 55.87 56 56 55.82 50 U 56.02 42.01 56.99 55.87 56 56 55.82 50 U 56.02 42.01 56.99 55.87 56.17 60.19 61.79 61.85 51.85												
45 L 66.75 48.14 67.88 66.03 66.25 66.02 46 U 58.06 54.25 58.79 58.73 57.70 56.83 57.84 47 S 51.16 49.43 51.81 57.70 56.83 57.84 47 U 51.16 49.43 51.81												
46 U 58.06 54.25 58.79 57.70 56.83 57.84 46 L 58.06 47.55 58.73 57.70 56.83 57.84 47 S 51.16 49.43 51.81 51.81 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.77 51.84 51.16 35.17 51.84 51.16 35.17 51.84 51.16 35.17 51.84 51.16 35.17 51.84 51.16 51.17 51.16 51.17 51.18 51.												
46 L 58.06 47.55 58.73 57.70 56.83 57.84 47 S 51.16 49.43 51.81 47 U 51.16 44.4 51.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.00</td> <td></td> <td></td> <td>00.20</td> <td></td> <td>00.02</td> <td></td>						00.00			00.20		00.02	
47 U 51.16 44.4 51.81 47 L 51.16 35.77 51.84 48 S 35.17 33.8 36.09 35.00 35.06 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.85 51 S 64.36 52.78 64.96 61.94 61.74 61.91 61.99	46 L		47.55	58.73		57.70			56.83		57.84	
47 L 51.16 35.77 51.84 35.00 35.06 35 48 S 35.17 33.8 36.09 35.00 35.06 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.99 62.13 <		51.16	49.43									
48 S 35.17 33.8 36.09 35.00 35.06 35 48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13												
48 U 35.09 30.52 36 35.13 35.14 35.12 48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 61.94 61.74 61.91 61.79 61.85 51 S2 64.36 52.78 64.96 62.1												
48 L 35.02 22.53 35.88 35.54 35.51 35.61 49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99												
49 S 46.5 43.68 47.41 45.94 46.18 46.03 49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.99 67.79 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 62.13												
49 U 46.5 34.15 47.39 46.19 46.25 46.37 49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 56.02 42.01 56.9 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03												
49 L 46.5 31.12 47.47 46.99 47.28 47.22 50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 50 L 56.02 42.01 56.9 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 54 S 102.71 99.72 97.82 98.78 98.26 98.03												
50 S 56.02 54.35 56.99 55.87 56 55.82 50 U 56.02 49.93 56.96 55.84 55.74 55.87 51 D 56.02 42.01 56.9 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.99 62.13 61.99 62.13 61.99 62.13 61.99 76.21 62.19 62.13 61.99 76.81 76.92 76.85 76.79 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75												
50 U 56.02 49.93 56.96 55.84 55.74 55.87 50 L 56.02 42.01 56.9 55.84 55.74 55.87 51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03			54.35									
51 D 64.36 40.16 64.96 61.94 61.74 61.91 61.79 61.85 51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S 8 8 8 98.26 98.03		56.02	49.93									
51 S1 64.37 56.75 65.17 60.19 60.13 60.1 59.57 60.02 51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S 8 8 8 8 98.78 98.26 98.03												
51 S2 64.36 52.78 64.96 62.1 61.97 62.13 61.98 61.99 52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S												
52 S 77.28 69.66 78.08 76.94 76.8 76.92 76.85 76.79 52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S 98.78 98.78 98.78 98.78 98.78												
52 D 77.4 61.85 78.29 77.11 76.97 77.07 76.99 76.9 53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S 98.26 98.03												
53 D 101.99 92.75 102.71 99.72 97.82 98.78 98.26 98.03 54 S												
54 S												
		101.00	32.13	102.71	33.12	31.02			55.76	55.20	55.05	
	54 U											

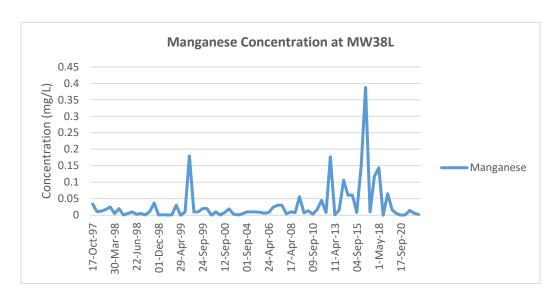


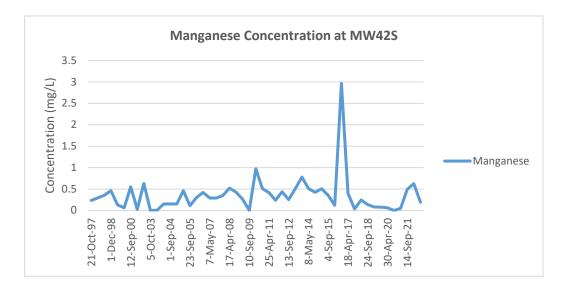


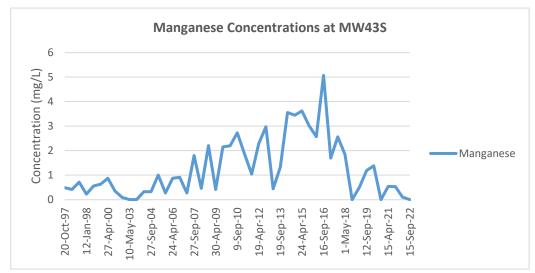


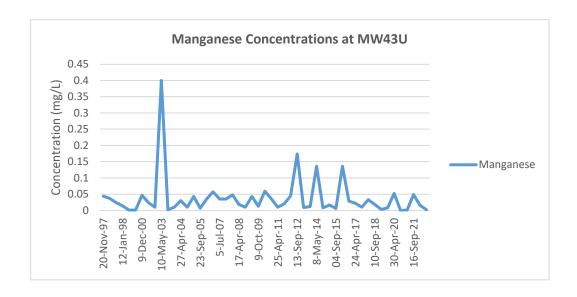




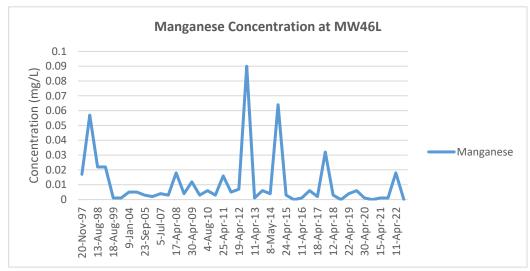


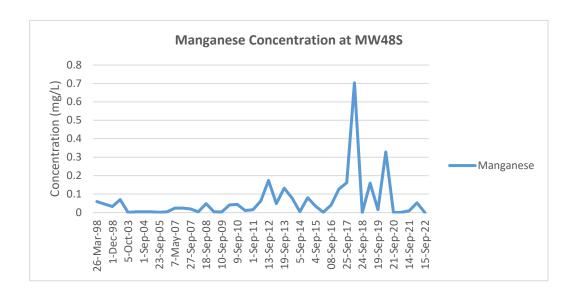


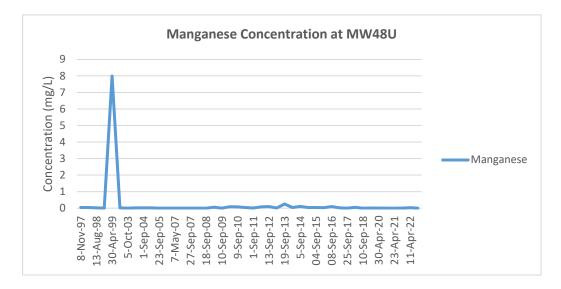


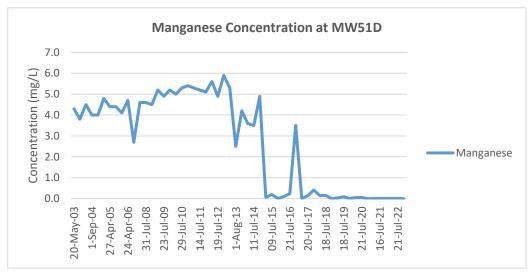


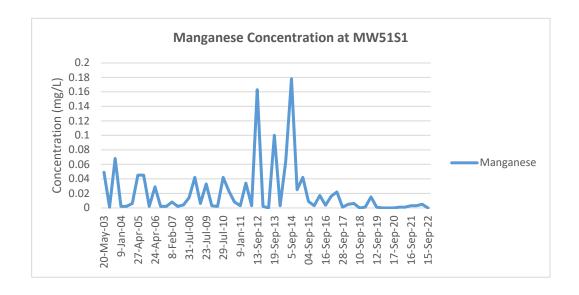


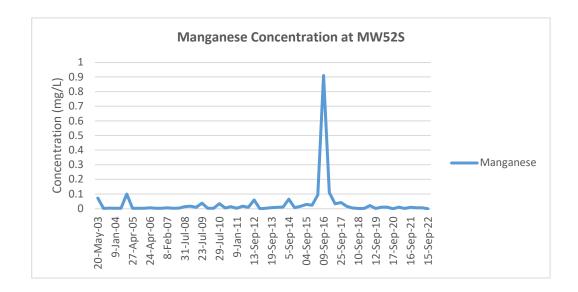


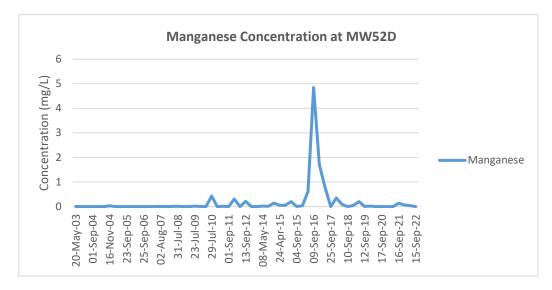


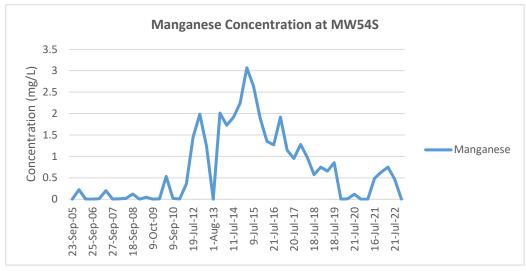


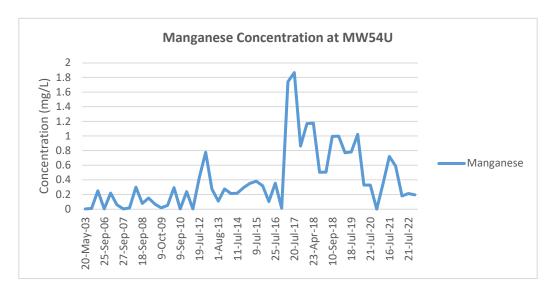


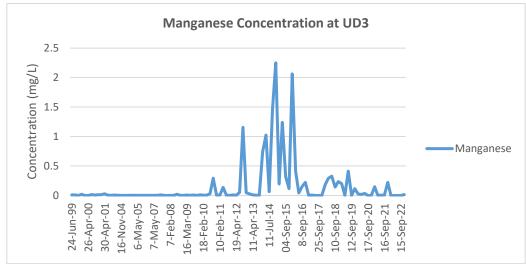


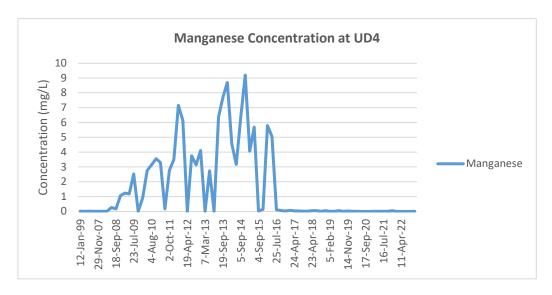


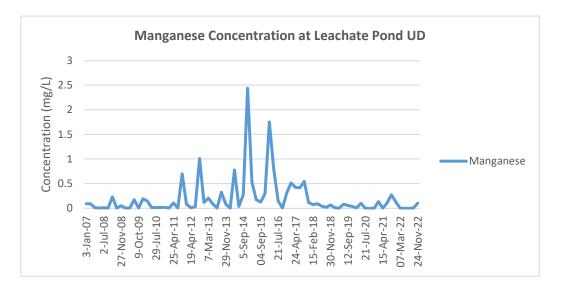


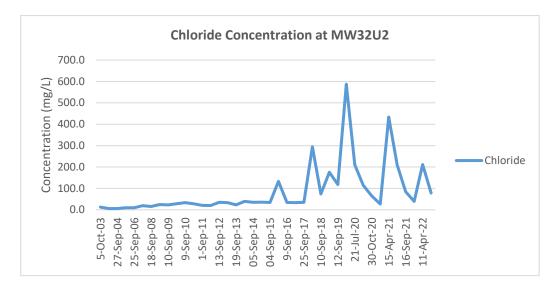


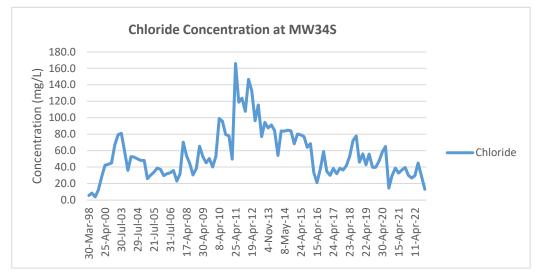


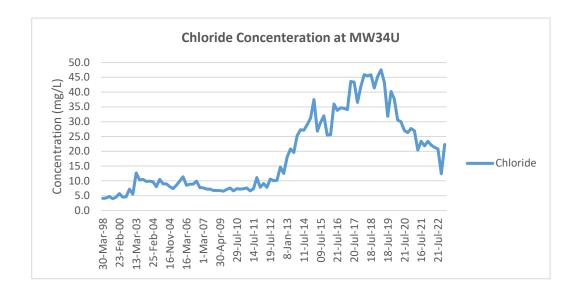


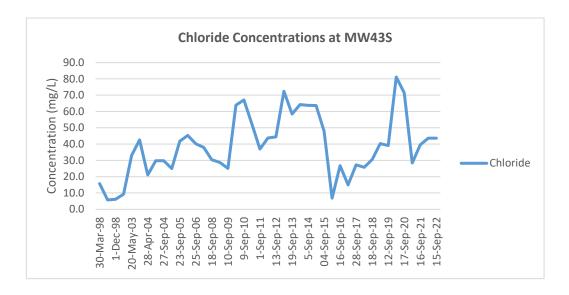


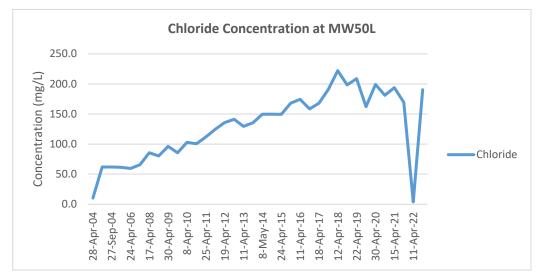


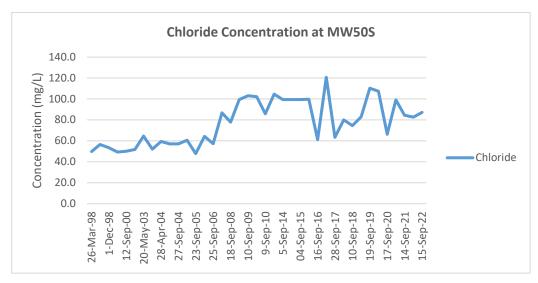


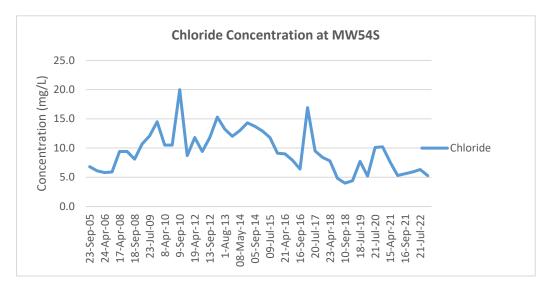


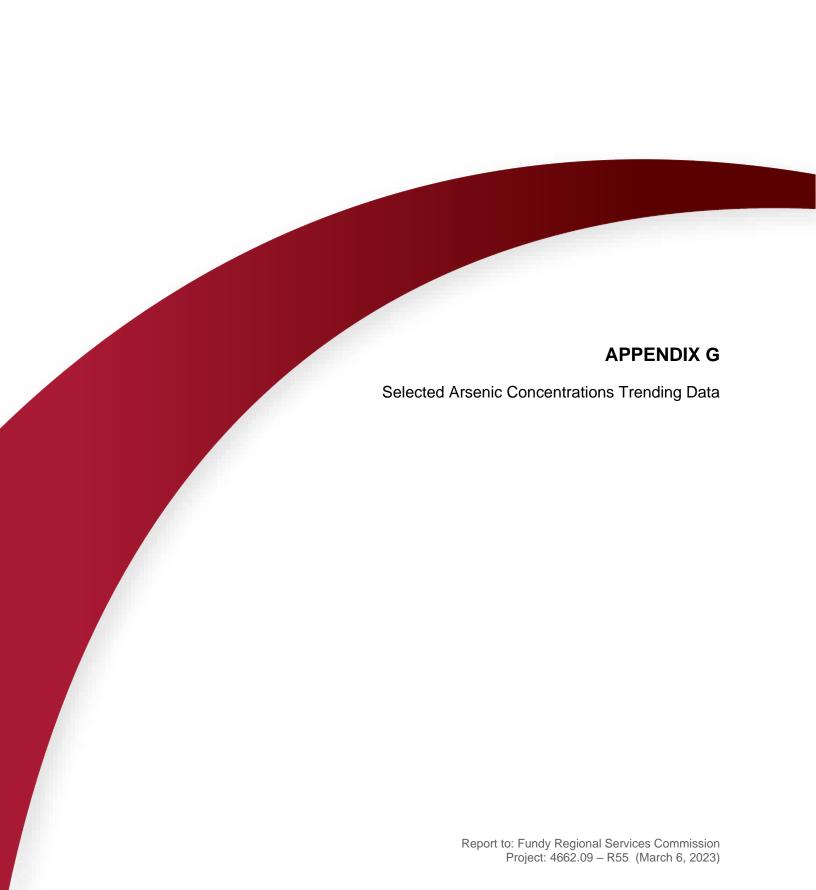


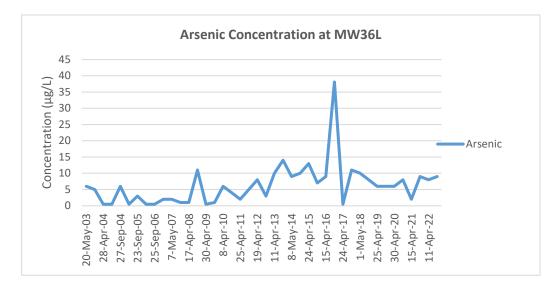


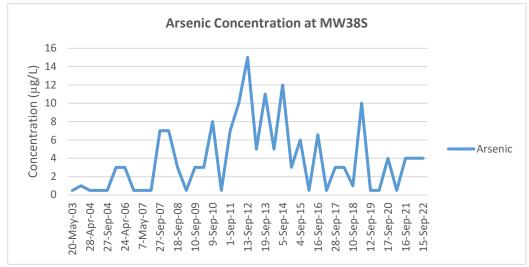


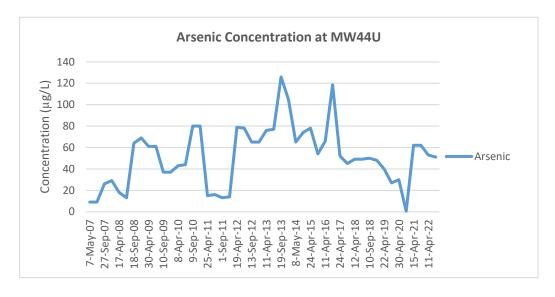


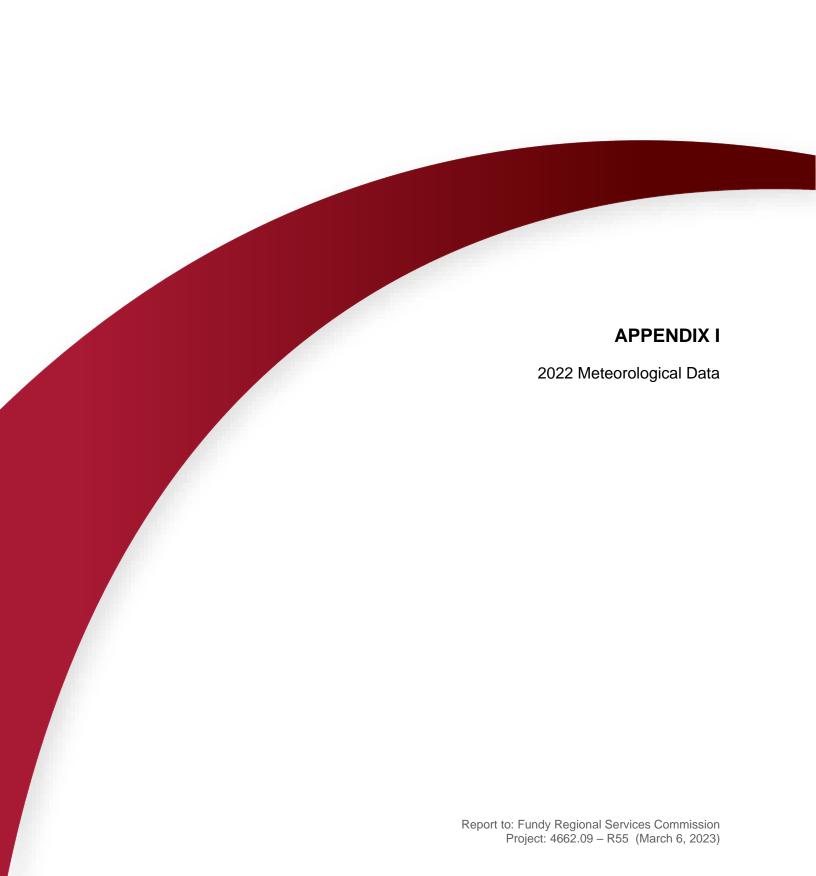


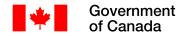












2022 Sedimentation Ponds Discharge Data

F.R.S.C.

Date	Total Suspended Solids at Mid-point of Discharge mg/L	Comments
07-Jan-22	2	
08-Feb-22	5	
17-Feb-22	7	
28-Feb-22	4	
01-Mar-22	7	
03-Mar-22	3	
07-Mar-22	1	
08-Mar-22	1	
23-Mar-22	2	
12-May-22	1	
17-Aug-22	1	
24-Aug-22	3	
26-Oct-22	4	_
15-Nov-22	5	
11-Dec-22	5	
Maximum	Allowed TSS Value	25 mg/l

Environment and natural resources <u>Home</u>

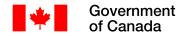
Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for January 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>


45°18'58.000" N <u>Latitude</u>: <u>Longitude</u>: 65°53'24.000" W

Elevation: 108.80 <u>m</u> **Climate ID**: 8104901 WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp <u>°C</u>	Mean Temp <u>°</u> C	<u>Heat Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm	Total Snow cm	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gus km/h
DAY	<u>~</u>	<u>~~</u>	<u>~</u>	<u>.id</u>	<u>.lıl</u>	<u>lıl.</u>	<u>liil</u>	<u>.111</u>	<u>.111</u>		<u>lılı</u>
<u>01</u>	5.8	0.2	3.0	15.0	0.0	1.9	0.0	1.9	6	<u>M</u>	<u>N</u>
<u>02</u>	5.3	-6.0	-0.4	18.4	0.0	2.1	I	2.1	I	34	42
<u>03</u>	-5.9	-14.0	-10.0	28.0	0.0	0.0	I	I	2	35	49
<u>04</u>	-4.6	-16.9	-10.8	28.8	0.0	0.0	0.0	0.0	2	36	4!
<u>05</u>	9.0	-5.6	1.7	16.3	0.0	24.3	0.0	24.3	2	19	70
<u>06</u>	8.6	-2.3	3.2	14.8	0.0	3.7	0.0	3.7		21	39
<u>07</u>	-0.8	-6.9	-3.9	21.9	0.0	0.0	35.6	35.6	5 <u>E</u>	2	15
<u>08</u>	-6.7	-19.9	-13.3	31.3	0.0	0.0	I	I	35	31	5
<u>09</u>	5.5	-17.2	-5.9	23.9	0.0	11.4	I	11.4	25 <u>E</u>	21	7
<u>10</u>	2.4	-16.0	-6.8	24.8	0.0	0.0	0.0	0.0	10	32	6
<u>11</u>	-16.0	-23.1	-19.6	37.6	0.0	0.0	0.0	0.0	9	33	4
<u>12</u>	0.2	-24.2	-12.0	30.0	0.0	4.0	13.4	13.4	6	21	6
<u>13</u>	0.8	-8.0	-3.6	21.6	0.0	0.0	0.0	0.0	21	13	3
<u>14</u>	1.1	-13.7	-6.3	24.3	0.0	2.2	4.1	5.1	18	36	8
<u>15</u>	-13.7	-19.3	-16.5	34.5	0.0	0.0	5.4	5.4	18	34	9
<u>16</u>	-9.8	-21.9	-15.9	33.9	0.0	0.0	0.0	0.0	18	32	6.
<u>17</u>	5.9	-21.0	-7.6	25.6	0.0	21.0	I	21.0	18	11	8-
<u>18</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	0.2	I	0.2	12	30	6
<u>19</u>	4.0	-18.2	-7.1	25.1	0.0	2.6	2.5	5.1	11	31	5
<u>20</u>	3.1	-15.5	-6.2	24.2	0.0	0.0	1.2	1.0	10	34	4
<u>21</u>	-13.6	-21.8	-17.7	35.7	0.0	0.0	0.0	0.0	11	35	4
<u>22</u>	-8.0	-24.1	-16.1	34.1	0.0	0.0	I	I	11 <u>E</u>	<u>M</u>	<u> 1</u>
<u>23</u>	-2.6	-16.8	-9.7	27.7	0.0	0.0	I	I	11	<u>M</u>	<u> </u>

DAY	<u>Max</u> <u>Temp</u> °C <u>⊬</u>	<u>Min</u> <u>Temp</u> °C ⊬	Mean Temp °C ✓	Heat Deg <u>Days</u> Lill	Cool Deg Days	<u>Total</u> <u>Rain</u> mm ப்ப	<u>Total</u> <u>Snow</u> cm ևև	<u>Total</u> <u>Precip</u> mm ြ <u>ါ</u> ။	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	-5.5	-17.1	-11.3	29.3	0.0	I	0.0	I	11	<u>M</u>	<u>M</u>
<u>25</u>	2.1	-17.5	-7.7	25.7	0.0	4.6	4.0	8.1	12	32	38
<u>26</u>	-8.7	-22.3	-15.5	33.5	0.0	0.0	0.0	0.0	20	34	39
<u>27</u>	-3.1	-29.8	-16.5	34.5	0.0	0.0	I	I	18	20	52
<u>28</u>	-2.1	-9.6	-5.9	23.9	0.0	0.0	7.4	4.6	20	18	44
<u>29</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	6.0	20.2	26.2	19	2	99
<u>30</u>	-5.2	-22.5	-13.9	31.9	0.0	0.0	6.0	6.0	38	33	64
<u>31</u>	-6.0	-25.4	-15.7	33.7	0.0	0.0	0.0	0.0	29	30	32
Sum				790.0 <u>^</u>	0.0 <u>^</u>	84.0	99.8	175.1			
Avg	-2.0 <u>^</u>	-16.4 <u>^</u>	-9.2 <u>^</u>								
Xtrm	9.0 <u>^</u>	-29.8^				24.3	35.6	35.6		2 <u>^</u>	154^

	Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives								

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for February 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W **Elevation**: 108.80 <u>m</u> **Climate ID**: 8104901 WMO ID: 71609

DAY	Max <u>Temp</u> °C ⊬	Min Temp °C	Mean Temp °C	<u>Heat Deg</u> <u>Days</u> ևև	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's deg	Spd of Max Gust km/h
<u>01</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	0.0	0.0	0.0	25	<u>M</u>	<u>M</u>
<u>02</u>	4.8	-21.0	-8.1	26.1	0.0	2.9	0.0	2.9	24	17	51
<u>03</u>	5.9	-2.3	1.8	16.2	0.0	<u>M</u>	<u>M</u>	16.2	18	18	54
<u>04</u>	-2.4	-8.3	-5.4	23.4	0.0	<u>M</u>	<u>M</u>	16.6	16	4	56
<u>05</u>	-7.9	-16.3	-12.1	30.1	0.0	4.0	4.2	4.0	30	30	53
<u>06</u>	-6.4	-20.0	-13.2	31.2	0.0	0.0	0.0	0.0	26	33	45
<u>07</u>	1.0	-6.3	-2.7	20.7	0.0	0.0	0.0	<u>M</u>	10	18	44
<u>08</u>	4.3	0.1	2.2	15.8	0.0	<u>M</u>	<u>M</u>	<u>M</u>	6	6	49
<u>09</u>	0.8	-7.0	-3.1	21.1	0.0	3.6	I	3.6	12	28	35
<u>10</u>	3.6	-5.1	-0.8	18.8	0.0	4.7	0.0	4.7	20	20	44
<u>11</u>	4.8	-0.4	2.2	15.8	0.0	0.0	0.0	0.0	16	20	34
<u>12</u>	6.5	0.9	3.7	14.3	0.0	0.0	0.0	0.0	13	21	50
<u>13</u>	0.9	-10.8	-5.0	23.0	0.0	0.0	0.8	0.8	11	34	45
<u>14</u>	-10.7	-16.3	-13.5	31.5	0.0	0.2	3.0	0.4	15	1	49
<u>15</u>	-10.4	-18.6	-14.5	32.5	0.0	0.0	0.0	0.0	20	32	45
<u>16</u>	4.1	-24.0	-10.0	28.0	0.0	0.0	I	I	20	19	81
<u>17</u>	7.3	3.9	5.6	12.4	0.0	3.1	0.0	3.1	12	20	77
<u>18</u>	9.6	-9.7	-0.1	18.1	0.0	33.2	0.0	33.2	6	21	95
<u>19</u>	-1.6	-13.7	-7.7	25.7	0.0	0.2	3.0	3.2	1	20	45
<u>20</u>	M	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	0.0	Ι	Ι	6	<u>M</u>	<u>M</u>
<u>21</u>	M	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	0.0	0.0	0.0	4	<u>M</u>	<u>M</u>
<u>22</u>	4.9	-5.0	-0.1	18.1	0.0	7.9	0.0	7.9		11	59
<u>23</u>	8.2	-8.8	-0.3	18.3	0.0	21.1	0.0	21.1		20	90

DAY	Max <u>Temp</u> °C ☑	Min <u>Temp</u> °C ⊬	Mean <u>Temp</u> °C ⊔~	<u>Heat Deg</u> <u>Days</u> Lili	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> <u>mm</u> ப்ப	<u>Total</u> <u>Snow</u> <u>cm</u> ៤៧	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	-6.1	-12.6	-9.4	27.4	0.0	0.0	0.0	0.0		31	51
<u>25</u>	-11.3	-17.3	-14.3	32.3	0.0	7.0	1.0	8.0	1 <u>E</u>	35	39
<u>26</u>	-7.5	-20.8	-14.2	32.2	0.0	0.0	0.0	0.0	10	32	35
<u>27</u>	-1.1	-12.5	-6.8	24.8	0.0	0.0	1.0	1.0	8	32	68
<u>28</u>	-9.8	-14.8	-12.3	30.3	0.0	0.0	I	I	9	32	59
Sum				588.1 <u>^</u>	0.0 <u>^</u>	87.9 <u>^</u>	13.0 <u>^</u>	126.7 <u>^</u>			
Avg	-0.3 <u>^</u>	-10.7 <u>^</u>	-5.5 <u>^</u>								
Xtrm	9.6 <u>^</u>	-24.0 <u>^</u>				33.2 <u>^</u>	4.2 <u>^</u>	33.2 <u>^</u>		21 <u>^</u>	95 <u>^</u>

	Legend
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate
, s	Archives

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

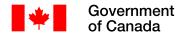
Historical Data

Daily Data Report for March 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W


Elevation: 108.80 <u>m</u> **Climate ID**: 8104901

WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp °C	Mean Temp °C	<u>Heat Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm	<u>Total</u> <u>Snow</u> <u>cm</u>	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gus km/h
DAY	<u>~</u>	<u>~</u>	<u>~</u>	<u>.111</u>	<u>lılıl</u>	<u>.lıl</u>	<u>liil</u>	<u> </u>	<u>liil</u>		<u> .i.i.</u>
<u>01</u>	-1.9	-21.6	-11.8	29.8	0.0	0.0	0.2	0.2	8	17	4
<u>02</u>	1.7	-10.0	-4.2	22.2	0.0	0.3	5.0	5.1	8 <u>E</u>	19	52
<u>03</u>	-3.5	-16.8	-10.2	28.2	0.0	<u>M</u>	<u>M</u>	1.4	8	32	5
<u>04</u>	-8.1	-19.5	-13.8	31.8	0.0	0.0	0.0	0.0	8	31	40
<u>05</u>	0.7	-13.7	-6.5	24.5	0.0	0.0	0.0	0.0	8	31	42
<u>06</u>	5.5	-7.9	-1.2	19.2	0.0	6.7	2.0	8.7	8	15	4!
<u>07</u>	6.4	2.1	4.3	13.7	0.0	11.5	0.0	11.5	7	16	3:
<u>08</u>	5.9	-6.6	-0.4	18.4	0.0	5.0	I	5.0	I	29	7.
<u>09</u>	-1.3	-8.4	-4.9	22.9	0.0	0.6	0.0	0.6	I	23	4
<u>10</u>	5.9	-2.5	1.7	16.3	0.0	0.0	0.0	0.0	1	23	4
<u>11</u>	6.9	-5.7	0.6	17.4	0.0	0.0	0.0	0.0		20	3:
<u>12</u>	10.2	-1.7	4.3	13.7	0.0	25.7	I	25.7		21	6
<u>13</u>	-1.7	-7.6	-4.7	22.7	0.0	<u>M</u>	<u>M</u>	I	I	32	8
<u>14</u>	3.0	-10.2	-3.6	21.6	0.0	0.0	0.0	0.0		21	4.
<u>15</u>	7.1	-2.5	2.3	15.7	0.0	I	0.0	I		34	3
<u>16</u>	4.7	-2.6	1.1	16.9	0.0	0.0	I	I	I	22	4
<u>17</u>	6.4	2.5	4.5	13.5	0.0	0.0	0.0	0.0		20	5
<u>18</u>	16.1	2.7	9.4	8.6	0.0	Ţ	0.0	I		32	4
<u>19</u>	3.0	0.0	1.5	16.5	0.0	2.8	I	2.8		10	6
<u>20</u>	11.1	1.3	6.2	11.8	0.0	3.2	0.0	3.2		10	5
<u>21</u>	5.7	-1.0	2.4	15.6	0.0	1.3	I	1.3	I	34	6
<u>22</u>	2.5	-2.8	-0.2	18.2	0.0	0.0	I	I		32	6
23	8.4	-4.9	1.8	16.2	0.0	0.0	0.0	0.0		35	4

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> <u></u> ✓	Min Temp °C ✓	<u>Mean</u> <u>Temp</u> <u>°C</u> ☑	Heat Deg <u>Days</u> للا	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	4.4	-6.4	-1.0	19.0	0.0	0.8	I	0.8		10	46
<u>25</u>	5.8	-2.7	1.6	16.4	0.0	5.7	0.0	5.7		10	6:
<u> 26</u>	9.9	-1.5	4.2	13.8	0.0	4.0	4.0	8.0	2 <u>E</u>	21	3
<u>27</u>	7.8	0.0	3.9	14.1	0.0	8.4	0.0	8.4	3	20	3
<u>28</u>	3.1	-5.2	-1.1	19.1	0.0	0.5	4.3	4.8	2 <u>E</u>	31	4
<u> 29</u>	1.3	-6.2	-2.5	20.5	0.0	0.0	0.5	0.5	3	31	6
<u>30</u>	6.2	-7.1	-0.5	18.5	0.0	0.0	0.0	0.0	I	31	5
<u>31</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	2.5	I	2.5	Ţ	20	4
Sum				556.8 <u>^</u>	0.0 <u>^</u>	79.0 <u>^</u>	16.0 <u>^</u>	96.2			
Avg	4.4 <u>^</u>	-5.6 <u>^</u>	-0.6 <u>^</u>								
Xtrm	16.1 <u>^</u>	-21.6 <u>^</u>				25.7 <u>^</u>	5.0 <u>^</u>	25.7		32	8

	Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives								

Environment and natural resources <u>Home</u>

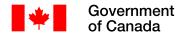
Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for April 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>


45°18'58.000" N <u>Latitude</u>: <u>Longitude</u>: 65°53'24.000" W

Elevation: 108.80 <u>m</u> **Climate ID**: 8104901 WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp °C	Mean Temp °C	<u>Heat Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm	<u>Total</u> <u>Snow</u> <u>cm</u>	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gus km/h
DAY	<u>~</u>	<u>~</u>	<u>~</u>	<u>lılıl</u>	<u>lılıl</u>	<u>.111</u>	<u>.lıl</u>	<u>lılı </u>	<u>.iil</u>	_	111
<u>01</u>	10.6	2.9	6.8	11.2	0.0	10.3	0.0	10.3		20	5
<u>02</u>	5.9	0.4	3.2	14.8	0.0	1.0	0.0	1.0		32	6
<u>03</u>	9.0	-2.2	3.4	14.6	0.0	0.0	0.0	0.0		31	4
<u>04</u>	4.7	-4.7	0.0	18.0	0.0	<u>M</u>	<u>M</u>	I	Ţ	35	7.
<u>05</u>	11.1	-5.0	3.1	14.9	0.0	0.0	0.0	0.0		29	4
<u>06</u>	12.1	-7.2	2.5	15.5	0.0	0.0	0.0	0.0		<u>M</u>	<u>N</u>
<u>07</u>	10.7	-6.2	2.3	15.7	0.0	0.0	0.0	0.0		8	4
<u>08</u>	7.0	0.6	3.8	14.2	0.0	4.7	0.0	4.7		12	7
<u>09</u>	14.9	4.1	9.5	8.5	0.0	I	0.0	I		<u>M</u>	1
<u>10</u>	9.3	0.9	5.1	12.9	0.0	2.4	0.0	2.4		35	4
<u>11</u>	14.7	-3.0	5.9	12.1	0.0	0.0	0.0	0.0		34	6
<u>12</u>	9.8	-3.8	3.0	15.0	0.0	0.2	0.0	0.2		33	5
<u>13</u>	14.5	-2.3	6.1	11.9	0.0	0.0	0.0	0.0		30	5
<u>14</u>	9.0	4.3	6.7	11.3	0.0	3.5	0.0	3.5		11	3
<u>15</u>	8.3	1.3	4.8	13.2	0.0	3.1	0.0	3.1		10	3
<u>16</u>	10.2	0.0	5.1	12.9	0.0	2.7	0.0	2.7		22	5
<u>17</u>	8.8	1.0	4.9	13.1	0.0	12.3	0.0	12.3		32	4
<u>18</u>	11.9	-2.6	4.7	13.3	0.0	0.0	0.0	0.0		32	4
<u>19</u>	9.3	1.8	5.6	12.4	0.0	73.5	0.0	73.5		10	8
<u>20</u>	10.5	2.6	6.6	11.4	0.0	<u>T</u>	0.0	I		23	5
<u>21</u>	9.9	-1.2	4.4	13.6	0.0	<u>T</u>	0.0	I		22	4
<u>22</u>	13.6	2.8	8.2	9.8	0.0	2.7	0.0	2.7		31	5
<u>23</u>	10.2	-1.6	4.3	13.7	0.0	0.0	0.0	0.0		30	5

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> <u></u> ✓	<u>Min</u> <u>Temp</u> °C ✓	<u>Mean</u> <u>Temp</u> °C ✓	Heat Deg <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm եւև	Total Snow cm եւև	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's deg	Spd of Max Gust km/h
<u>24</u>	12.4	-1.6	5.4	12.6	0.0	0.0	0.0	0.0		2	52
<u>25</u>	12.4	3.1	7.8	10.2	0.0	0.0	0.0	0.0		1	45
<u>26</u>	9.7	2.5	6.1	11.9	0.0	0.4	0.0	0.4		20	39
<u>27</u>	9.0	5.4	7.2	10.8	0.0	16.1	0.0	16.1		<u>M</u>	<u>M</u>
<u>28</u>	6.6	0.8	3.7	14.3	0.0	7.2	0.0	7.2		34	61
<u>29</u>	5.4	0.7	3.1	14.9	0.0	2.0	I	2.0		1	63
<u>30</u>	6.1	0.7	3.4	14.6	0.0	3.4	I	3.4		36	54
Sum				393.3	0.0	145.5 <u>^</u>	I	145.5			
Avg	9.9	-0.2	4.9								
Xtrm	14.9	-7.2				73.5 <u>^</u>	0.0 <u>^</u>	73.5		10 <u>^</u>	84 <u>^</u>

Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives							

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for May 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>: <u>Longitude</u>: 65°53'24.000" W

Elevation: 108.80 <u>m</u> **Climate ID**: 8104901 WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp <u>°C</u>	Mean Temp °C	<u>Heat Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm	<u>Total</u> <u>Snow</u> <u>cm</u>	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gu km/h
DAY	<u>~</u>	<u>~</u>	<u>~</u>	<u>l.ltl</u>	<u>lılıl</u>	<u>lılı</u>	<u>lılıl</u>	111	<u>.iil</u>		<u>lılıl</u>
<u>01</u>	9.0	0.8	4.9	13.1	0.0	I	0.0	I		35	4
<u>02</u>	14.1	0.1	7.1	10.9	0.0	0.0	0.0	0.0		21	3
<u>03</u>	16.6	-1.8	7.4	10.6	0.0	0.0	0.0	0.0		<u>M</u>	
<u>04</u>	8.1	1.2	4.7	13.3	0.0	4.2	0.0	4.2		<u>M</u>	
<u>05</u>	15.4	2.8	9.1	8.9	0.0	1.4	0.0	1.4		33	4
<u>06</u>	12.9	-1.1	5.9	12.1	0.0	0.0	0.0	0.0		32	4
<u>07</u>	11.2	-3.3	4.0	14.0	0.0	0.0	0.0	0.0		6	4
08	13.0	-4.2	4.4	13.6	0.0	0.0	0.0	0.0		14	:
<u>)9</u>	18.6	-2.3	8.2	9.8	0.0	0.0	0.0	0.0		8	
<u>10</u>	19.1	1.2	10.2	7.8	0.0	0.0	0.0	0.0		12	
<u>11</u>	22.6	3.0	12.8	5.2	0.0	0.0	0.0	0.0		10	
<u>12</u>	27.3	4.1	15.7	2.3	0.0	0.0	0.0	0.0		3	
<u>13</u>	18.9	5.1	12.0	6.0	0.0	I	0.0	I		20	
<u>14</u>	25.6	8.9	17.3	0.7	0.0	2.0	0.0	2.0		10	
<u>15</u>	15.4	9.2	12.3	5.7	0.0	4.4	0.0	4.4		10	
<u>16</u>	15.9	9.4	12.7	5.3	0.0	0.6	0.0	0.6		12	
<u>17</u>	15.7	5.1	10.4	7.6	0.0	18.5	0.0	18.5		21	
18	15.7	5.3	10.5	7.5	0.0	0.0	0.0	0.0		30	
<u>19</u>	17.5	-0.2	8.7	9.3	0.0	3.0	0.0	3.0		11	
<u>20</u>	16.8	6.5	11.7	6.3	0.0	0.0	0.0	0.0		19	
<u>21</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	1.7	0.0	1.7		19	
<u>22</u>	20.6	10.9	15.8	2.2	0.0	0.4	0.0	0.4		21	
<u>23</u>	18.5	6.9	12.7	5.3	0.0	0.9	0.0	0.9		35	

DAY	Max <u>Temp</u> °C ⊔∡	<u>Min</u> <u>Temp</u> °C ∠	Mean <u>Temp</u> °C ✓	Heat Deg Days	Cool Deg Days	Total Rain mm	Total Snow .cm	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's deg	<u>Spd of</u> Max Gust km/h
<u>24</u>	17.4	2.1	9.8	8.2	0.0	0.0	0.0	0.0		15	39
<u>25</u>	18.0	-0.7	8.7	9.3	0.0	0.0	0.0	0.0		20	35
<u>26</u>	15.2	5.7	10.5	7.5	0.0	2.4	0.0	2.4		20	44
<u>27</u>	12.9	9.8	11.4	6.6	0.0	1.7	0.0	1.7		21	48
<u>28</u>	13.9	11.1	12.5	5.5	0.0	3.1	0.0	3.1		21	51
<u>29</u>	22.7	5.7	14.2	3.8	0.0	0.0	0.0	0.0		21	43
<u>30</u>	24.8	9.0	16.9	1.1	0.0	1.8	0.0	1.8		22	37
<u>31</u>	18.5	0.1	9.3	8.7	0.0	2.8	0.0	2.8		2	45
Sum				228.2 <u>^</u>	0.0 <u>^</u>	48.9	0.0	48.9			
Avg	17.1 <u>^</u>	3.7 <u>^</u>	10.4 <u>^</u>								
Xtrm	27.3 <u>^</u>	-4.2 <u>^</u>				18.5	0.0	18.5		30 <u>^</u>	58 <u>^</u>
Summ	ary, avera	ge and extr	eme value	es are based o	on the data	above.					

Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives							

Environment and natural resources <u>Home</u>

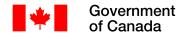
Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for June 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>


45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W **Elevation**: 108.80 <u>m</u> **Climate ID**: 8104901 WMO ID: 71609

DAY	<u>Max</u> <u>Temp</u> ∴C <u>~</u>	Min Temp °C ✓	Mean Temp °C ✓	Heat Deg <u>Days</u> l <u>ılıl</u>	Cool Deg Days	<u>Total</u> <u>Rain</u> mm ப்ப	Total Snow cm	<u>Total</u> <u>Precip</u> mm ៤៧	Snow on Grnd cm	Dir of Max Gust 10's deg	<u>Spd of</u> Max Gust km/h եսև
<u>01</u>	19.9	0.2	10.1	7.9	0.0	0.0	0.0	0.0		34	45
<u>02</u>	21.7	1.5	11.6	6.4	0.0	0.0	0.0	0.0		33	43
<u>03</u>	19.4	5.6	12.5	5.5	0.0	0.2	0.0	0.2		13	36
<u>04</u>	18.5	8.5	13.5	4.5	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>05</u>	16.5	6.2	11.4	6.6	0.0	3.9	0.0	3.9		<u>M</u>	<u>M</u>
<u>06</u>	17.1	4.4	10.8	7.2	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>07</u>	22.2	3.4	12.8	5.2	0.0	0.0	0.0	0.0		21	31
<u>08</u>	17.2	11.1	14.2	3.8	0.0	32.3	0.0	32.3		16	38
<u>09</u>	17.4	11.8	14.6	3.4	0.0	7.0	0.0	7.0		13	38
<u>10</u>	19.8	9.1	14.5	3.5	0.0	Ţ	0.0	I		20	45
<u>11</u>	23.2	8.1	15.7	2.3	0.0	0.0	0.0	0.0		21	53
<u>12</u>	25.2	8.4	16.8	1.2	0.0	0.0	0.0	0.0		21	40
<u>13</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>		13	33
<u>14</u>	16.7	12.3	14.5	3.5	0.0	2.6	0.0	2.6		36	51
<u>15</u>	24.3	6.6	15.5	2.5	0.0	0.0	0.0	0.0		4	46
<u>16</u>	21.8	4.9	13.4	4.6	0.0	0.0	0.0	0.0		20	48
<u>17</u>	13.9	11.5	12.7	5.3	0.0	8.6	0.0	8.6		20	62
<u>18</u>	20.7	7.1	13.9	4.1	0.0	Ţ	0.0	Ī		21	31
<u>19</u>	15.6	7.2	11.4	6.6	0.0	0.2	0.0	0.2		<u>M</u>	<u>M</u>
<u>20</u>	14.8	10.0	12.4	5.6	0.0	1.6	0.0	1.6		1	35
<u>21</u>	16.3	7.9	12.1	5.9	0.0	0.0	0.0	0.0		34	41
<u>22</u>	18.5	7.6	13.1	4.9	0.0	0.0	0.0	0.0		18	36
<u>23</u>	22.2	8.7	15.5	2.5	0.0	4.7	0.0	4.7		21	32

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> ⊬	Min Temp °C '~	Mean Temp °C ✓	Heat Deg <u>Days</u> lılı	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	<u>Spd of</u> <u>Max Gust</u> <u>km/h</u> եմվ
<u>24</u>	21.5	11.3	16.4	1.6	0.0	3.2	0.0	3.2		14	32
<u>25</u>	27.5	11.2	19.4	0.0	1.4	0.0	0.0	0.0		21	31
<u>26</u>	26.9	9.0	18.0	0.0	0.0	0.0	0.0	0.0		20	36
<u>27</u>	22.2	13.5	17.9	0.1	0.0	6.0	0.0	6.0		20	60
<u>28</u>	22.6	8.5	15.6	2.4	0.0	1.8	0.0	1.8		20	36
<u>29</u>	25.2	6.5	15.9	2.1	0.0	0.0	0.0	0.0		20	35
<u>30</u>	24.3	10.0	17.2	0.8	0.0	0.0	0.0	0.0		34	39
Sum				110.0 <u>^</u>	1.4 <u>^</u>	72.1 <u>^</u>	<u>M</u>	72.1 <u>^</u>			
Avg	20.5 <u>^</u>	8.0 <u>^</u>	14.3 <u>^</u>								
Xtrm	27.5 <u>^</u>	0.2^				32.3^	0.0 <u>^</u>	32.3 <u>^</u>		20 <u>^</u>	62 <u>^</u>

Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate 							

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

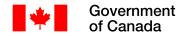
Historical Data

Daily Data Report for July 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W


Elevation: 108.80 <u>m</u> **Climate ID**: 8104901

WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp °C	Mean Temp °C	<u>Heat</u> <u>Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> <u>mm</u>	<u>Total</u> <u>Snow</u> <u>cm</u>	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gus km/h
DAY	<u>~</u>	<u>~</u>	<u>~</u>	111	<u>.111</u>	<u> 411</u>	111	<u>.111</u>	111	_	<u>.iii</u>
<u>01</u>	22.5	8.7	15.6	2.4	0.0	0.7	0.0	0.7		21	4
<u>02</u>	18.8	11.5	15.2	2.8	0.0	12.4	0.0	12.4		22	3
<u>03</u>	25.7	7.6	16.7	1.3	0.0	0.0	0.0	0.0		30	3
<u>04</u>	24.4	10.7	17.6	0.4	0.0	0.0	0.0	0.0		35	3
<u>05</u>	24.8	6.8	15.8	2.2	0.0	5.3	0.0	5.3		21	4
<u>06</u>	20.6	8.2	14.4	3.6	0.0	22.9	0.0	22.9		33	5
<u>07</u>	24.3	7.0	15.7	2.3	0.0	0.0	0.0	0.0		28	4
<u>08</u>	19.4	11.5	15.5	2.5	0.0	4.8	0.0	4.8		20	
<u>09</u>	22.1	6.1	14.1	3.9	0.0	0.0	0.0	0.0		34	3
<u>10</u>	23.6	4.2	13.9	4.1	0.0	0.0	0.0	0.0		32	3
<u>11</u>	21.8	8.6	15.2	2.8	0.0	0.0	0.0	0.0		21	2
<u>12</u>	21.4	13.4	17.4	0.6	0.0	I	0.0	I		21	7
<u>13</u>	26.1	11.6	18.9	0.0	0.9	0.0	0.0	0.0		22	:
<u>14</u>	25.4	12.8	19.1	0.0	1.1	6.1	0.0	6.1		10	3
<u>15</u>	25.9	9.3	17.6	0.4	0.0	0.0	0.0	0.0		36	3
<u>16</u>	25.7	9.0	17.4	0.6	0.0	0.0	0.0	0.0		23	4
<u>17</u>	22.8	13.1	18.0	0.0	0.0	0.0	0.0	0.0		23	4
<u>18</u>	22.6	13.4	18.0	0.0	0.0	10.4	0.0	10.4		21	3
<u>19</u>	26.4	16.6	21.5	0.0	3.5	35.5	0.0	35.5		29	(
<u>20</u>	28.1	11.8	20.0	0.0	2.0	0.0	0.0	0.0		28	4
<u>21</u>	28.7	11.9	20.3	0.0	2.3	0.3	0.0	0.3		20	4
<u>22</u>	26.5	14.9	20.7	0.0	2.7	0.7	0.0	0.7		20	3
<u>23</u>	29.1	13.1	21.1	0.0	3.1	0.0	0.0	0.0		21	3

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> ⊔~	<u>Min</u> <u>Temp</u> .°C .∕*	Mean Temp °C ⊬	Heat Deg Days	Cool Deg Days	Total Rain mm	<u>Total</u> <u>Snow</u> cm ևև	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	27.4	16.0	21.7	0.0	3.7	0.0	0.0	0.0		19	39
<u>25</u>	22.9	17.0	20.0	0.0	2.0	0.5	0.0	0.5		20	52
<u>26</u>	24.9	10.9	17.9	0.1	0.0	I	0.0	I		21	43
<u>27</u>	25.9	9.5	17.7	0.3	0.0	0.0	0.0	0.0		21	44
<u>28</u>	27.6	9.8	18.7	0.0	0.7	0.0	0.0	0.0		21	34
<u>29</u>	24.9	11.2	18.1	0.0	0.1	7.9	0.0	7.9		13	35
<u>30</u>	25.1	10.9	18.0	0.0	0.0	0.2	0.0	0.2		22	42
<u>31</u>	27.1	14.2	20.7	0.0	2.7	0.0	0.0	0.0		23	46
Sum				30.3	24.8	107.7	0.0	107.7			
Avg	24.6	11.0	17.8								
Xtrm	29.1	4.2				35.5	0.0	35.5		21	71
Summ	ary, avera	ge and exti	eme values	s are based	on the data	above.					

	Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value 								
 L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate 								
<u> </u>	Archives								

Environment and natural resources <u>Home</u>

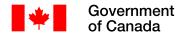
Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for August 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>


45°18'58.000" N <u>Latitude</u>: <u>Longitude</u>: 65°53'24.000" W **Elevation**: 108.80 <u>m</u>

Climate ID: 8104901 WMO ID: 71609

DAY	Max Temp °C ⊬	Min Temp °C ✓	Mean Temp °C	Heat Deg Days	Cool Deg Days	<u>Total</u> <u>Rain</u> mm ப்ப	Total Snow cm եւև	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	<u>Spd of</u> Max Gust km/h եսև
<u>01</u>	25.0	13.7	19.4	0.0	1.4	0.0	0.0	0.0		20	36
<u>02</u>	22.9	15.0	19.0	0.0	1.0	9.5	0.0	9.5		<u>M</u>	<u>M</u>
<u>03</u>	27.1	11.6	19.4	0.0	1.4	0.0	0.0	0.0		20	33
<u>04</u>	24.3	13.6	19.0	0.0	1.0	0.0	0.0	0.0		22	37
<u>05</u>	27.7	17.3	22.5	0.0	4.5	0.3	0.0	0.3		<u>M</u>	<u>M</u>
<u>06</u>	29.5	18.0	23.8	0.0	5.8	0.0	0.0	0.0		19	31
<u>07</u>	28.3	17.7	23.0	0.0	5.0	0.6	0.0	0.6		18	33
<u>08</u>	22.3	15.4	18.9	0.0	0.9	18.0	0.0	18.0		9	31
<u>09</u>	19.8	14.3	17.1	0.9	0.0	7.3	0.0	7.3		2	33
<u>10</u>	21.5	13.1	17.3	0.7	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>11</u>	23.4	14.9	19.2	0.0	1.2	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>12</u>	24.1	13.6	18.9	0.0	0.9	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>13</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	5.4	0.0	5.4		<u>M</u>	<u>M</u>
<u>14</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	32.9	0.0	32.9		35	32
<u>15</u>	24.9	10.3	17.6	0.4	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>16</u>	27.6	11.5	19.6	0.0	1.6	0.0	0.0	0.0		9	36
<u>17</u>	20.1	16.4	18.3	0.0	0.3	30.2	0.0	30.2		10	46
<u>18</u>	17.5	14.8	16.2	1.8	0.0	8.0	0.0	8.0		19	39
<u>19</u>	24.6	13.1	18.9	0.0	0.9	0.9	0.0	0.9		28	33
<u>20</u>	29.1	11.7	20.4	0.0	2.4	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>21</u>	28.0	11.1	19.6	0.0	1.6	0.0	0.0	0.0		21	31
<u>22</u>	25.7	11.3	18.5	0.0	0.5	0.7	0.0	0.7		21	35
<u>23</u>	20.1	15.2	17.7	0.3	0.0	18.4	0.0	18.4		9	39

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> ⊬	<u>Min</u> <u>Temp</u> .°C . <u>~</u> *	Mean Temp °C ⊬	Heat Deg Days	Cool Deg Days	Total Rain mm	<u>Total</u> <u>Snow</u> cm ևև	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's deg	<u>Spd of</u> <u>Max Gust</u> km/h ևև
<u>24</u>	24.4	16.1	20.3	0.0	2.3	0.4	0.0	0.4		<u>M</u>	<u>M</u>
<u>25</u>	27.0	14.0	20.5	0.0	2.5	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>26</u>	22.4	14.0	18.2	0.0	0.2	2.1	0.0	2.1		22	32
<u>27</u>	21.4	10.8	16.1	1.9	0.0	1.0	0.0	1.0		<u>M</u>	<u>M</u>
<u>28</u>	23.8	8.1	16.0	2.0	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>29</u>	21.9	8.1	15.0	3.0	0.0	0.3	0.0	0.3		20	35
<u>30</u>	19.5	16.9	18.2	0.0	0.2	0.3	0.0	0.3		20	42
<u>31</u>	20.5	15.4	18.0	0.0	0.0	32.9	0.0	32.9		17	61
Sum				11.0 <u>^</u>	35.6 <u>^</u>	169.2	0.0	169.2			
Avg	23.9 <u>^</u>	13.7 <u>^</u>	18.8 <u>^</u>								
Xtrm	29.5 <u>^</u>	8.1 <u>^</u>				32.9	0.0	32.9		17 <u>^</u>	61 <u>^</u>
Summ	ary, avera	ge and extr	eme values	s are based	on the data	above.					

Legend							
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate 						

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

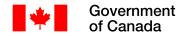
Historical Data

Daily Data Report for September 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W


Elevation: 108.80 <u>m</u> **Climate ID**: 8104901

WMO ID: 71609

	<u>Max</u> <u>Temp</u> <u>°C</u>	Min Temp <u>°C</u>	Mean Temp °C	<u>Heat Deg</u> <u>Days</u>	<u>Cool</u> <u>Deg</u> <u>Days</u>	<u>Total</u> <u>Rain</u> mm	<u>Total</u> <u>Snow</u> <u>cm</u>	<u>Total</u> <u>Precip</u> <u>mm</u>	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	<u>Spd of</u> <u>Max Gus</u> km/h
DAY	<u>~~</u>	<u>~</u>	<u>~</u>	<u>.ltl</u>	<u> 411</u>	<u> 41 </u>	111	<u>lill</u>	<u>.iii</u>	_	<u> </u>
<u>01</u>	22.9	11.1	17.0	1.0	0.0	0.2	0.0	0.2		31	3
<u>02</u>	20.9	5.9	13.4	4.6	0.0	0.0	0.0	0.0		33	3
<u>03</u>	22.3	5.4	13.9	4.1	0.0	0.0	0.0	0.0		<u>M</u>	1
<u>04</u>	21.4	6.1	13.8	4.2	0.0	0.0	0.0	0.0		1	3
<u>05</u>	21.6	12.7	17.2	0.8	0.0	1.1	0.0	1.1		<u>M</u>	1
<u>06</u>	20.7	7.0	13.9	4.1	0.0	1.3	0.0	1.3		<u>M</u>	1
<u>07</u>	22.2	5.9	14.1	3.9	0.0	0.0	0.0	0.0		<u>M</u>	1
<u>08</u>	23.9	5.4	14.7	3.3	0.0	0.0	0.0	0.0		<u>M</u>	<u>.</u>
<u>09</u>	25.3	9.0	17.2	0.8	0.0	0.0	0.0	0.0		<u>M</u>	<u>.</u>
<u>10</u>	24.4	10.7	17.6	0.4	0.0	0.0	0.0	0.0		<u>M</u>	<u> </u>
<u>11</u>	27.2	12.5	19.9	0.0	1.9	0.0	0.0	0.0		<u>M</u>	<u>.</u>
<u>12</u>	24.9	12.8	18.9	0.0	0.9	0.0	0.0	0.0		<u>M</u>	<u> </u>
<u>13</u>	21.1	13.3	17.2	0.8	0.0	2.1	0.0	2.1		<u>M</u>	
<u>14</u>	21.6	14.8	18.2	0.0	0.2	4.1	0.0	4.1		20	5
<u>15</u>	17.2	9.9	13.6	4.4	0.0	0.0	0.0	0.0		29	5
<u>16</u>	17.5	6.1	11.8	6.2	0.0	0.0	0.0	0.0		30	6
<u>17</u>	19.2	6.7	13.0	5.0	0.0	0.0	0.0	0.0		32	4
<u>18</u>	14.8	6.4	10.6	7.4	0.0	7.5	0.0	7.5		<u>M</u>	
<u>19</u>	18.0	5.6	11.8	6.2	0.0	1.1	0.0	1.1		10	3
<u>20</u>	13.4	10.4	11.9	6.1	0.0	21.7	0.0	21.7		10	6
<u>21</u>	18.2	12.7	15.5	2.5	0.0	I	0.0	I		<u>M</u>	
<u>22</u>	16.4	12.2	14.3	3.7	0.0	60.8	0.0	60.8		17	5
<u>23</u>	13.6	8.6	11.1	6.9	0.0	0.9	0.0	0.9		34	8

DAY	Max <u>Temp</u> °C ✓	Min Temp °C '~	<u>Mean</u> <u>Temp</u> °C ✓	Heat Deg Days	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	15.8	6.8	11.3	6.7	0.0	6.6	0.0	6.6		30	91
<u>25</u>	18.9	7.7	13.3	4.7	0.0	0.8	0.0	0.8		20	50
<u>26</u>	16.7	13.5	15.1	2.9	0.0	15.1	0.0	15.1		21	44
<u>27</u>	22.5	13.4	18.0	0.0	0.0	I	0.0	I		20	35
<u>28</u>	19.6	6.3	13.0	5.0	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>29</u>	18.2	3.4	10.8	7.2	0.0	0.0	0.0	0.0		32	35
<u>30</u>	17.0	0.4	8.7	9.3	0.0	0.0	0.0	0.0		<u>M</u>	N
Sum				112.2	3.0	123.3	0.0	123.3			
Avg	19.9	8.8	14.4								
Xtrm	27.2	0.4				60.8	0.0	60.8		30 <u>^</u>	91 <u>^</u>

	Legend
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate
• N = Temperature missing but known to be > 0	Archives

Environment and natural resources <u>Home</u>

Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for September 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

45°18'58.000" N <u>Latitude</u>:

<u>Longitude</u>: 65°53'24.000" W

Elevation: 108.80 <u>m</u> **Climate ID**: 8104901

WMO ID: 71609

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> <u>⊬</u>	<u>Min</u> <u>Temp</u> °C ✓	Mean Temp °C	<u>Heat Deg</u> <u>Days</u> ևևև	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's deg	<u>Spd of</u> <u>Max Gust</u> km/h ևև
<u>01</u>	22.9	11.1	17.0	1.0	0.0	0.2	0.0	0.2		31	39
<u>02</u>	20.9	5.9	13.4	4.6	0.0	0.0	0.0	0.0		33	32
<u>03</u>	22.3	5.4	13.9	4.1	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>04</u>	21.4	6.1	13.8	4.2	0.0	0.0	0.0	0.0		1	38
<u>05</u>	21.6	12.7	17.2	0.8	0.0	1.1	0.0	1.1		<u>M</u>	<u>M</u>
<u>06</u>	20.7	7.0	13.9	4.1	0.0	1.3	0.0	1.3		<u>M</u>	<u>M</u>
<u>07</u>	22.2	5.9	14.1	3.9	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>08</u>	23.9	5.4	14.7	3.3	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>09</u>	25.3	9.0	17.2	0.8	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>10</u>	24.4	10.7	17.6	0.4	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>11</u>	27.2	12.5	19.9	0.0	1.9	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>12</u>	24.9	12.8	18.9	0.0	0.9	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>13</u>	21.1	13.3	17.2	0.8	0.0	2.1	0.0	2.1		<u>M</u>	<u>M</u>
<u>14</u>	21.6	14.8	18.2	0.0	0.2	4.1	0.0	4.1		20	52
<u>15</u>	17.2	9.9	13.6	4.4	0.0	0.0	0.0	0.0		29	56
<u>16</u>	17.5	6.1	11.8	6.2	0.0	0.0	0.0	0.0		30	60
<u>17</u>	19.2	6.7	13.0	5.0	0.0	0.0	0.0	0.0		32	43
<u>18</u>	14.8	6.4	10.6	7.4	0.0	7.5	0.0	7.5		<u>M</u>	<u>M</u>
<u>19</u>	18.0	5.6	11.8	6.2	0.0	1.1	0.0	1.1		10	32
<u>20</u>	13.4	10.4	11.9	6.1	0.0	21.7	0.0	21.7		10	65
<u>21</u>	18.2	12.7	15.5	2.5	0.0	<u>I</u>	0.0	I		<u>M</u>	<u>M</u>
<u>22</u>	16.4	12.2	14.3	3.7	0.0	60.8	0.0	60.8		17	59
<u>23</u>	13.6	8.6	11.1	6.9	0.0	0.9	0.0	0.9		34	86

DAY	Max <u>Temp</u> °C ✓	<u>Min</u> <u>Temp</u> °C ✓	Mean <u>Temp</u> °C ✓	Heat Deg Days	Cool Deg Days	<u>Total</u> <u>Rain</u> mm եսև	<u>Total</u> <u>Snow</u> <u>cm</u> լվվ	<u>Total</u> <u>Precip</u> mm ևև	Snow on Grnd cm	Dir of Max Gust 10's deg	Spd of Max Gust km/h
<u>24</u>	15.8	6.8	11.3	6.7	0.0	6.6	0.0	6.6		30	91
<u>25</u>	18.9	7.7	13.3	4.7	0.0	0.8	0.0	0.8		20	50
<u>26</u>	16.7	13.5	15.1	2.9	0.0	15.1	0.0	15.1		21	44
<u>27</u>	22.5	13.4	18.0	0.0	0.0	I	0.0	I		20	35
<u>28</u>	19.6	6.3	13.0	5.0	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
<u>29</u>	18.2	3.4	10.8	7.2	0.0	0.0	0.0	0.0		32	35
<u>30</u>	17.0	0.4	8.7	9.3	0.0	0.0	0.0	0.0		<u>M</u>	<u>M</u>
Sum				112.2	3.0	123.3	0.0	123.3			
Avg	19.9	8.8	14.4								
Xtrm	27.2	0.4				60.8	0.0	60.8		30 <u>^</u>	91 <u>^</u>

Legend								
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives							

Environment and natural resources <u>Home</u>

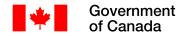
Weather, Climate and Hazard

Past weather and climate

Historical Data

Daily Data Report for November 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>


45°18'58.000" N <u>Latitude</u>: <u>Longitude</u>: 65°53'24.000" W **Elevation**: 108.80 <u>m</u>

Climate ID: 8104901 WMO ID: 71609

DAY	Max Temp °C ⊬	Min Temp °C	Mean Temp °C ✓	<u>Heat Deg</u> <u>Days</u> ևև	Cool Deg Days	Total Rain mm	Total Snow cm լվվ	<u>Total</u> <u>Precip</u> <u>mm</u> ៤៧	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	<u>Spd of</u> <u>Max Gust</u> km/h ևև
<u>01</u>	16.5	9.9	13.2	4.8	0.0	0.2	0.0	0.2		<u>M</u>	<u>M</u>
<u>02</u>	14.8	2.1	8.5	9.5	0.0	0.0	0.0	0.0		32	54
<u>03</u>	12.0	-2.0	5.0	13.0	0.0	0.0	0.0	0.0		22	45
<u>04</u>	17.1	8.3	12.7	5.3	0.0	0.0	0.0	0.0		21	32
<u>05</u>	16.4	12.1	14.3	3.7	0.0	0.0	0.0	0.0		21	40
<u>06</u>	17.7	13.3	15.5	2.5	0.0	0.0	0.0	0.0		23	62
<u>07</u>	16.7	7.5	12.1	5.9	0.0	I	0.0	I		33	57
<u>08</u>	7.6	1.1	4.4	13.6	0.0	0.0	0.0	0.0		31	75
<u>09</u>	7.3	-1.6	2.9	15.1	0.0	0.0	0.0	0.0		33	43
<u>10</u>	13.7	5.3	9.5	8.5	0.0	I	0.0	I		22	56
<u>11</u>	16.3	3.6	10.0	8.0	0.0	1.5	0.0	1.5		20	34
<u>12</u>	16.9	2.4	9.7	8.3	0.0	58.7	0.0	58.7		19	77
<u>13</u>	8.3	1.3	4.8	13.2	0.0	19.0	0.0	19.0		10	58
<u>14</u>	7.6	-1.5	3.1	14.9	0.0	1.8	0.0	1.8		28	59
<u>15</u>	3.2	-2.7	0.3	17.7	0.0	0.0	0.0	0.0		33	34
<u>16</u>	11.8	-2.4	4.7	13.3	0.0	13.0	1.5	14.5	I	9	62
<u>17</u>	2.9	-2.6	0.2	17.8	0.0	0.0	Ι	I		29	42
<u>18</u>	1.0	-8.3	-3.7	21.7	0.0	0.0	0.0	0.0		26	39
<u>19</u>	2.8	-8.8	-3.0	21.0	0.0	0.0	1.7	1.7	1 <u>E</u>	<u>M</u>	<u>M</u>
<u>20</u>	3.2	-5.4	-1.1	19.1	0.0	2.5	2.0	4.5	I	28	59
<u>21</u>	1.8	-8.5	-3.4	21.4	0.0	0.6	2.0	2.6	2 <u>E</u>	28	51
<u>22</u>	2.4	-5.6	-1.6	19.6	0.0	0.0	0.0	0.0		33	47
<u>23</u>	3.0	-7.3	-2.2	20.2	0.0	0.0	0.0	0.0		33	51

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> <u></u> ✓	Min Temp °C	Mean Temp °C	<u>Heat Deg</u> <u>Days</u> ևև	Cool Deg Days	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	<u>Spd of</u> <u>Max Gust</u> <u>km/h</u> ևևև
<u>24</u>	-0.8	-9.4	-5.1	23.1	0.0	0.0	0.0	0.0		32	38
<u>25</u>	8.1	-9.1	-0.5	18.5	0.0	9.7	0.0	9.7		17	46
<u>26</u>	4.2	-0.5	1.9	16.1	0.0	0.0	0.0	0.0	I	34	80
<u>27</u>	10.1	-5.5	2.3	15.7	0.0	4.9	0.0	4.9		21	39
<u>28</u>	7.5	-1.2	3.2	14.8	0.0	16.4	Ţ	16.4		34	53
<u>29</u>	1.0	-8.7	-3.9	21.9	0.0	0.0	0.0	0.0		33	42
<u>30</u>	10.9	-9.1	0.9	17.1	0.0	9.1	0.0	9.1		15	68
Sum				425.3	0.0	137.4	7.2	144.6			
Avg	8.7	-1.1	3.8								
Xtrm	17.7	-9.4				58.7	2.0	58.7		34^	80 <u>^</u>

Legend							
 A = Accumulated C = Precipitation occurred, amount uncertain 	 S = More than one occurrence T = Trace 						
E = Estimated	 Y = Temperature missing but known to be < 0 						
• F = Accumulated and estimated	• [empty] = Indicates an unobserved value						
 L = Precipitation may or may not have occurred 	 ^ = The value displayed is based on incomplete data 						
M = Missing	 † = Data that is not subject to review by the National Climate 						
 N = Temperature missing but known to be > 0 							
	Archives						

TC ID:

<u>Max</u>

2.1

1.0

0.4

1.2

1.4

-1.6

11.7

<u>17</u>

<u>18</u>

<u>19</u>

<u>20</u>

<u>21</u>

<u>22</u>

<u>23</u>

0.4

0.0

-0.4

-0.3

-4.6

-10.8

-3.3

1.3

0.5

0.0

0.5

-1.6

-6.2

4.2

16.7

17.5

18.0

17.5

19.6

24.2

13.8

<u>Min</u>

<u>Mean</u>

Gouvernement du Canada

<u>Home</u> > <u>Environment and natural resources</u>

Weather, Climate and Hazard

Past weather and climate

Historical Data

Dir of

<u>Max</u>

Spd of

Daily Data Report for December 2022

SAINT JOHN A NEW BRUNSWICK Current <u>Station Operator: NAVCAN</u>

YSJ

<u>Total</u>

<u>Total</u>

<u>Total</u>

Snow on

Cool

<u>Deg</u>

 Latitude:
 45.º18.º58.000.º N

 Longitude:
 65.º53.º24.000.º W

 Elevation:
 108.80 m

 Climate ID:
 8104901

 WMO ID:
 71609

Heat Deg

<u>Temp</u> <u>Temp</u> <u>Temp</u> <u>Days</u> <u>Days</u> <u>Rain</u> **Snow** <u>Precip</u> **Grnd** <u>Gust</u> **Max Gust** °C °C °C 10's deg km/h mm cm mm cm DAY <u>₩</u> <u>₩</u> <u>~</u> hil ılıl ılıl ılıl ılıl ılıl hil 65 12.0 -2.3 4.9 13.1 0.0 19.6 0.0 19.6 17 <u>01</u> 0.6 -7.7 -3.6 21.6 0.0 0.0 0.0 0.0 29 35 <u>02</u> 11.2 -5.0 3.1 14.9 0.0 28.6 0.0 28.6 18 74 <u>03</u> 9.2 -7.3 1.0 17.0 0.0 0.3 0.0 0.3 28 48 <u>04</u> 20.5 0.0 4.2 -9.1 -2.5 0.0 0.0 0.0 20 40 <u>05</u> 6.5 -1.6 2.5 15.5 0.0 0.0 0.0 0.0 M M <u>06</u> 9.8 4.3 7.1 10.9 0.0 29.4 0.0 29.4 14 47 <u>07</u> <u>08</u> 10.4 0.4 5.4 12.6 0.0 28.0 0.0 28.0 35 57 3.1 -3.0 0.1 17.9 0.0 0.0 0.0 0.0 36 59 <u>09</u> 2 57 <u>10</u> Μ Μ M Μ Μ Μ Μ Μ 3 -4.1 -8.1 -6.1 24.1 0.0 0.0 Ι Ι Ι 31 <u>11</u> -5.0 -10.9 -8.0 26.0 0.0 0.0 0.0 0.0 35 40 <u>12</u> -2.0 -9.9 -6.0 24.0 0.0 0.0 0.0 0.0 32 52 <u>13</u> 3 1 1.1 -8.9 -3.9 21.9 0.0 0.0 7.0 6.9 50 <u>14</u> 2.1 -0.3 0.9 17.1 0.0 0.0 T 5 1 59 Ι <u>15</u> 5 7 -0.4 0.7 17.3 0.0 0.0 0.4 0.4 47 <u>16</u> 1.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

18.3

8.3

3.1

0.0

0.0

0.0

26.9

T

3.8

1.0

0.3

0.0

0.0

T

18.3

11.8

3.9

0.3

0.0

26.9

Ι

2

4

6

6

6

6

6

7

M

34

34

M

M

11

57

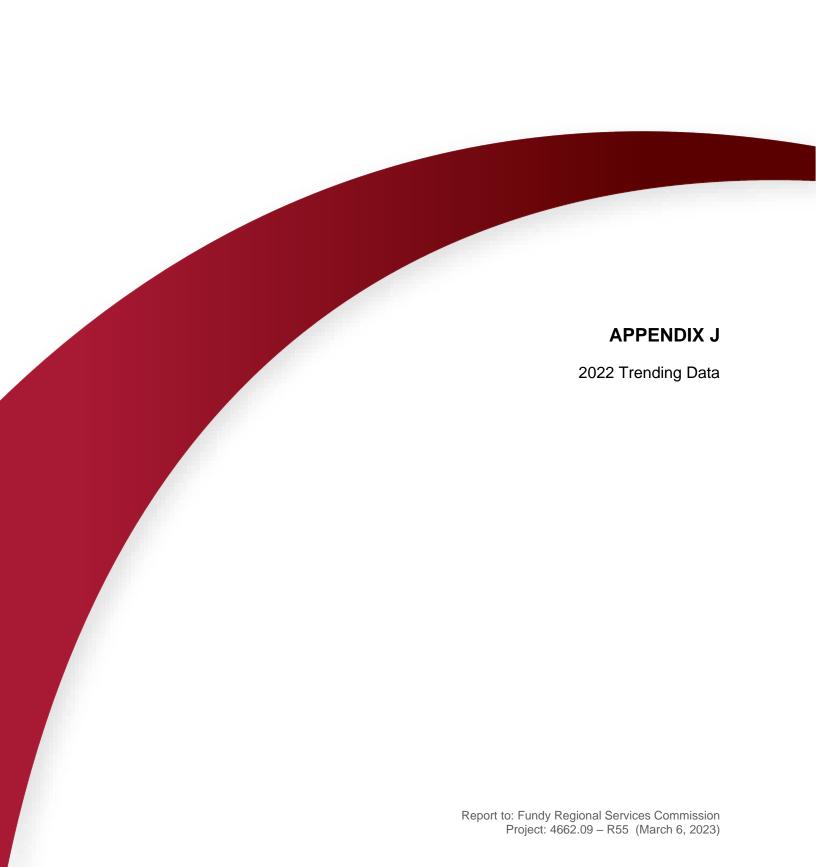
M

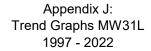
54

63

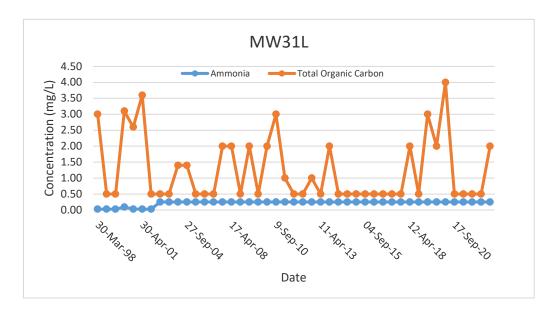
M

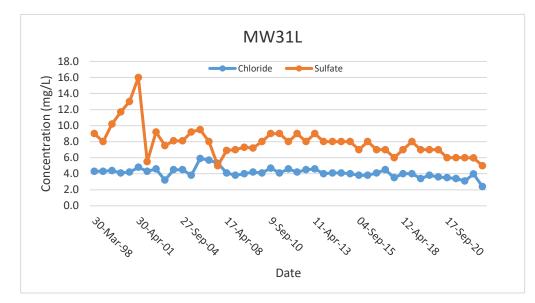
M

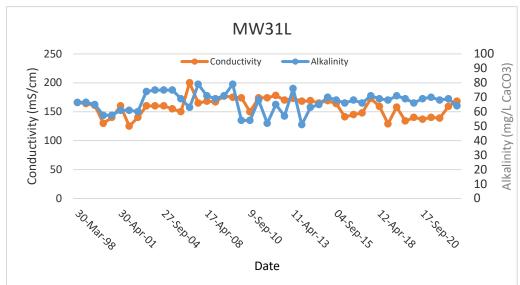

80

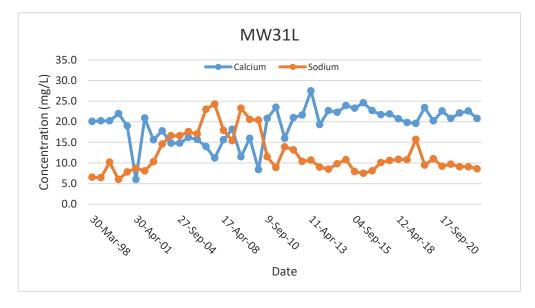

DAY	<u>Max</u> <u>Temp</u> ° <u>C</u> ✓	<u>Min</u> <u>Temp</u> <u>°C</u> ☑	Mean Temp °C	Heat Deg Days	Cool Deg Days	<u>Total</u> <u>Rain</u> mm பி	Total Snow cm	<u>Total</u> <u>Precip</u> <u>mm</u> اللا	Snow on Grnd cm	<u>Dir of</u> <u>Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h
<u>24</u>	5.2	-6.2	-0.5	18.5	0.0	0.0	4.1	4.1	1 <u>E</u>	20	99
<u>25</u>	-3.9	-9.2	-6.6	24.6	0.0	0.0	3.8	3.8	3	27	35
<u>26</u>	-1.6	-9.2	-5.4	23.4	0.0	0.0	0.0	0.0	7	26	43
<u>27</u>	-2.3	-10.8	-6.6	24.6	0.0	0.3	1.3	1.6	7	29	32
<u>28</u>	-2.0	-16.5	-9.3	27.3	0.0	3.3	5.5	5.5	8	<u>M</u>	<u>M</u>
<u>29</u>	1.4	-6.5	-2.6	20.6	0.0	0.0	I	I	13	<u>M</u>	<u>M</u>
<u>30</u>	7.2	1.2	4.2	13.8	0.0	0.0	0.0	0.0	9	19	32
<u>31</u>	10.3	4.6	7.5	10.5	0.0	6.2	0.0	6.2		22	32
Sum				565.0 <u>^</u>	0.0 <u>^</u>	172.3 <u>^</u>	27.2 <u>^</u>	195.6 <u>^</u>			
Avg	3.0 <u>^</u>	-4.7 <u>^</u>	-0.8 <u>^</u>								
Xtrm	12.0 <u>^</u>	-16.5 <u>^</u>				29.4 <u>^</u>	7.0 <u>^</u>	29.4 <u>^</u>		20 <u>^</u>	99 <u>^</u>

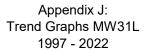
Legend							
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives						

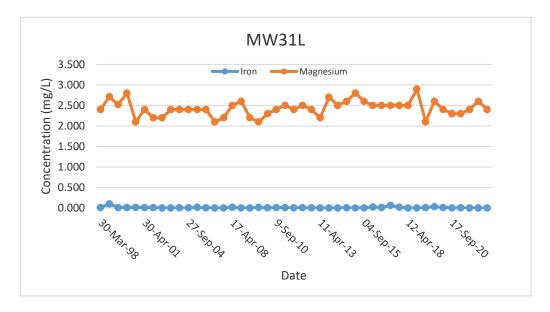

Date modified:

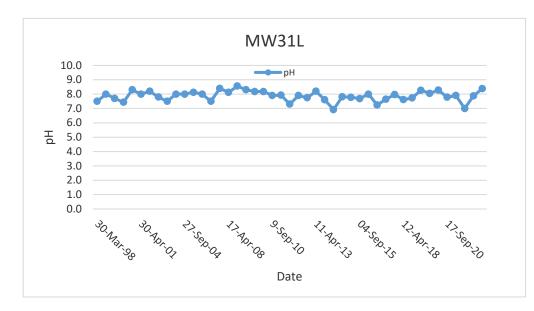

2022-12-01

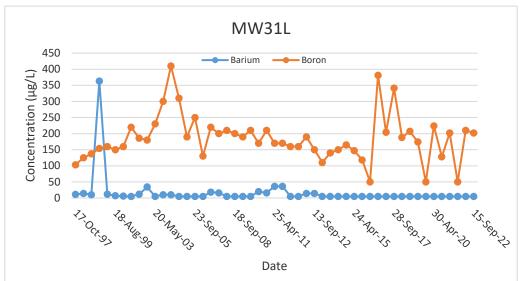


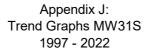


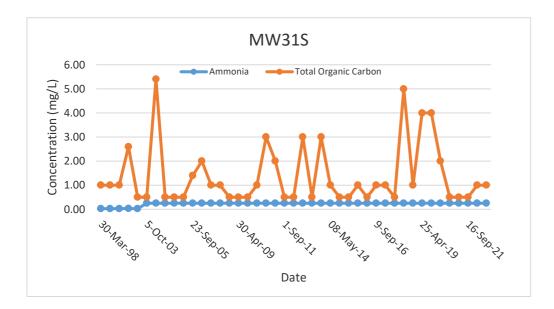


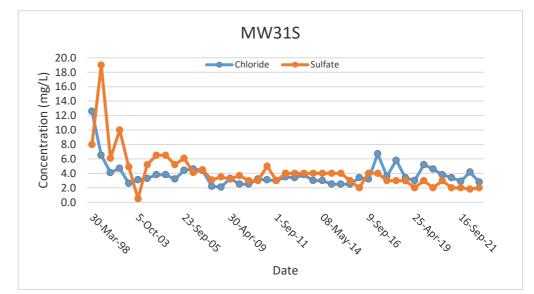


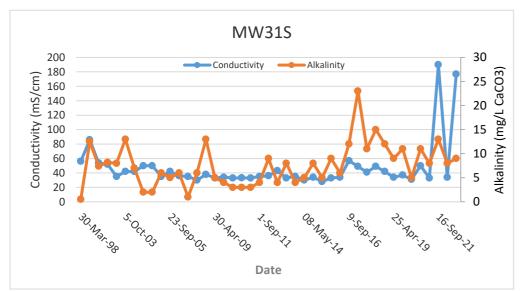


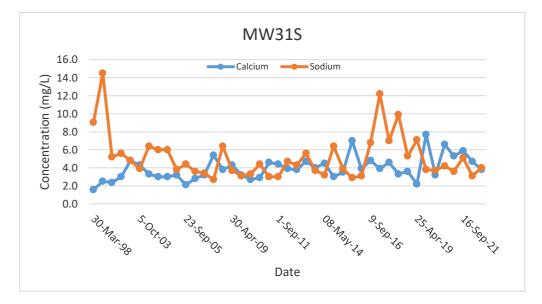


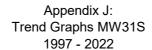


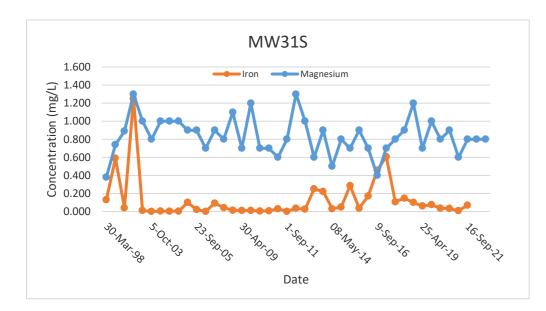


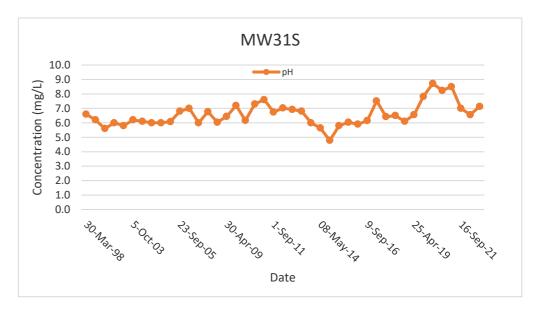


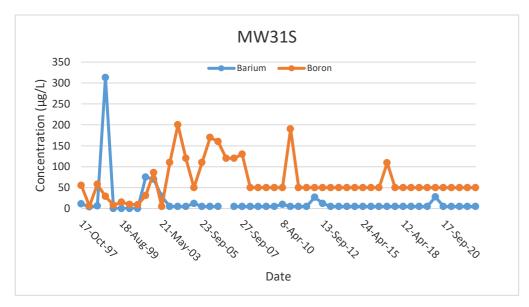


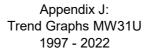


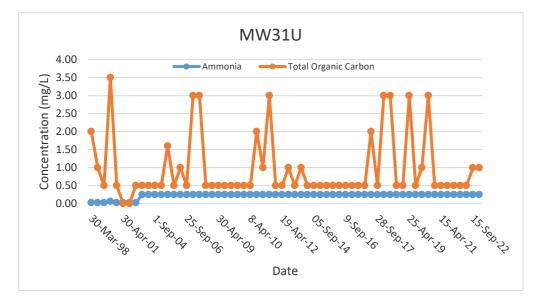


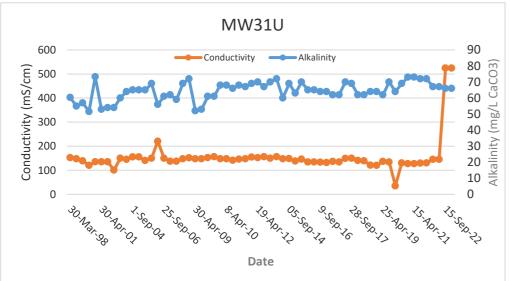


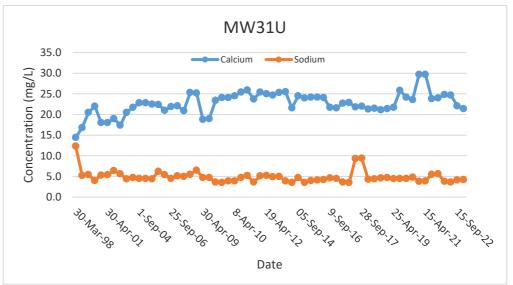


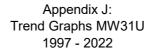


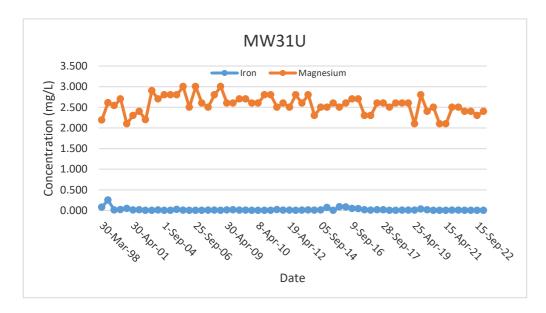


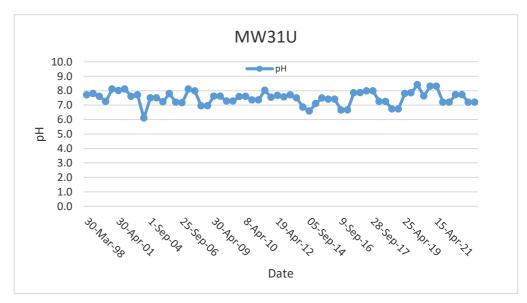


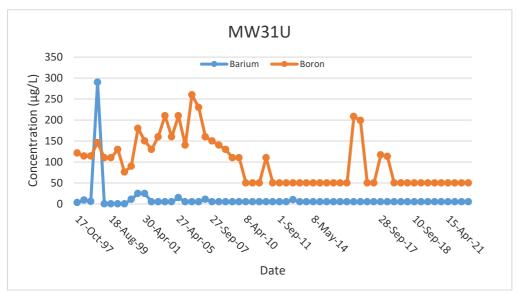


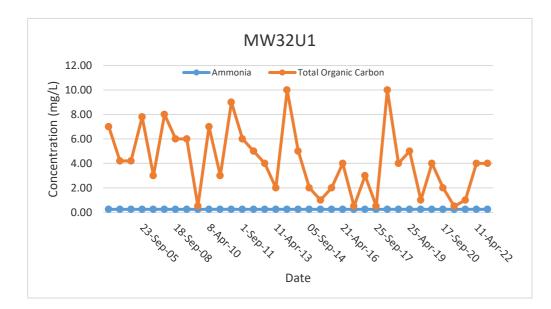


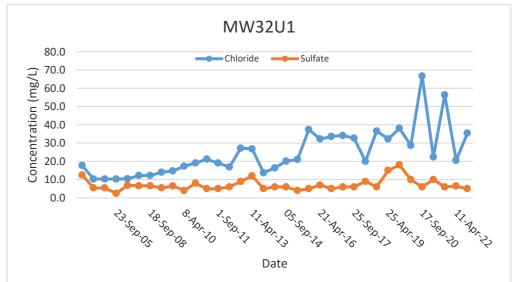


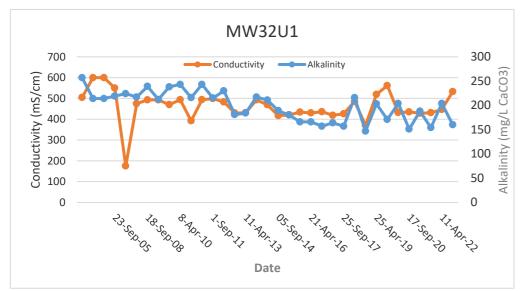


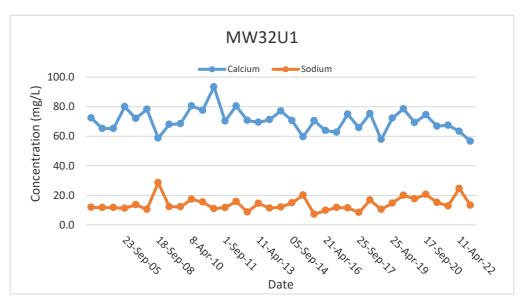


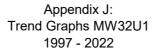


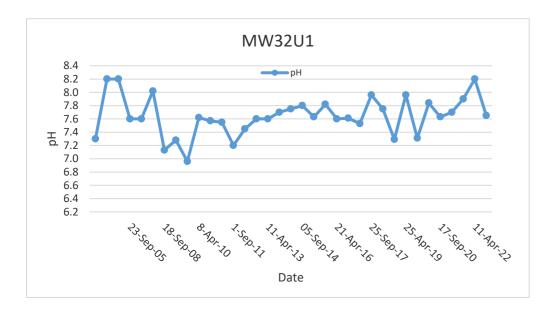


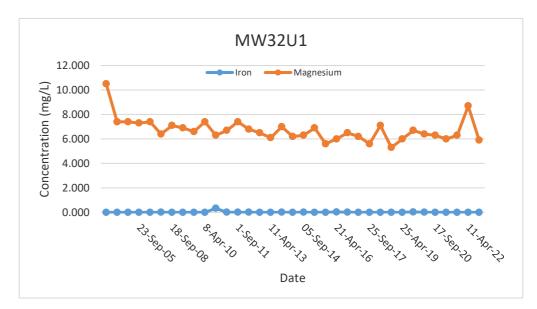


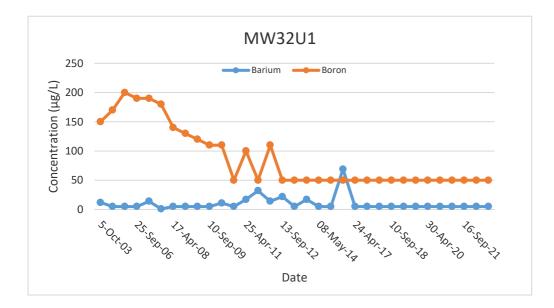


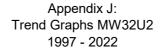


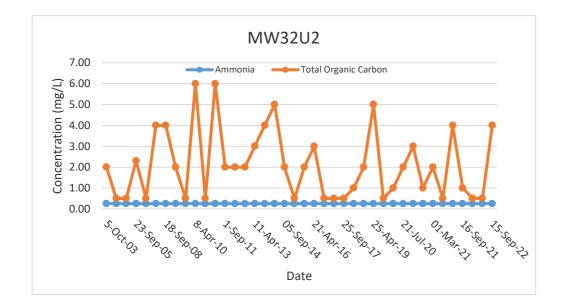

Appendix J: Trend Graphs MW32U1 1997 - 2022

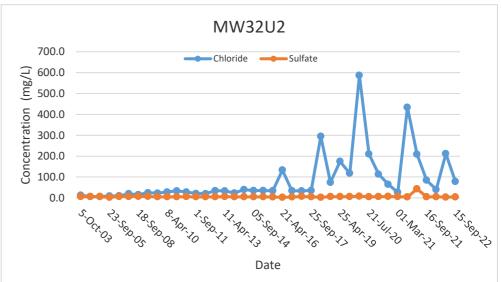


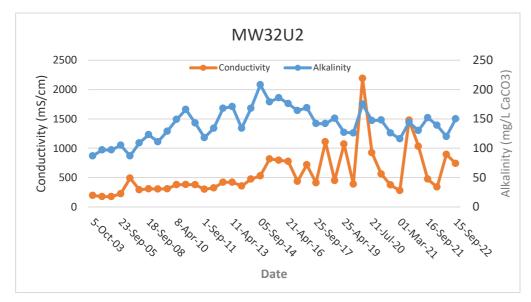


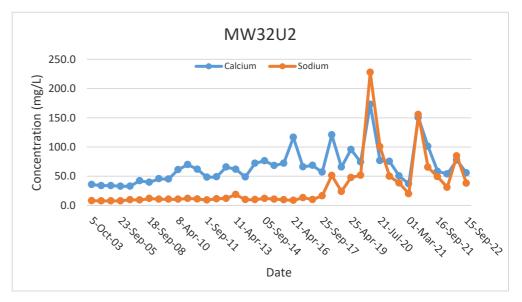


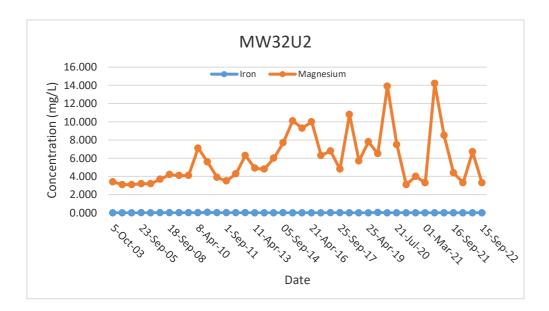


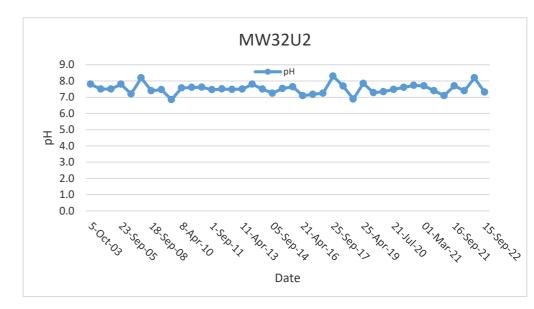


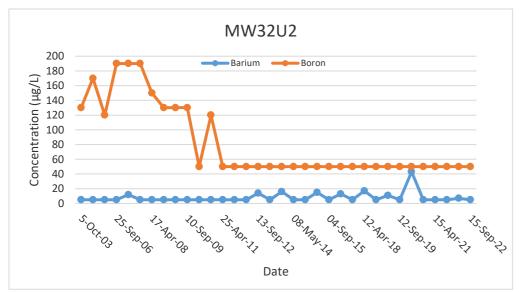




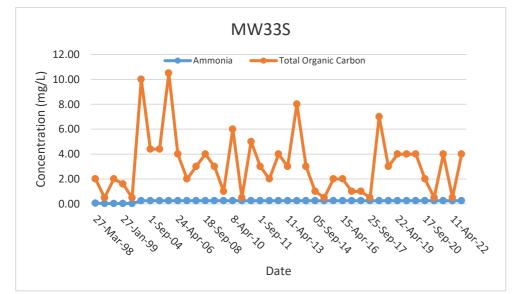


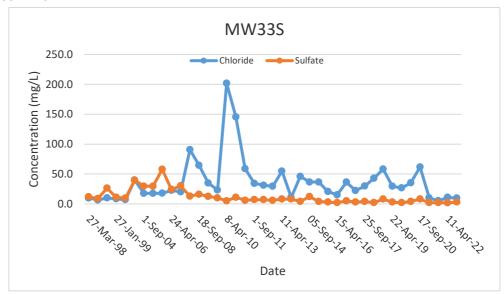


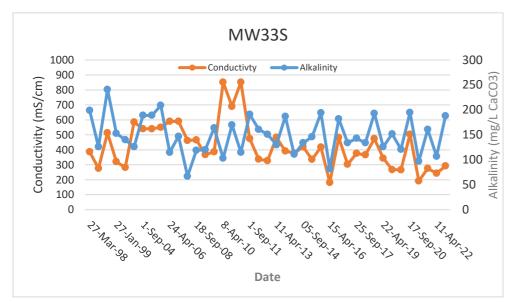


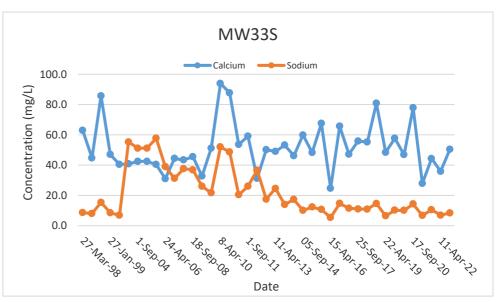


Appendix J: Trend Graphs MW32U2 1997 - 2022

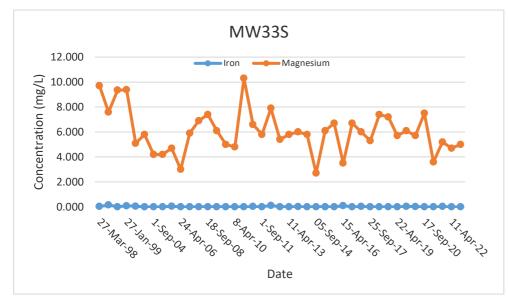


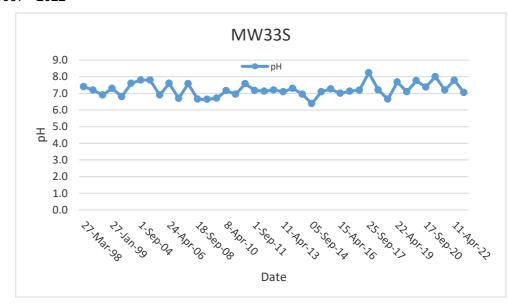


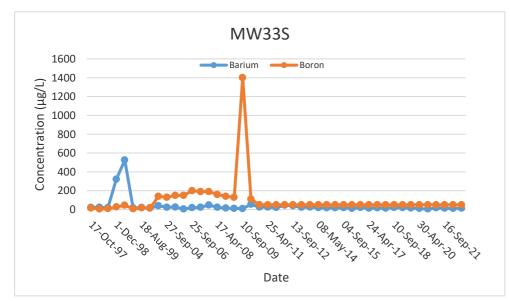


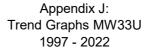


Appendix J: Trend Graphs MW33S 1997 - 2022

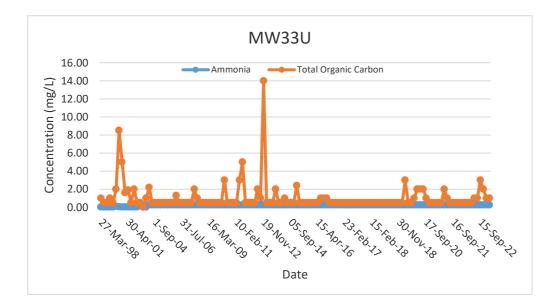


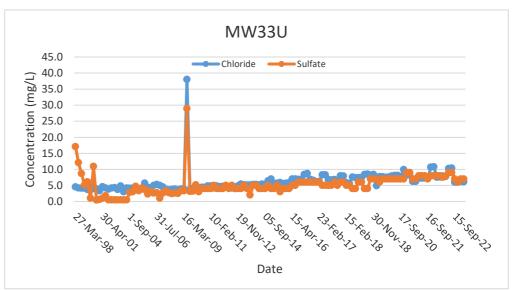


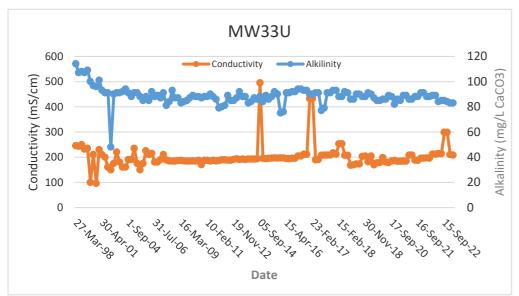


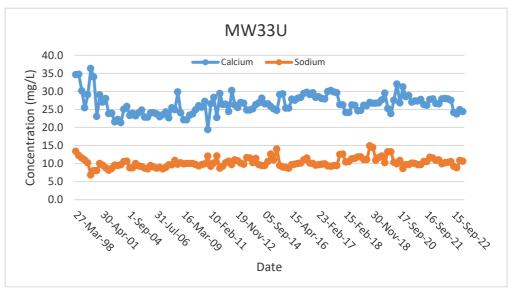


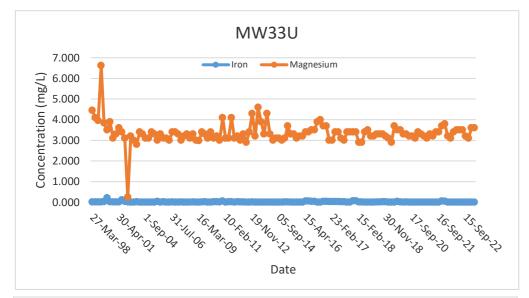
Appendix J: Trend Graphs MW33S 1997 - 2022

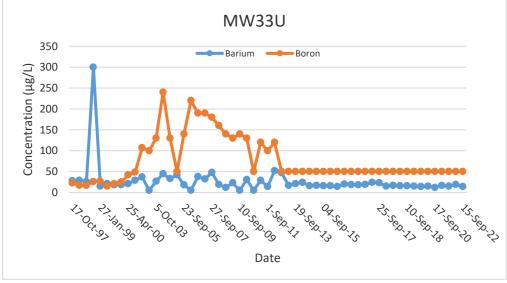


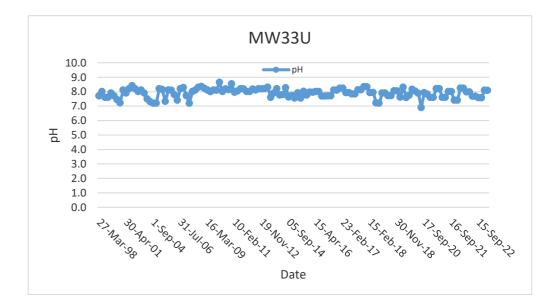


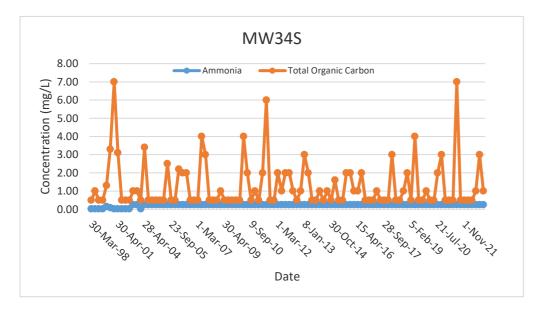


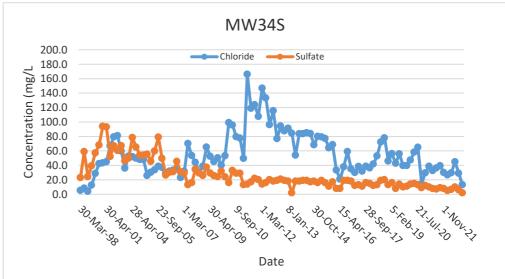


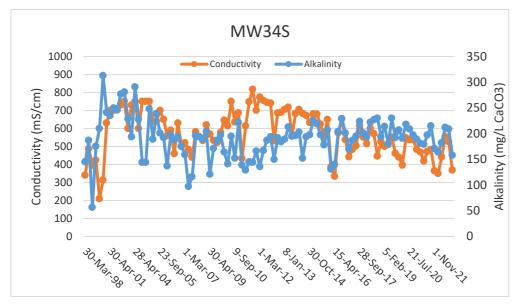


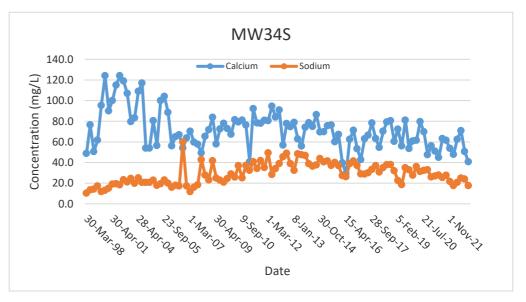


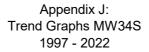


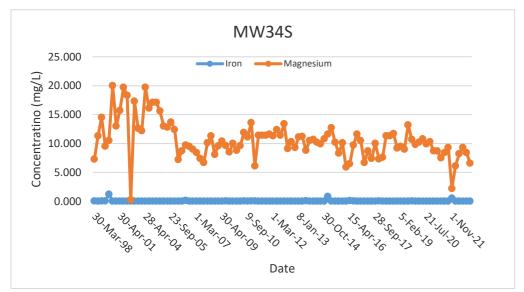


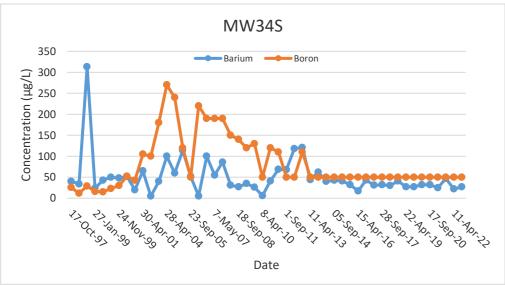


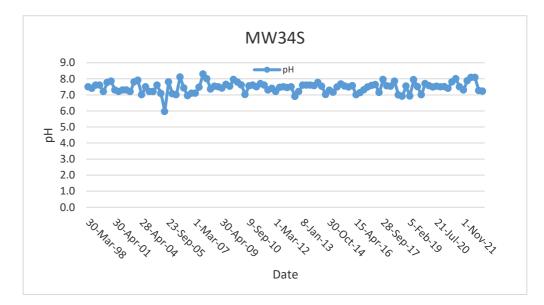


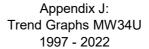


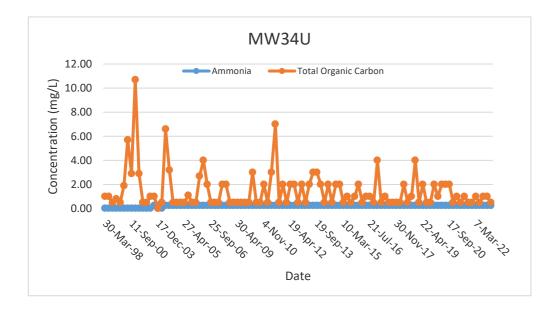


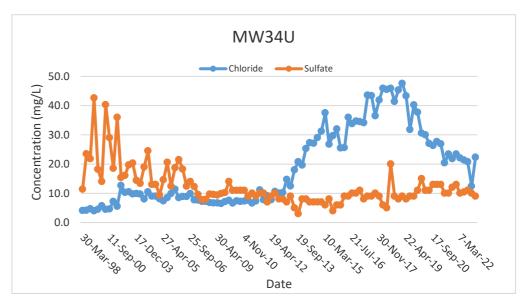


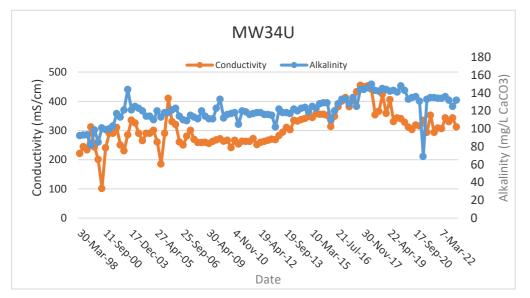


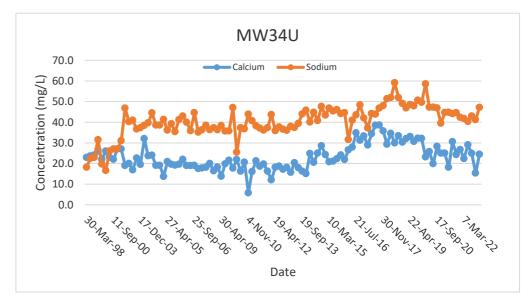


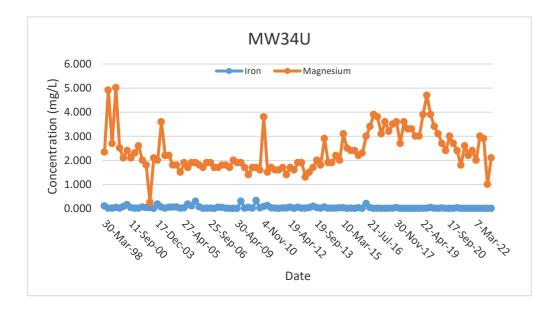


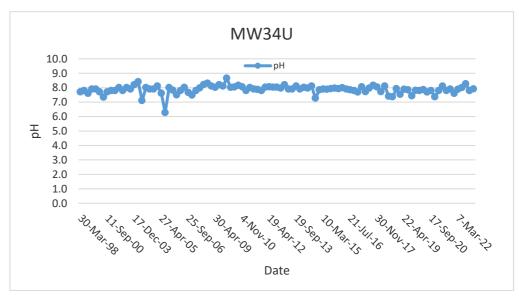


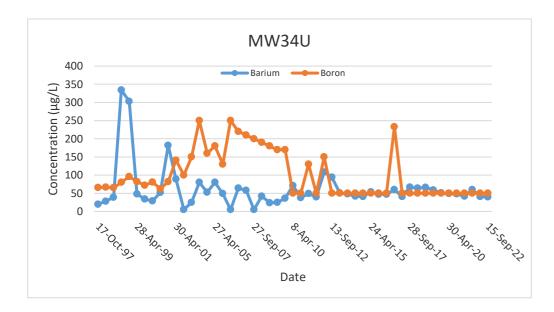


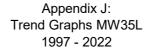


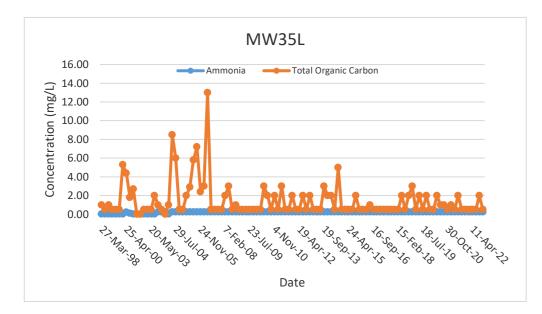


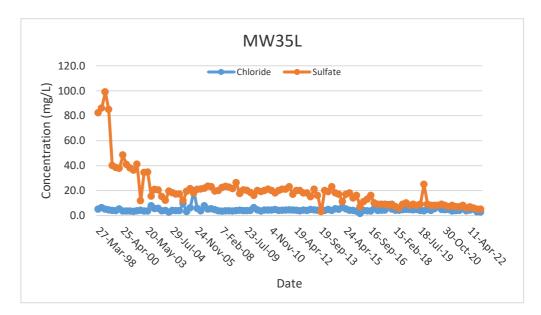


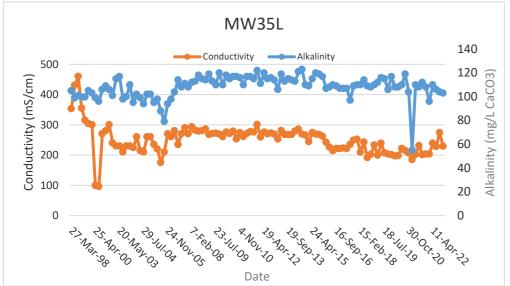


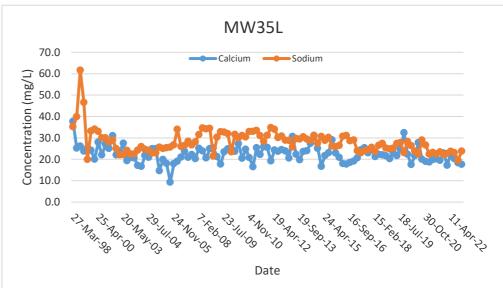


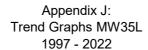


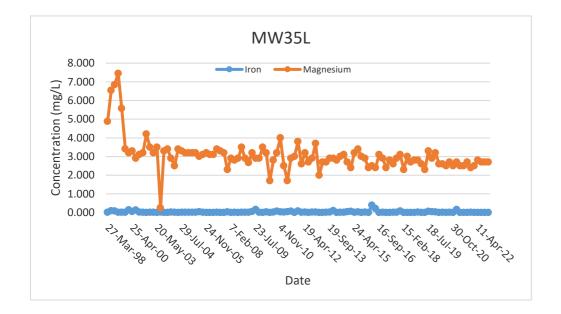


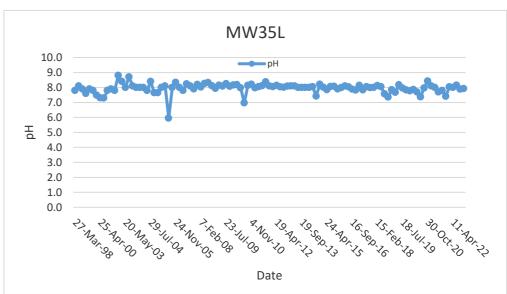


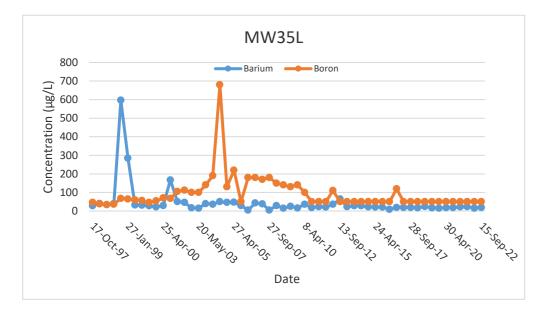


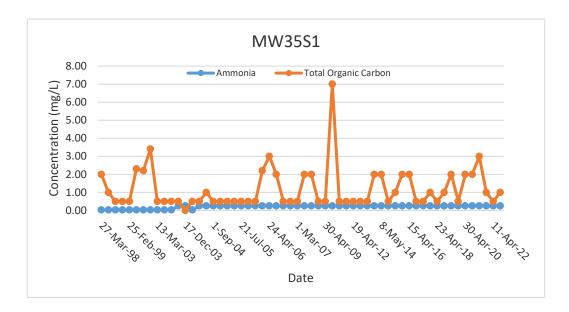


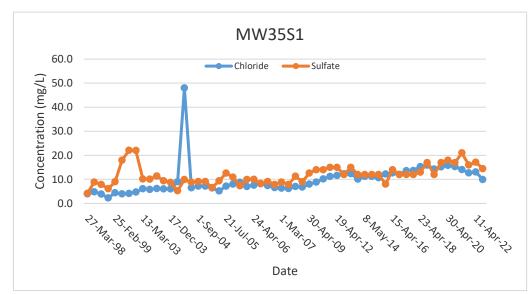


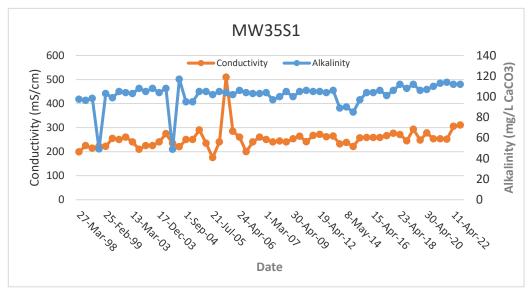


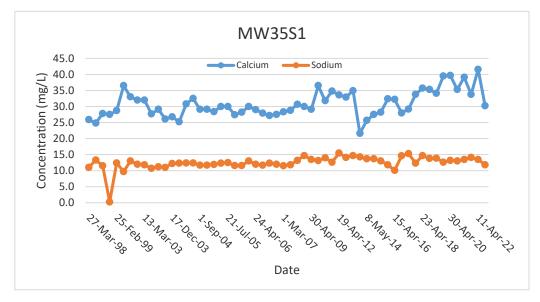




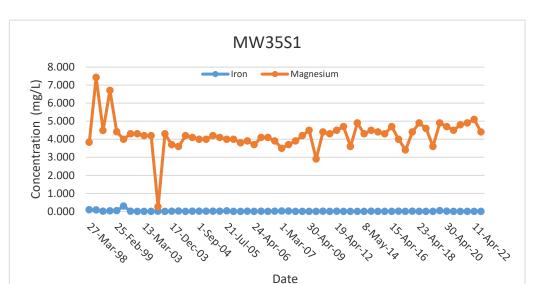


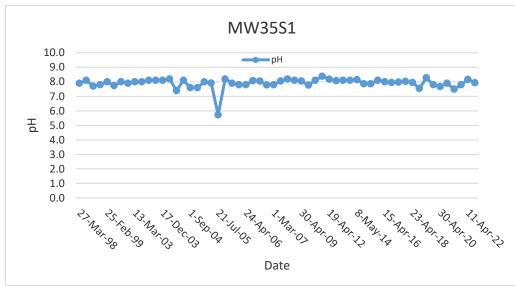


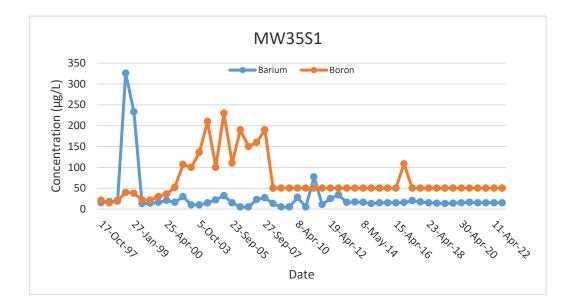


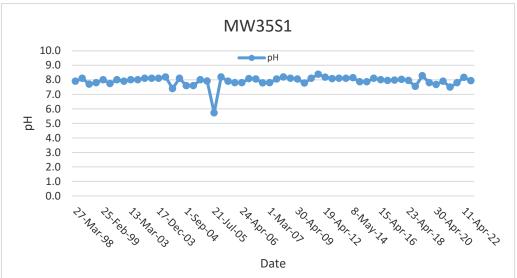


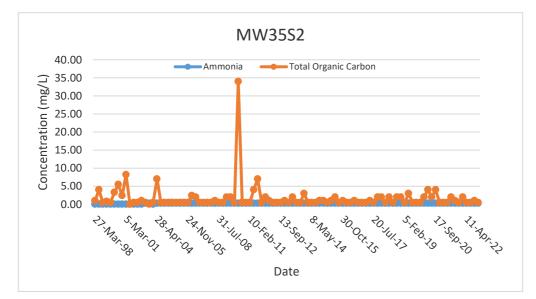
Appendix J: Trend Graphs MW35S1 1997 - 2022

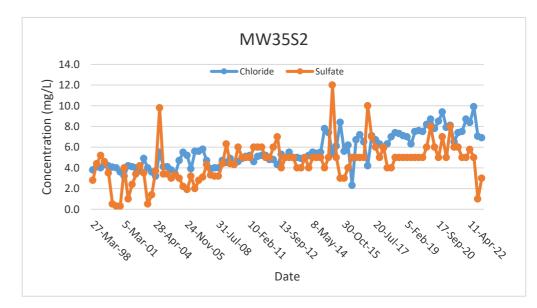


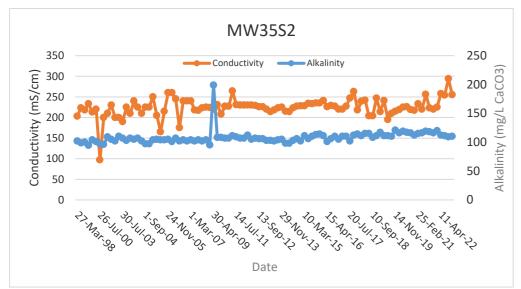


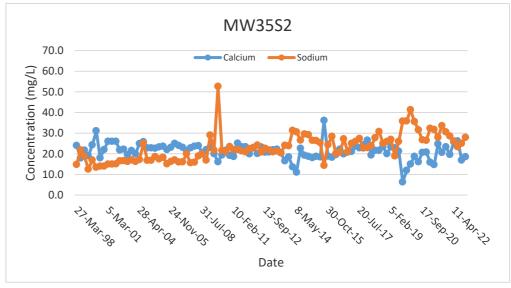




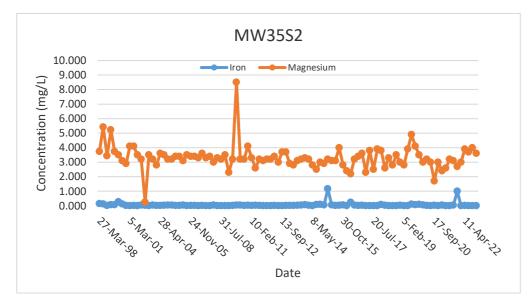


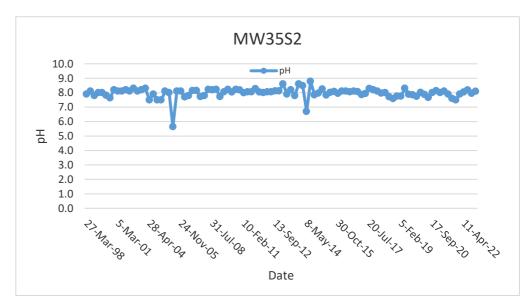


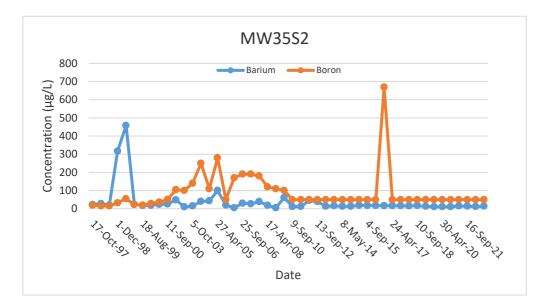




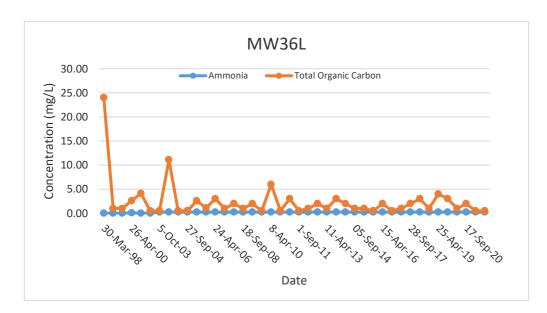
Appendix J: Trend Graphs MW35S2 1997 - 2022

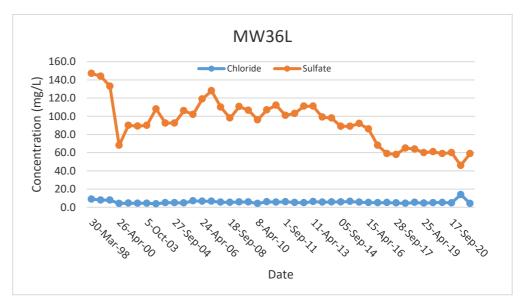


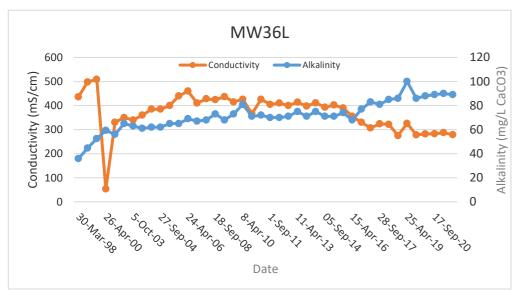


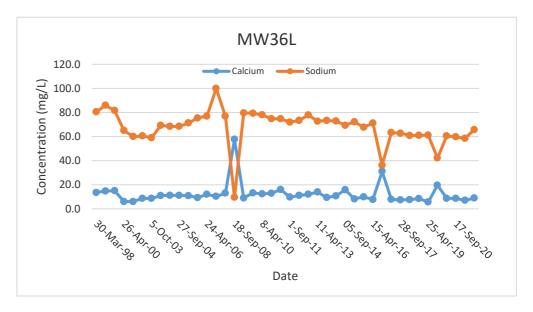


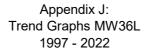
Appendix J: Trend Graphs MW35S2 1997 - 2022

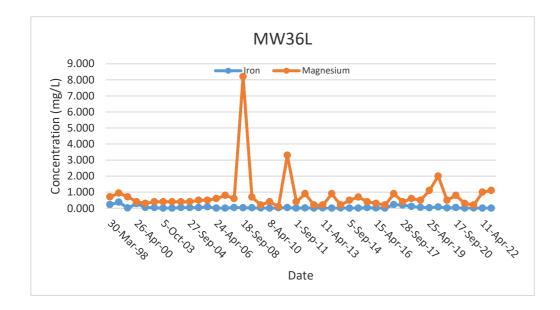


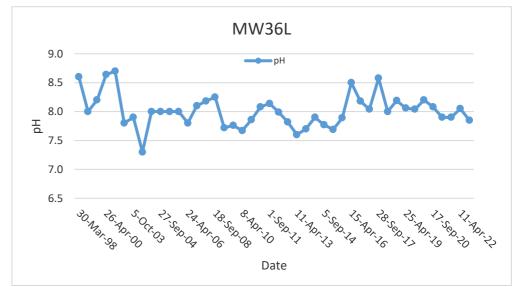


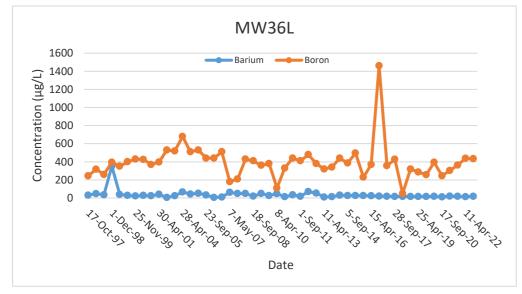


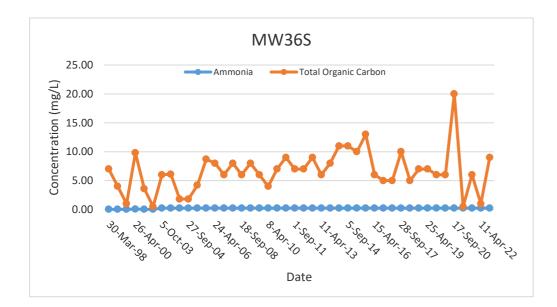


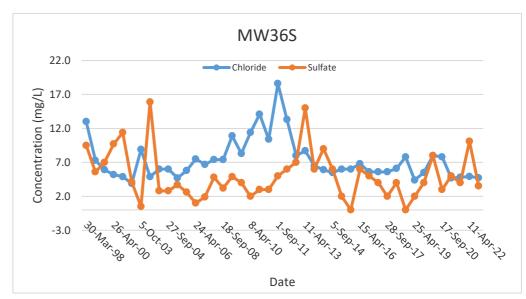

Appendix J: Trend Graphs MW36L 1997 - 2022

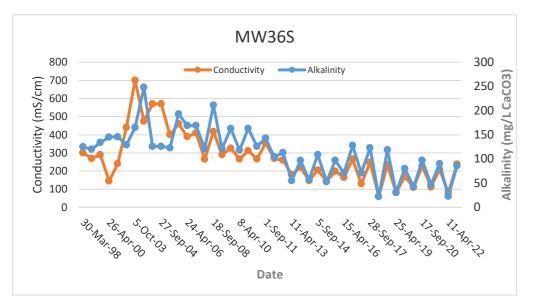


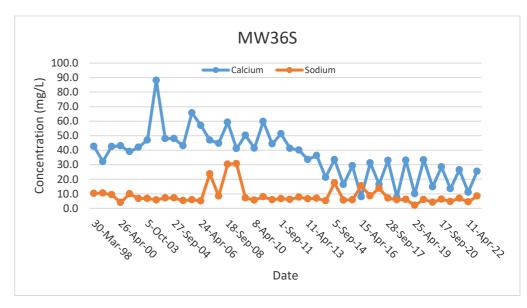




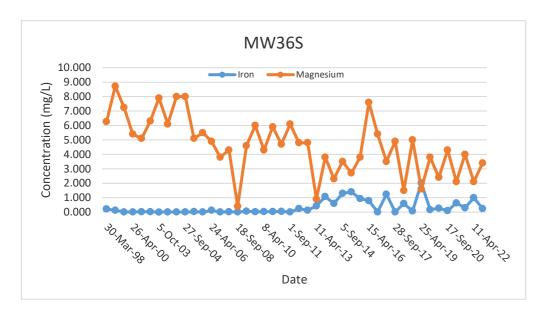


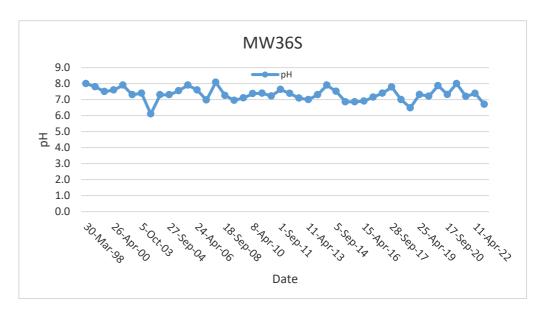


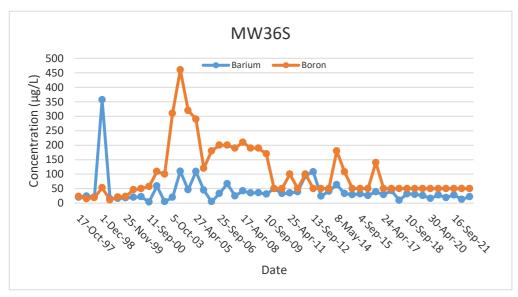




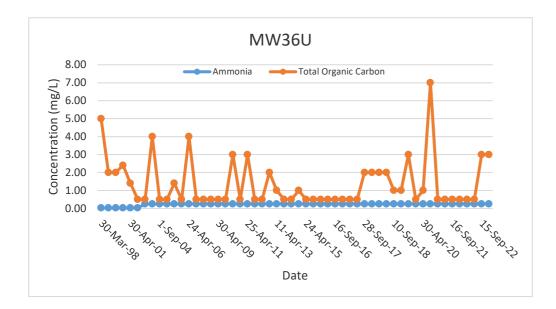
Appendix J: Trend Graphs MW36S 1997 - 2022

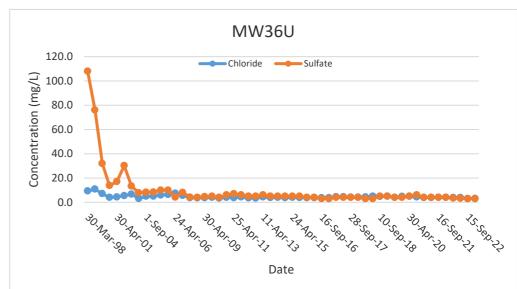


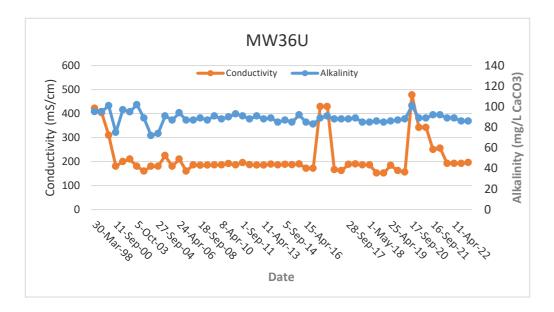


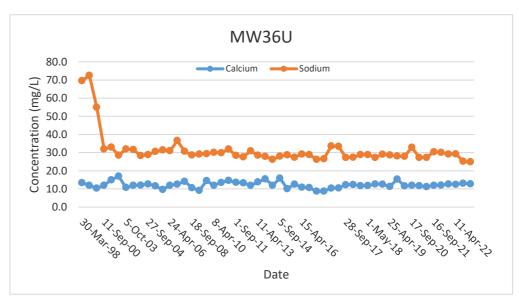


Appendix J: Trend Graphs MW36S 1997 - 2022

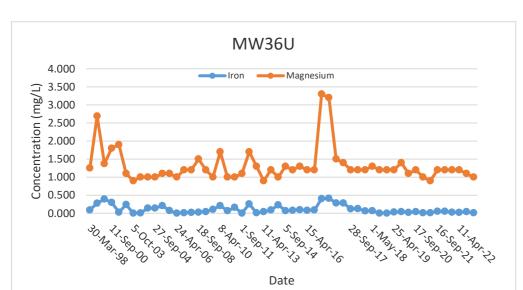


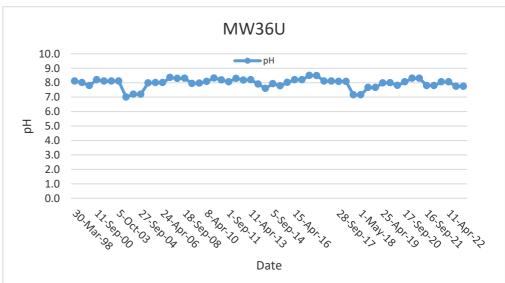


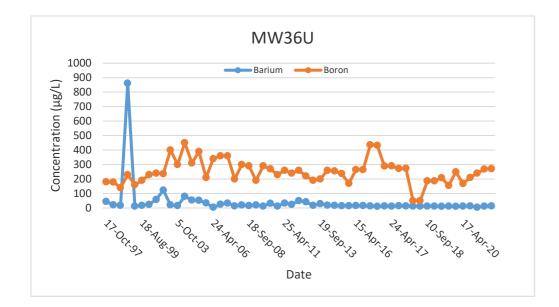


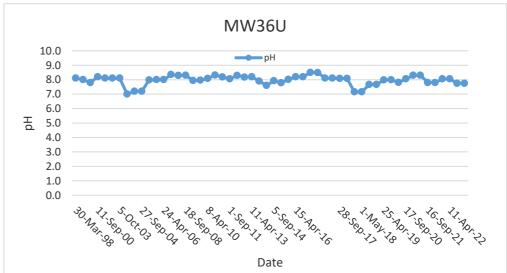


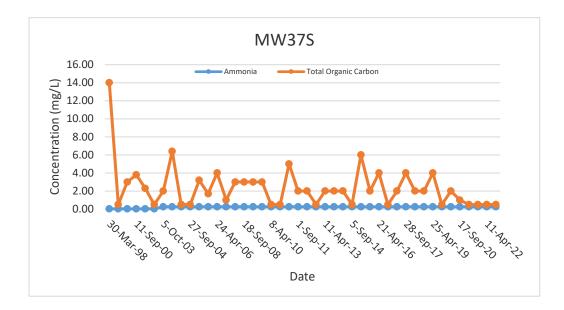
Appendix J: Trend Graphs MW36U 1997 - 2022

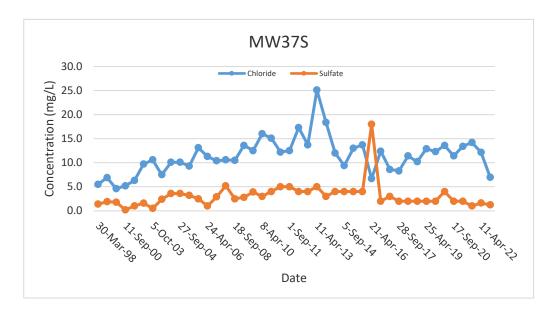


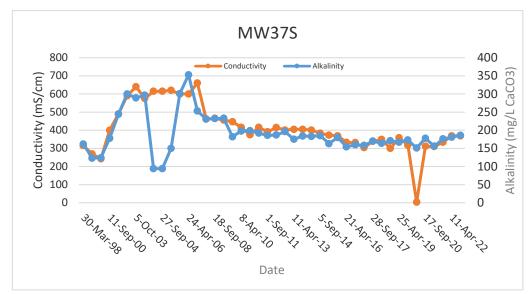


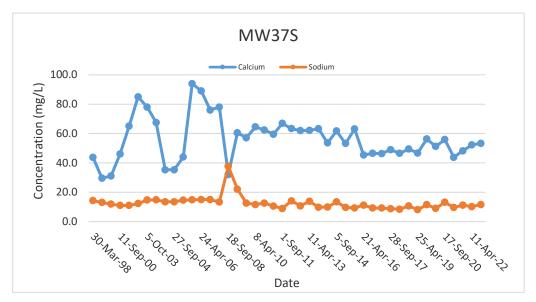


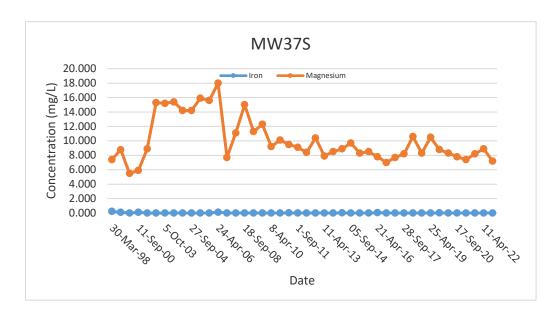


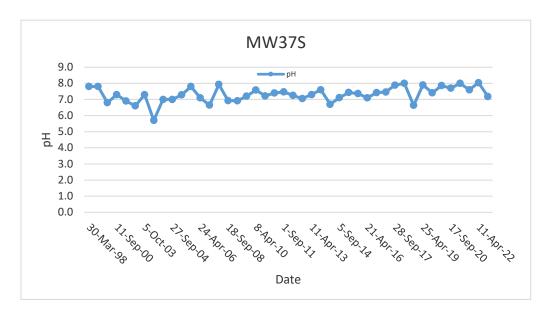


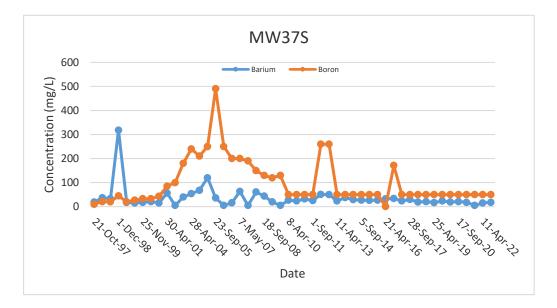




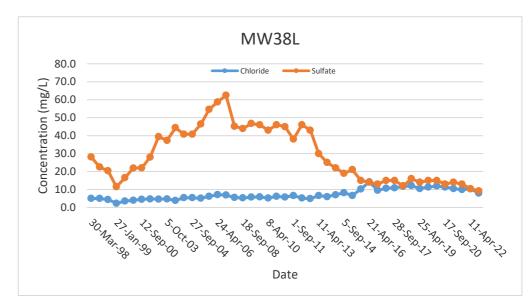


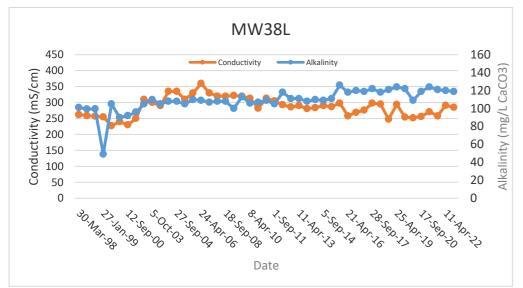


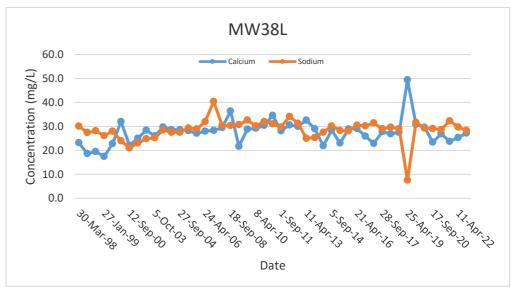


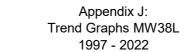


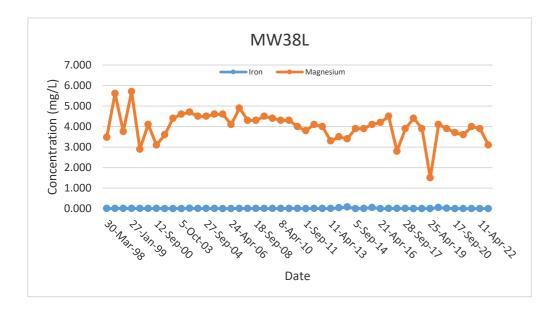
Appendix J: Trend Graphs MW37S 1997 - 2022

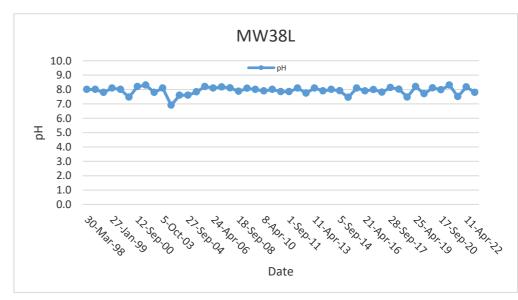


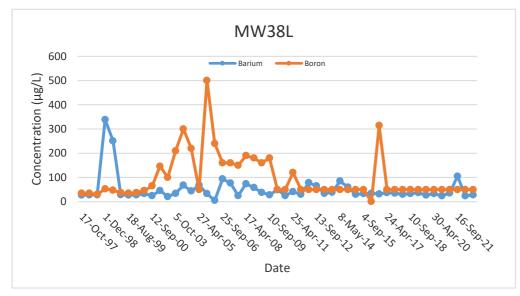


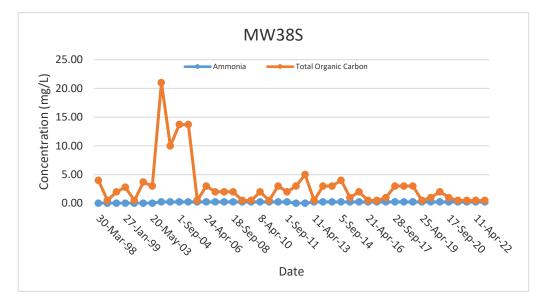


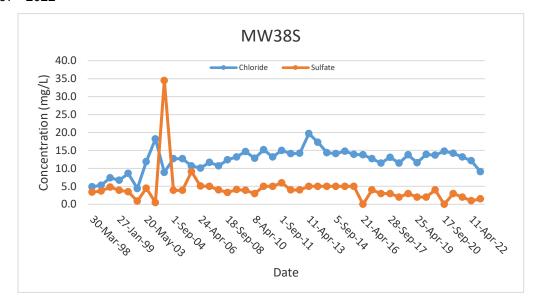

Appendix J: Trend Graphs MW38L 1997 - 2022

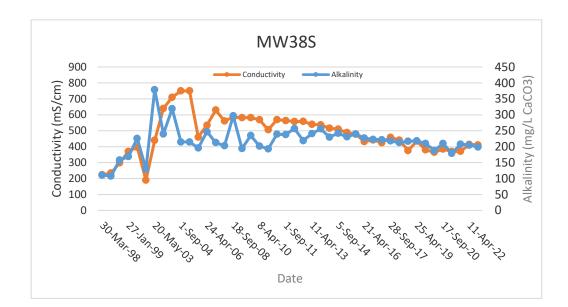


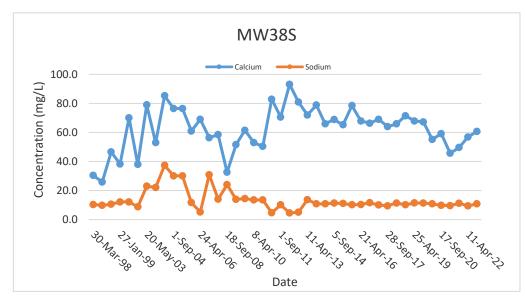




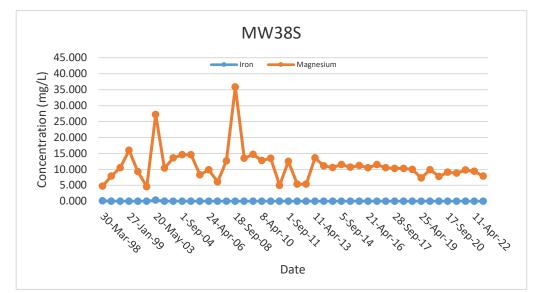


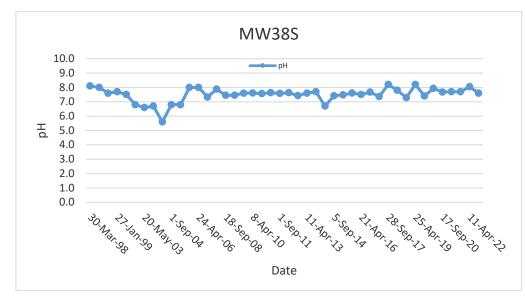


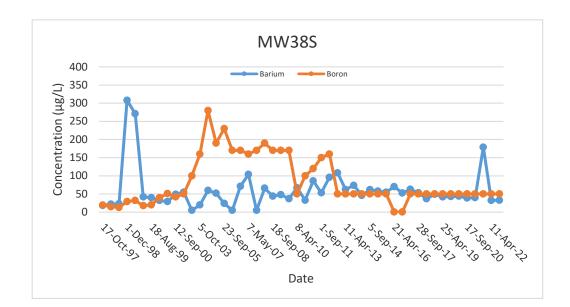




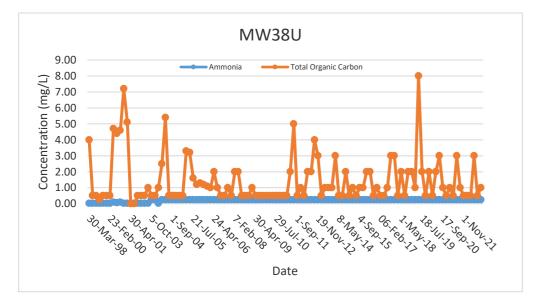
Appendix J: Trend Graphs MW38S 1997 - 2022

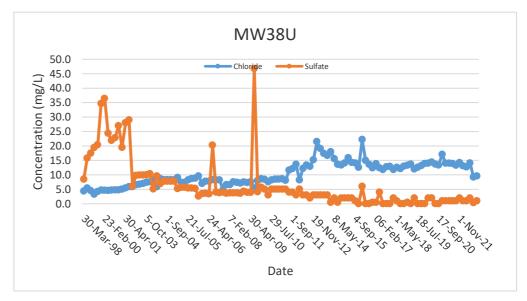


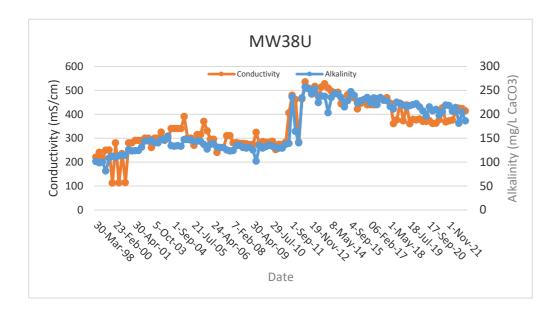


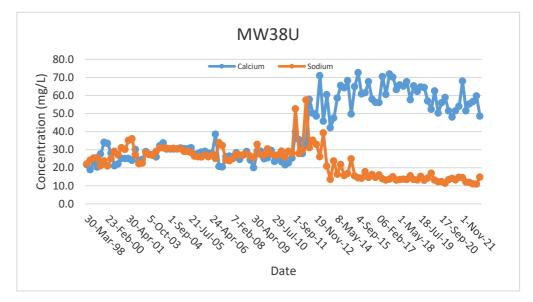


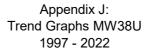
Appendix J: Trend Graphs MW38S 1997 - 2022

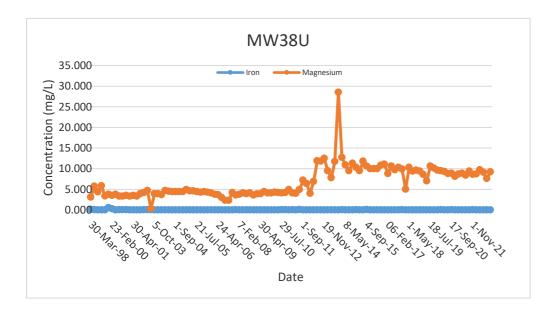


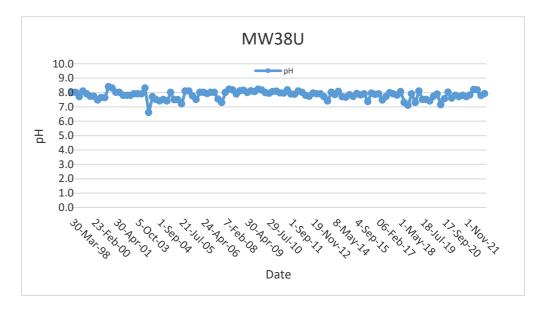


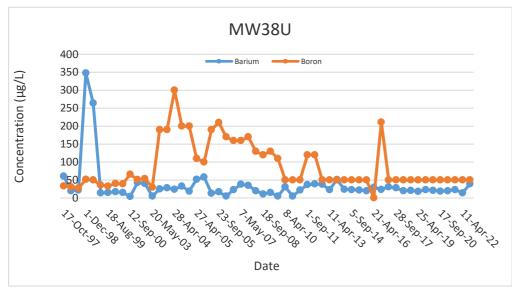


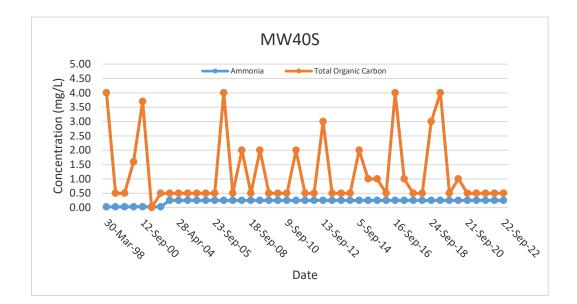


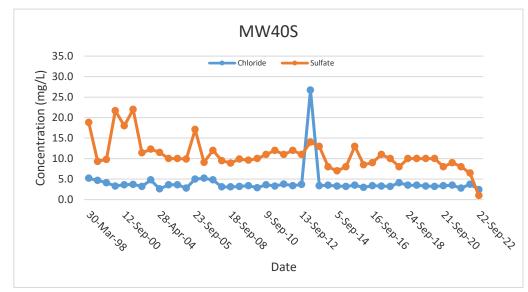

Appendix J: Trend Graphs MW38U 1997 - 2022

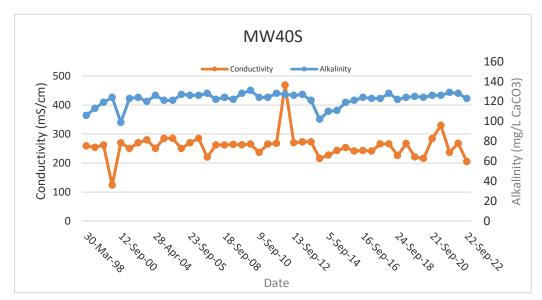


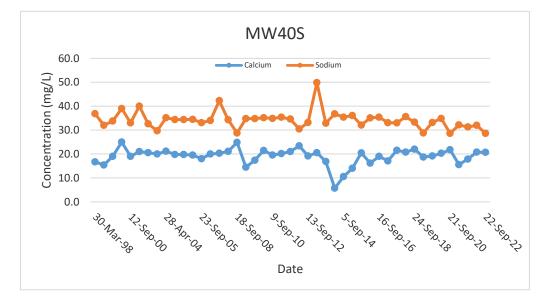




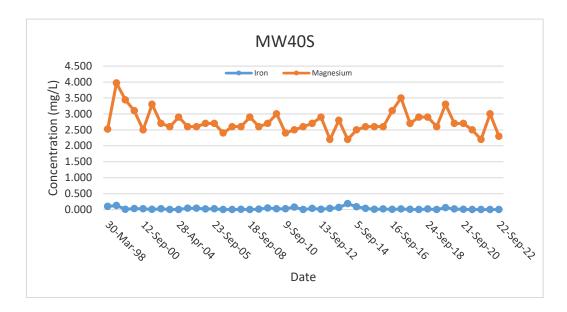


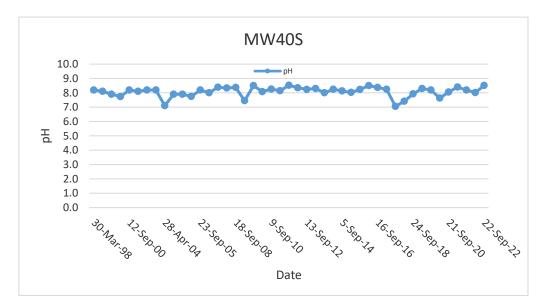


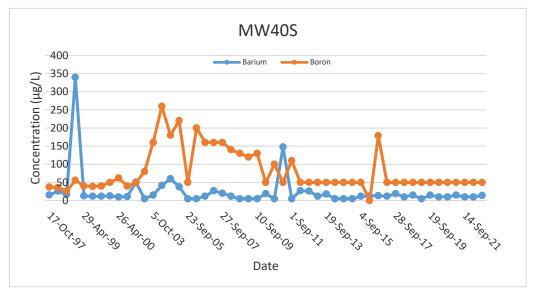




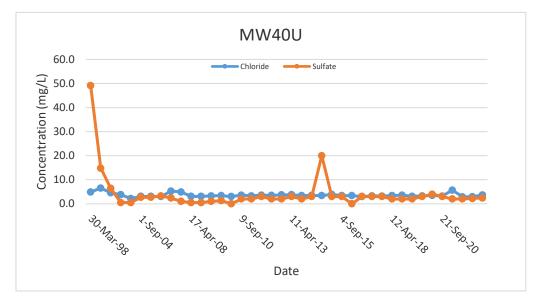
Appendix J: Trend Graphs MW40S 1997 - 2022

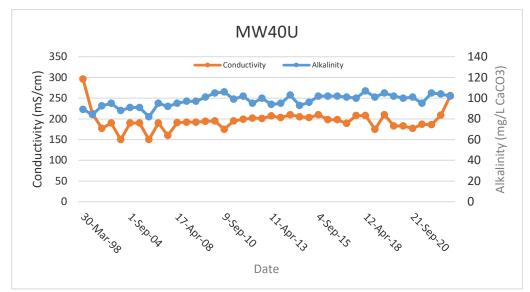


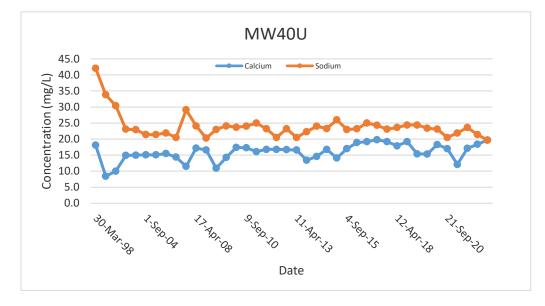




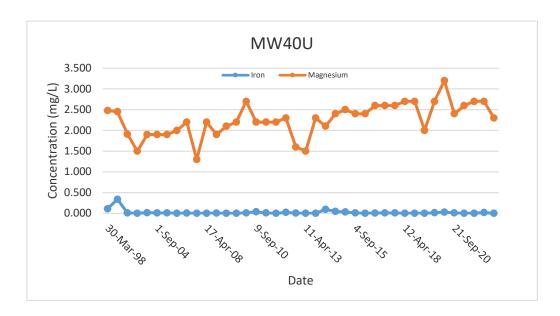
Appendix J: Trend Graphs MW40S 1997 - 2022

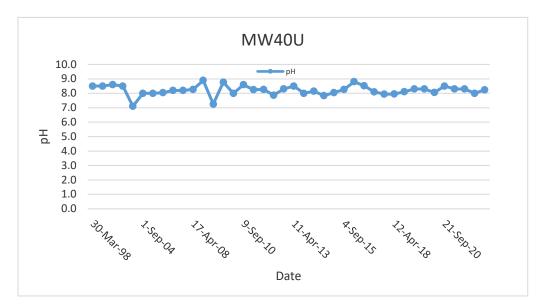


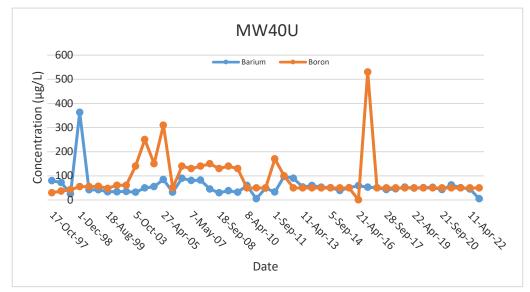


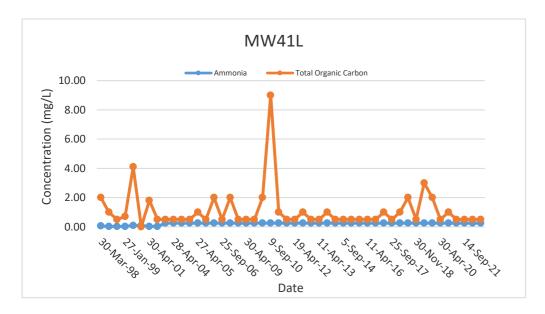


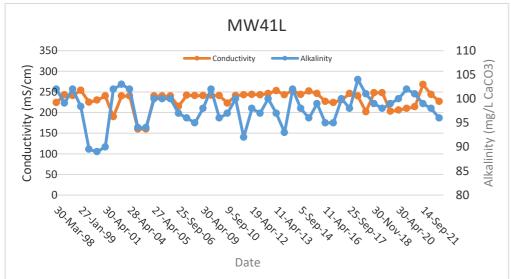
Appendix J: Trend Graphs MW40U 1997 - 2022

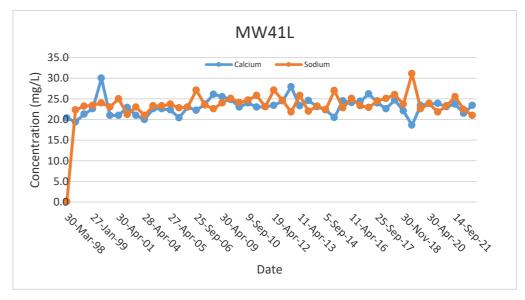

Appendix J:

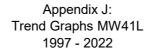

Trend Graphs MW40U

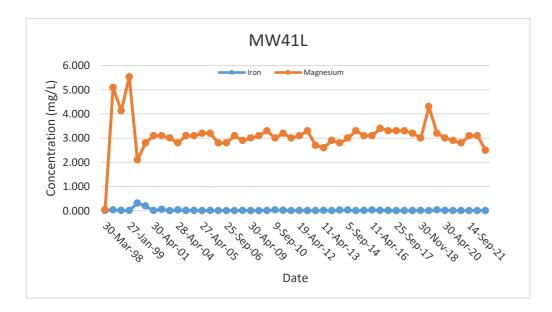

1997 - 2022

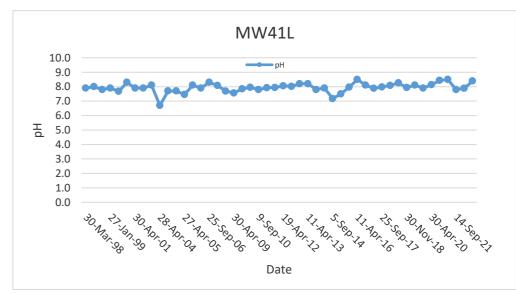


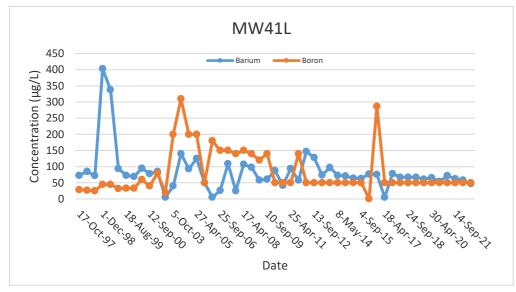


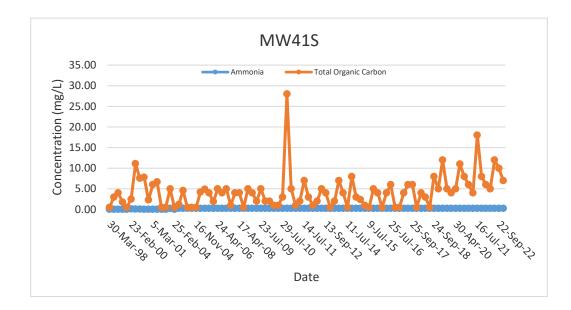


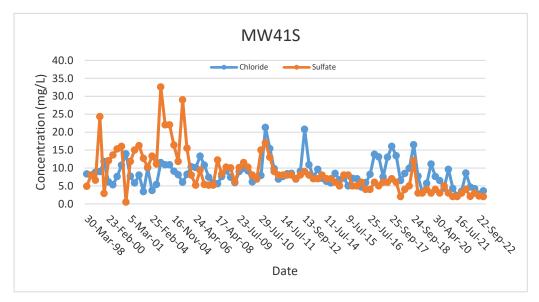

Appendix J: Trend Graphs MW41L 1997 - 2022

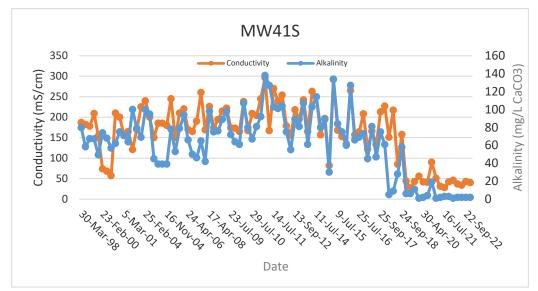


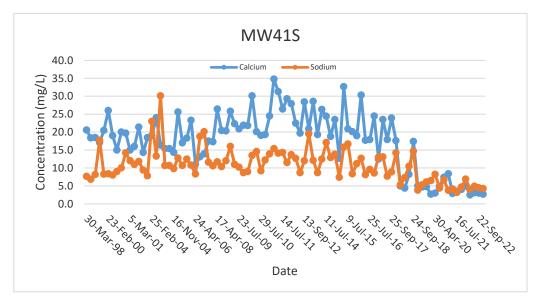


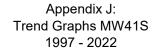


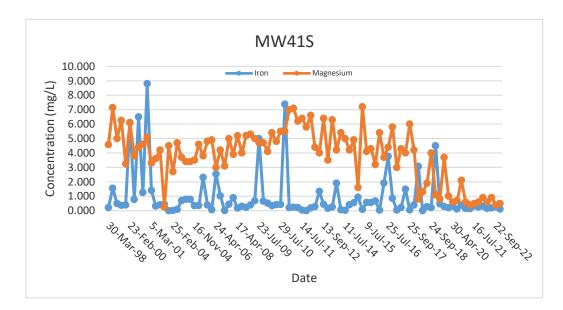


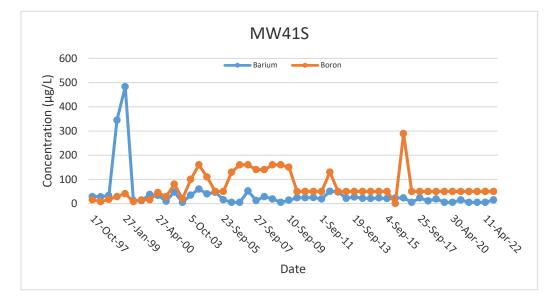


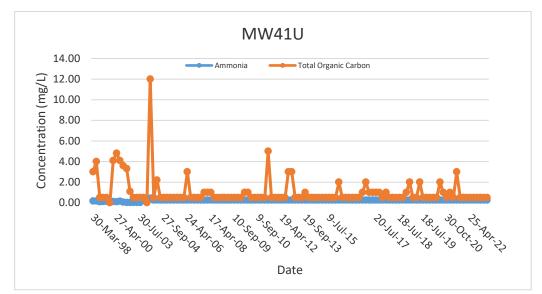


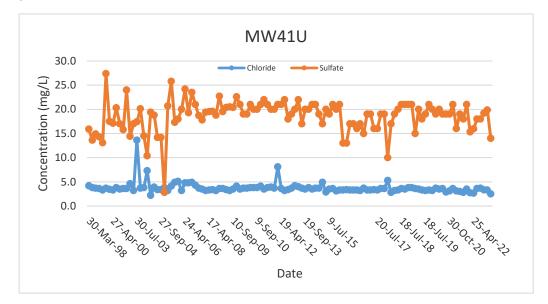


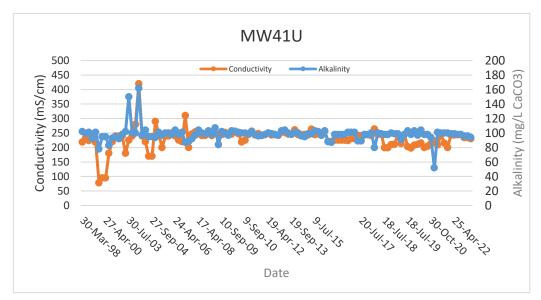

Appendix J: Trend Graphs MW41S 1997 - 2022

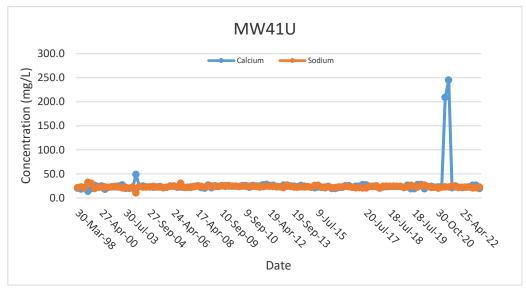


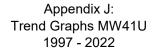


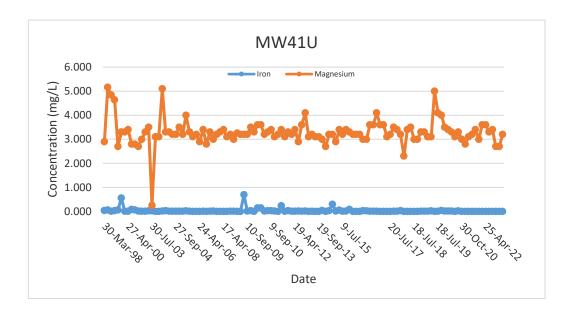




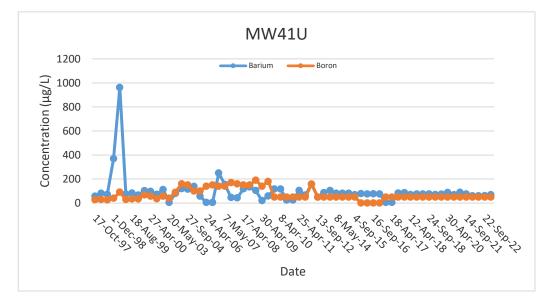


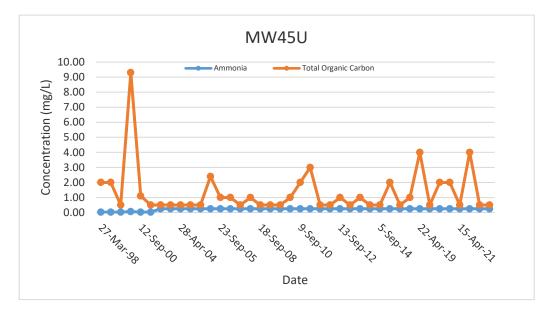


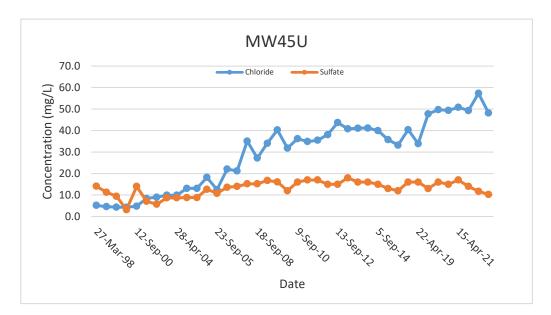

Appendix J: Trend Graphs MW41U 1997 - 2022

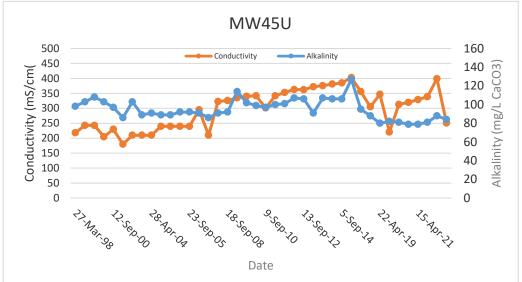


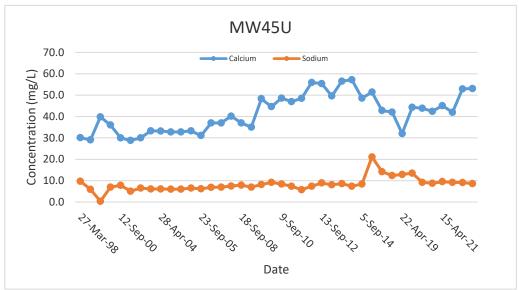


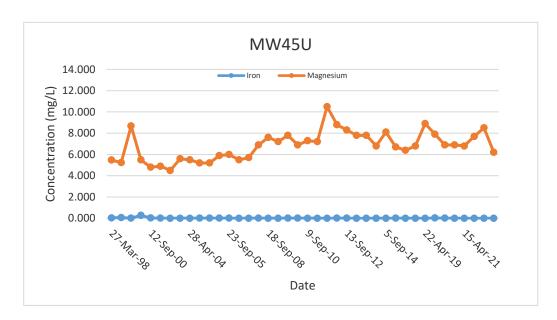


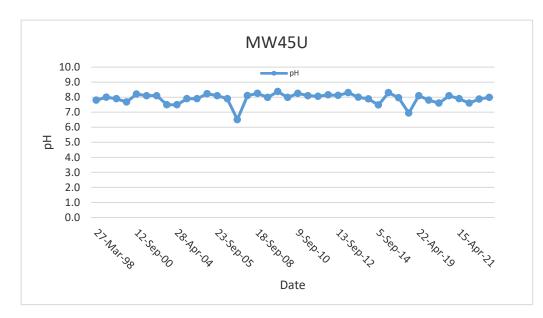


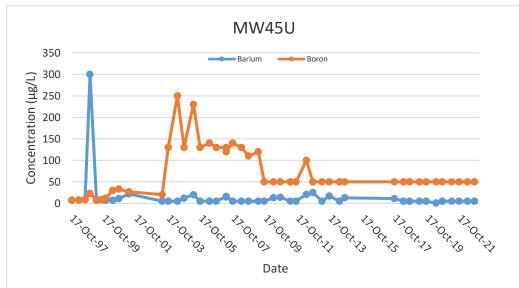




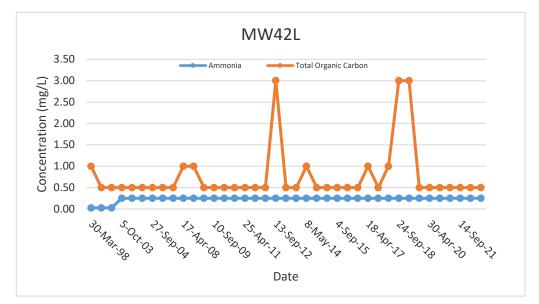


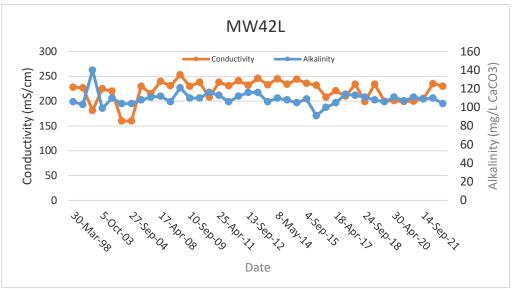


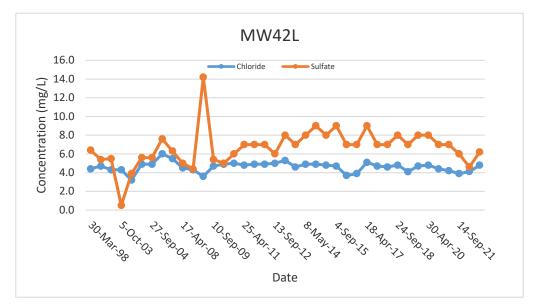


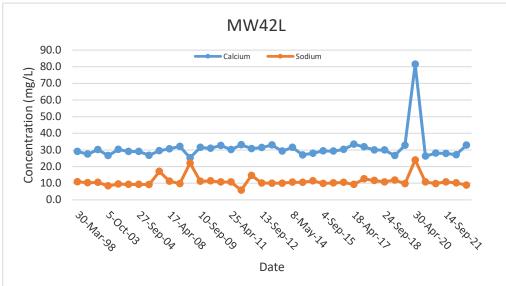


Appendix J: Trend Graphs MW45U 1997 - 2022

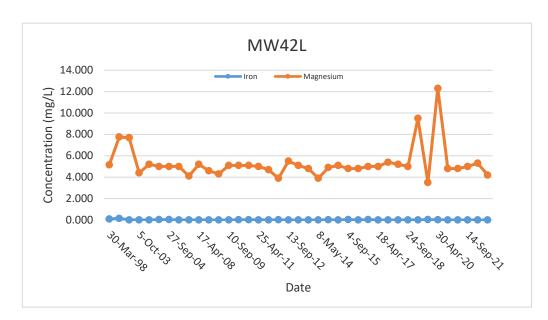


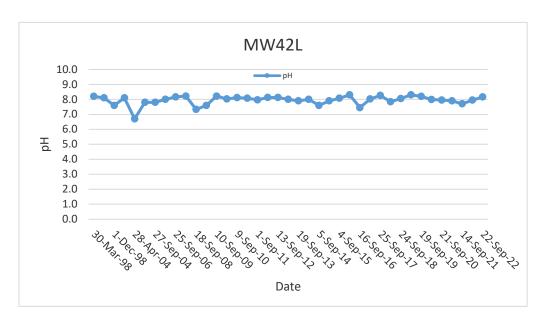


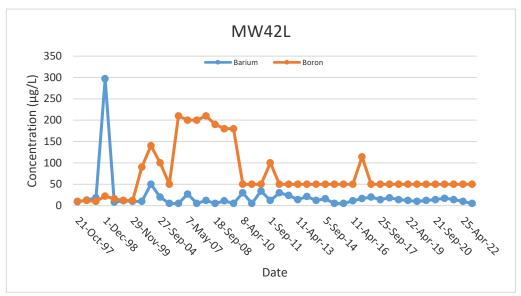




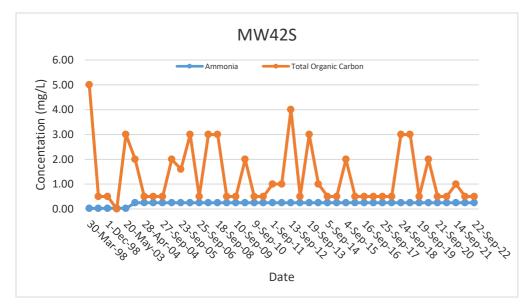
Appendix J: Trend Graphs MW42L 1997 - 2022

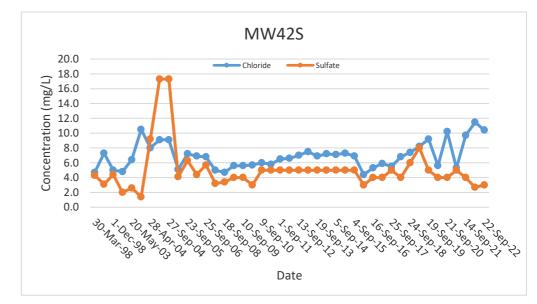


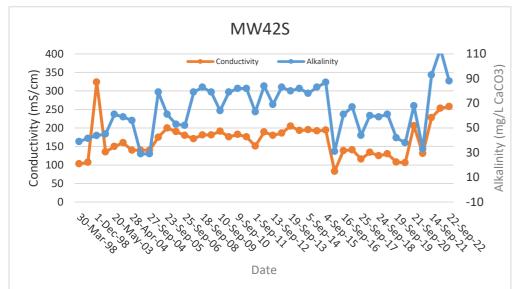


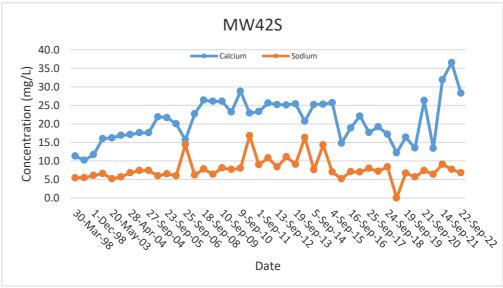


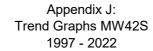
Appendix J: Trend Graphs MW42L 1997 - 2022

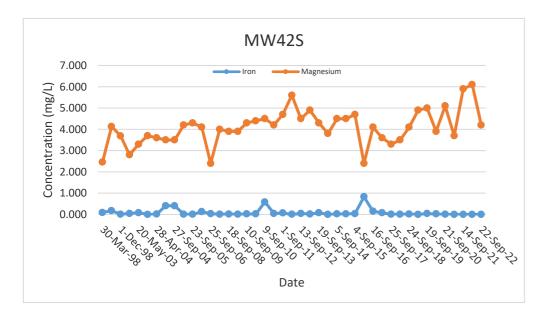


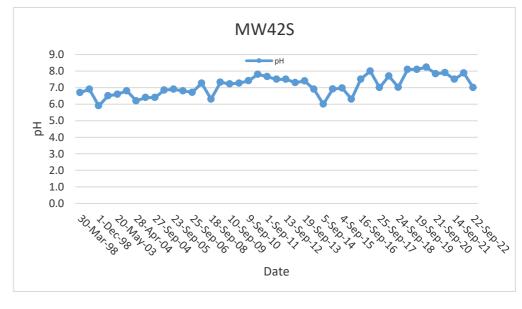


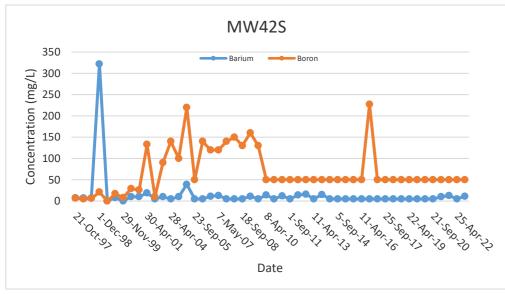


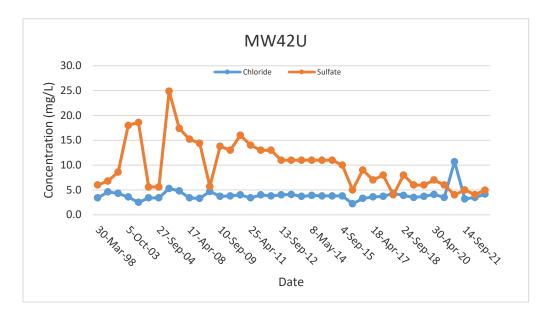


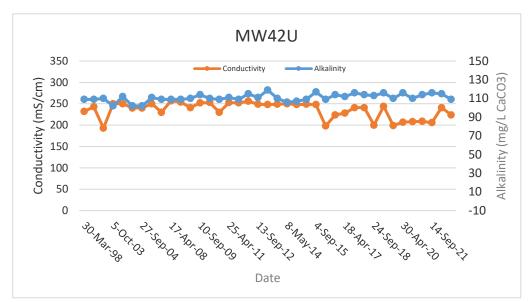

Appendix J: Trend Graphs MW42S 1997 - 2022

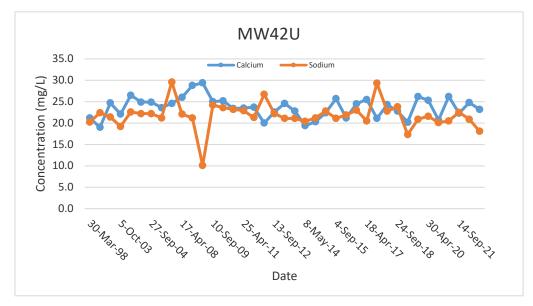




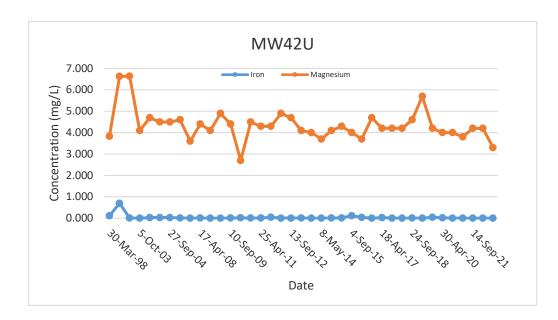


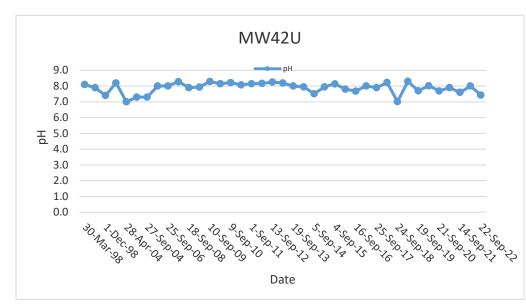


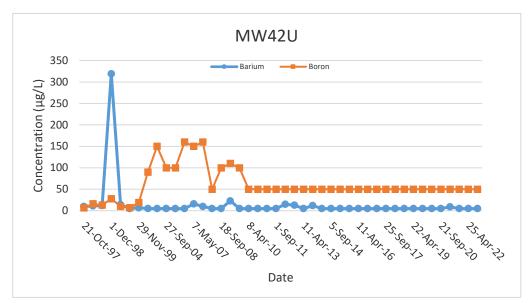




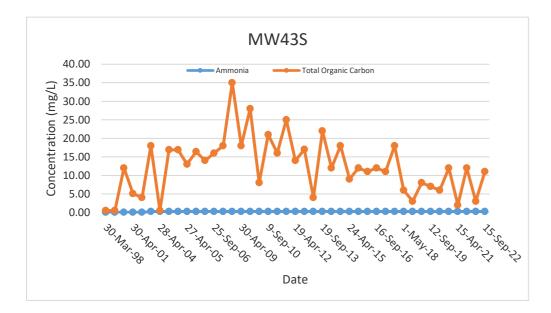
Appendix J: Trend Graphs MW42U 1997 - 2022

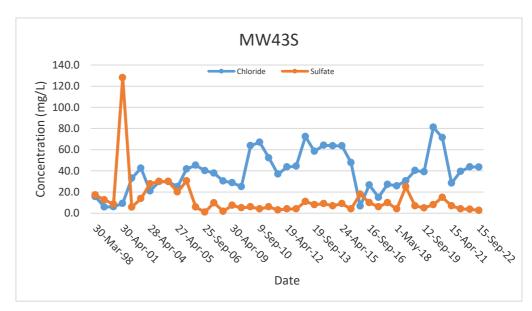


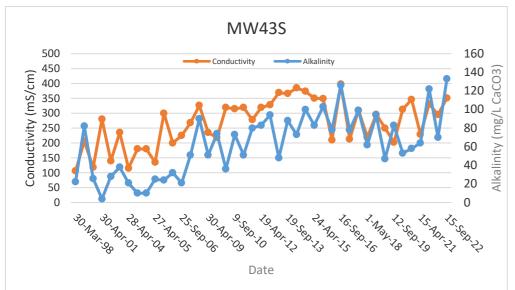


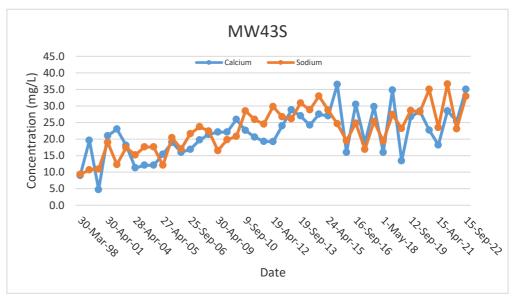


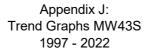
Appendix J: Trend Graphs MW42U 1997 - 2022

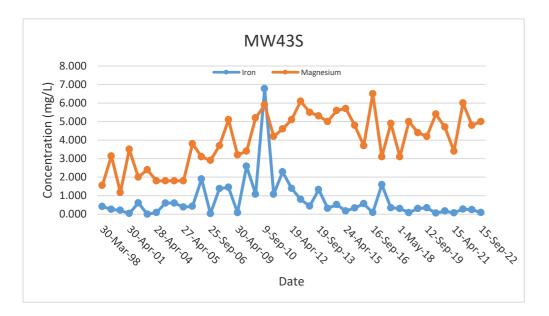


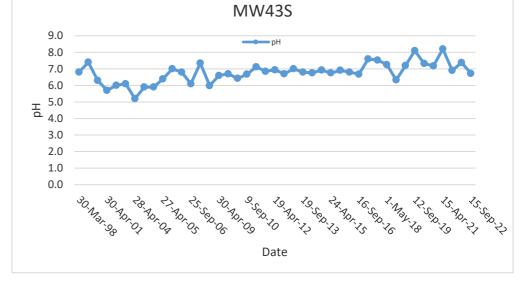


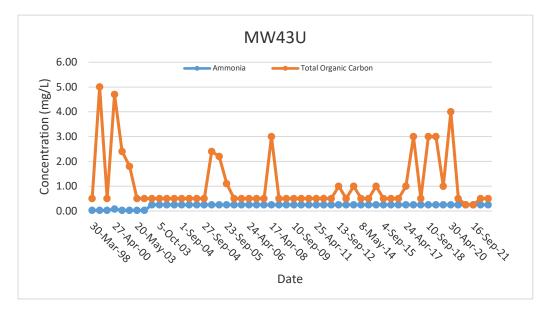


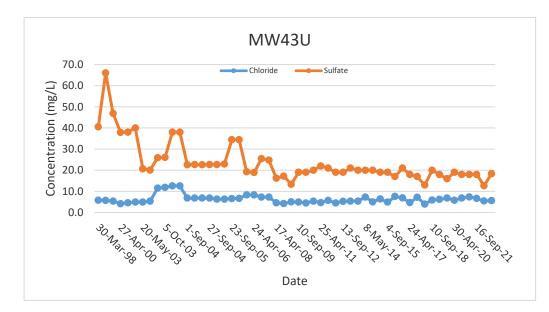


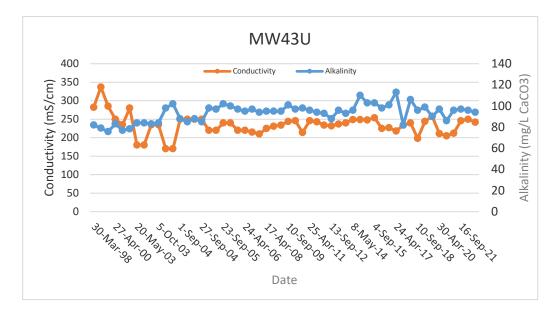

Appendix J: Trend Graphs MW43S 1997 - 2022

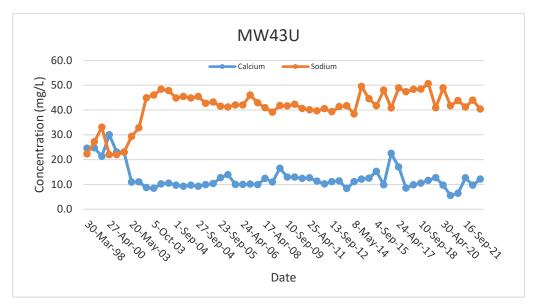


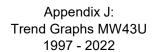


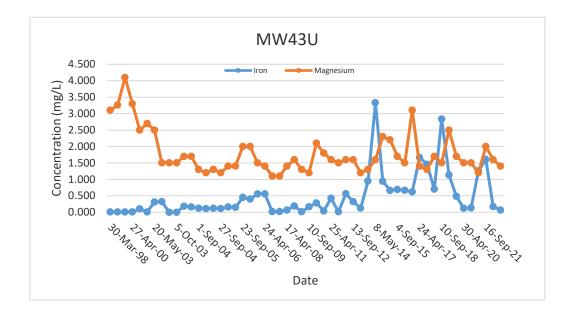


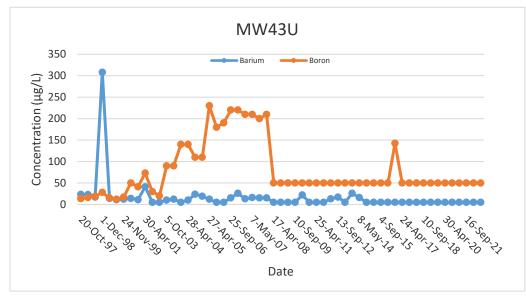


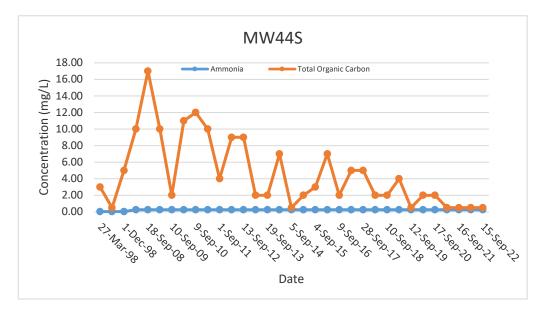


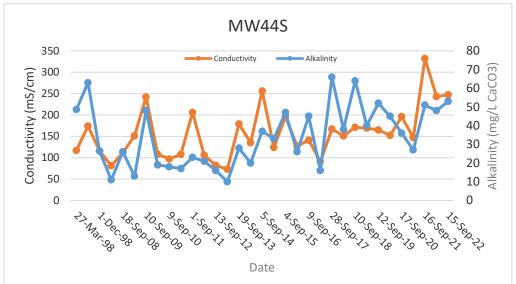


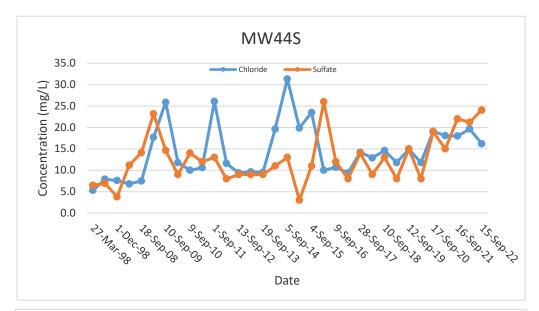

Appendix J: Trend Graphs MW43U 1997 - 2022

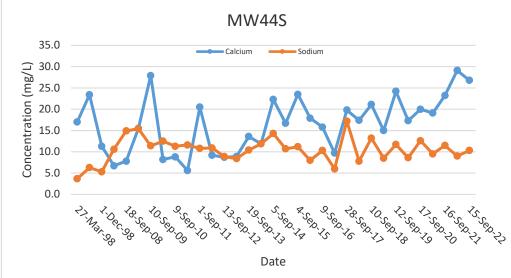




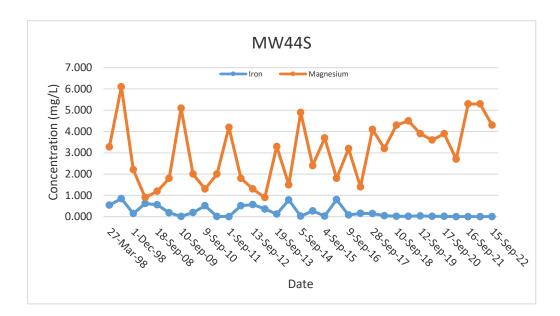


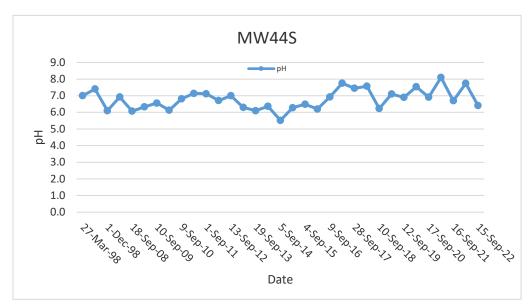


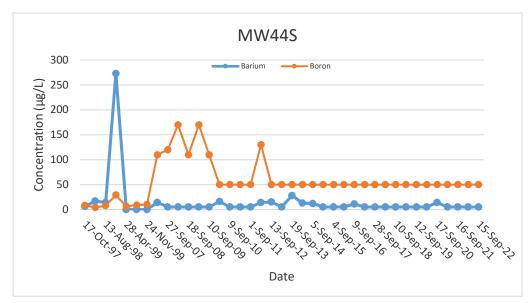




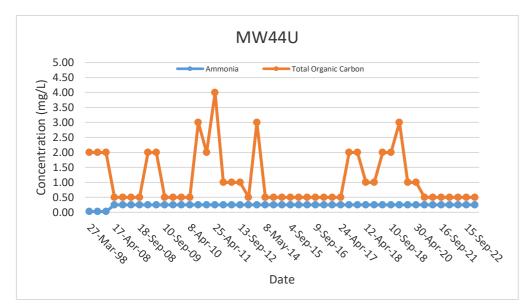
Appendix J: Trend Graphs MW44S 1997 - 2022

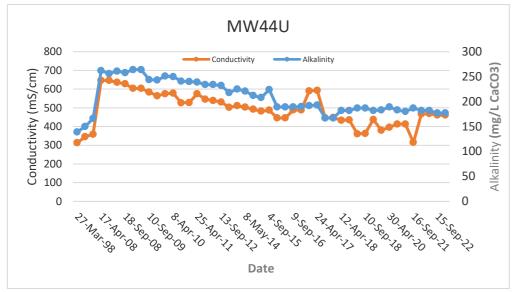


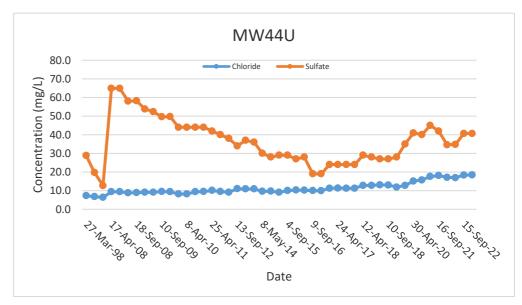


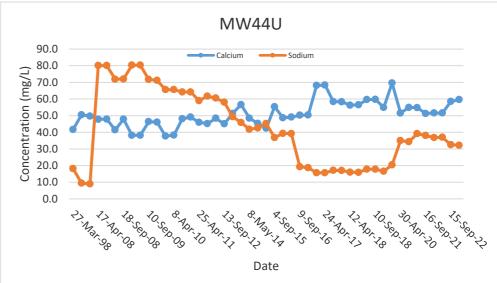


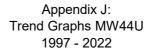
Appendix J: Trend Graphs MW44S 1997 - 2022

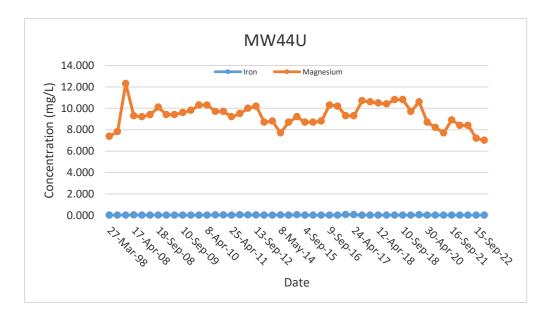


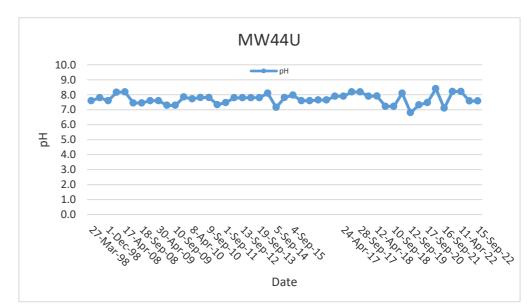


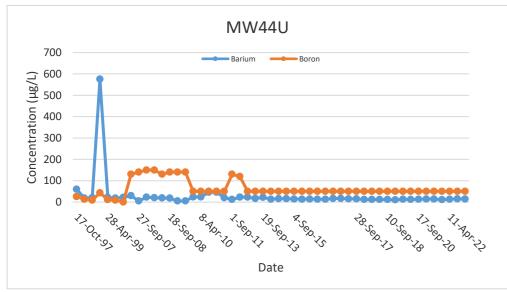


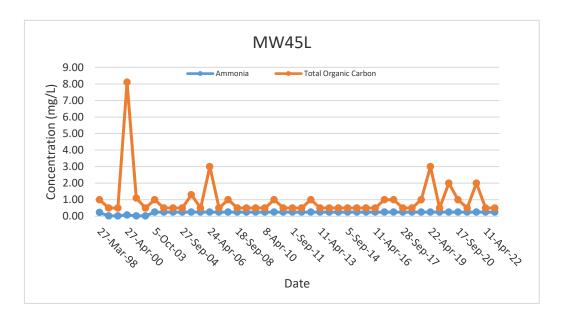


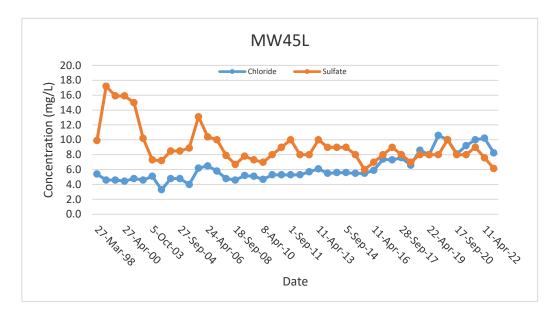

Appendix J: Trend Graphs MW44U 1997 - 2022

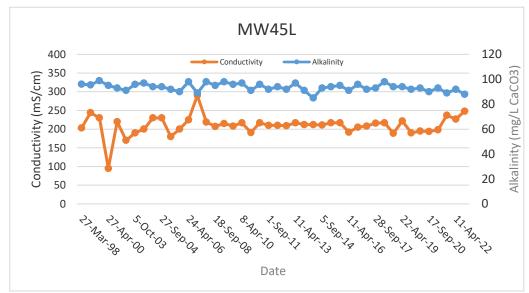


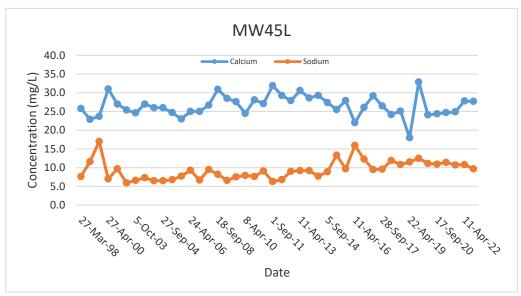


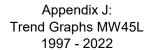


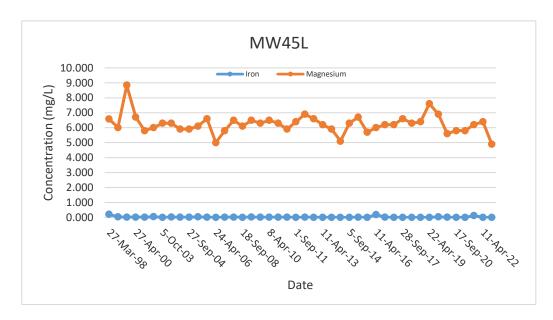


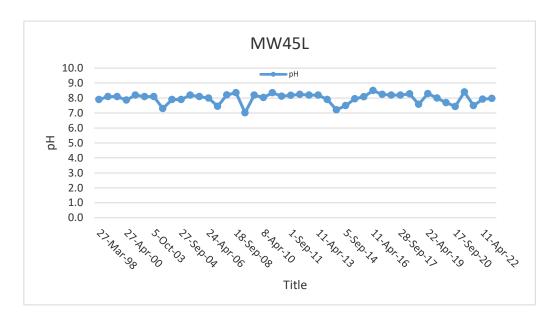


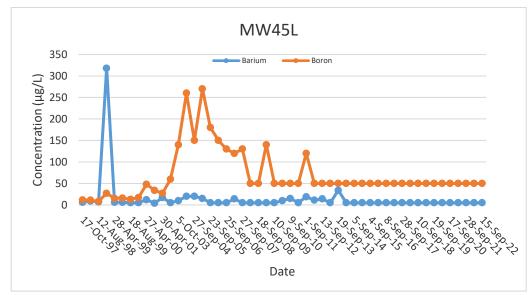


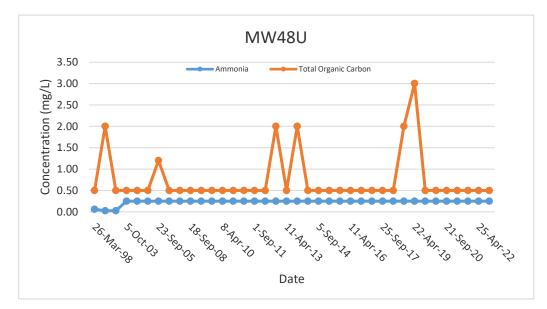


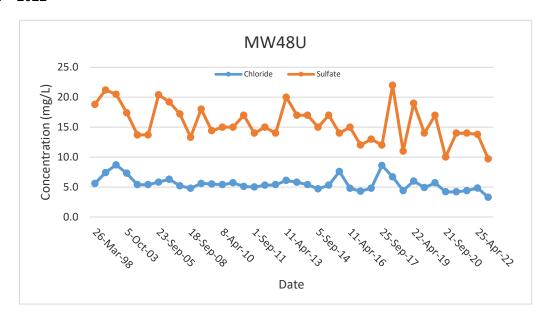

Appendix J: Trend Graphs MW45L 1997 - 2022

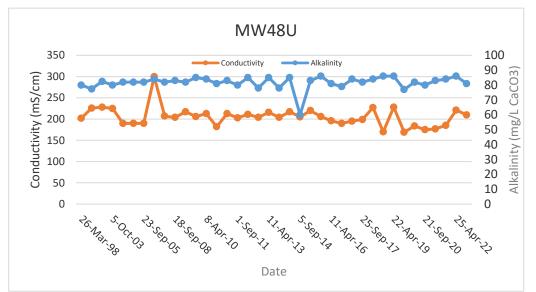


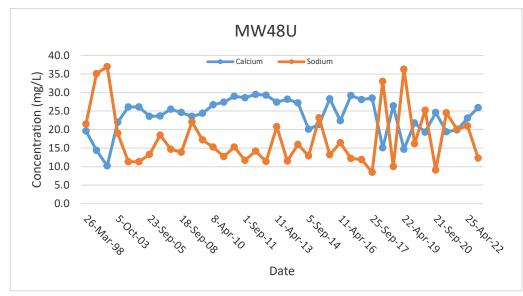


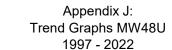


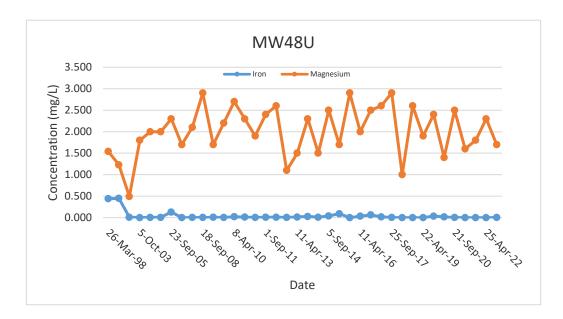


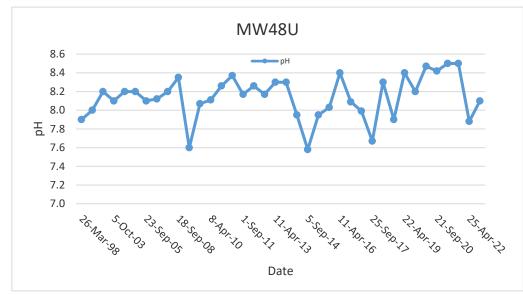


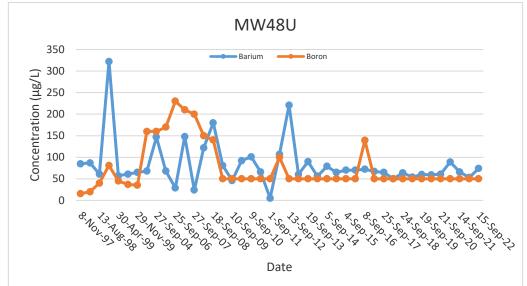


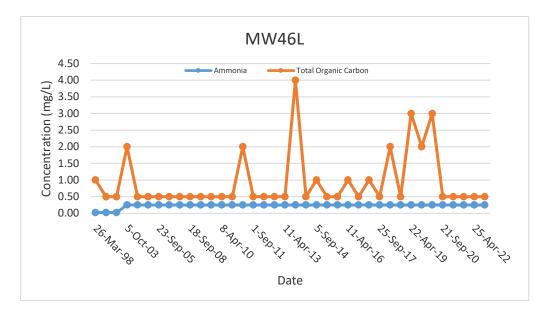


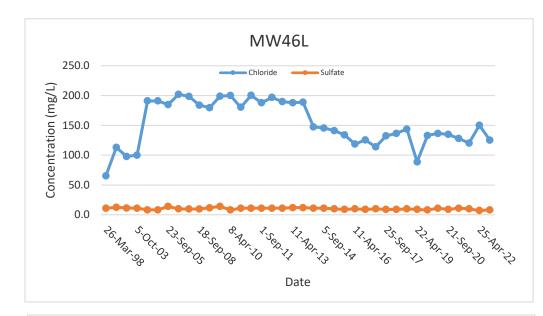

Appendix J: Trend Graphs MW48U 1997 - 2022

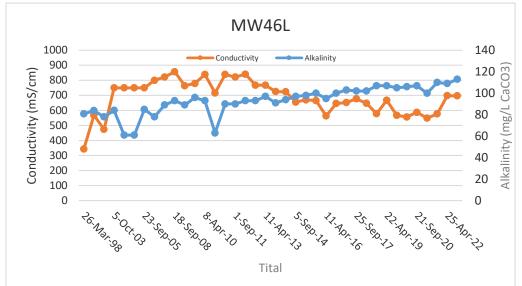


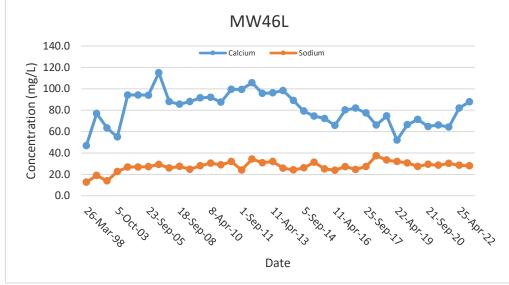


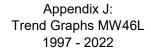


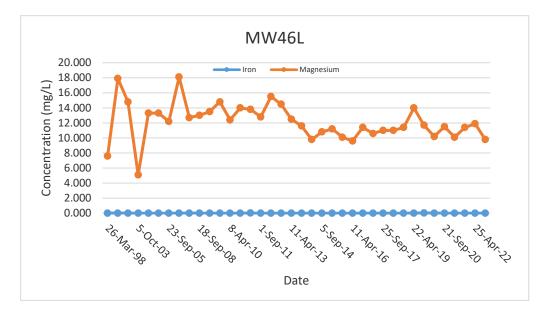


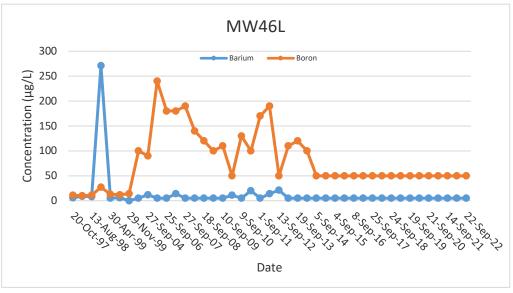


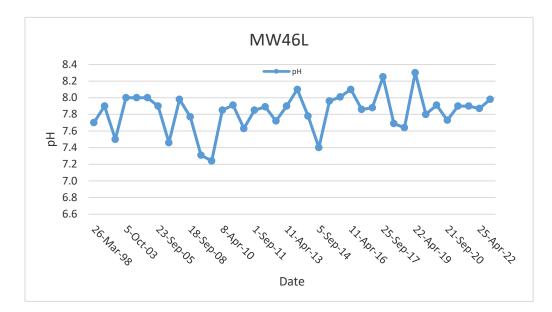


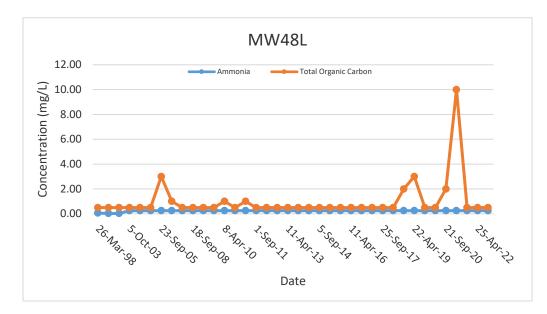


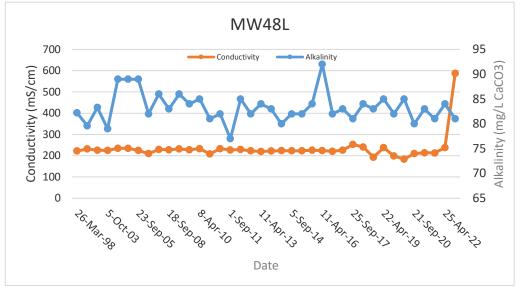

Appendix J: Trend Graphs MW46L 1997 - 2022

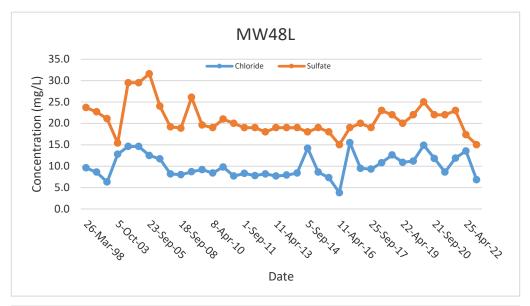


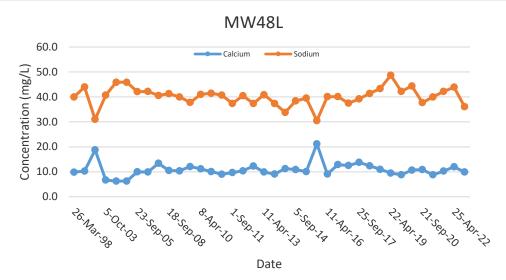




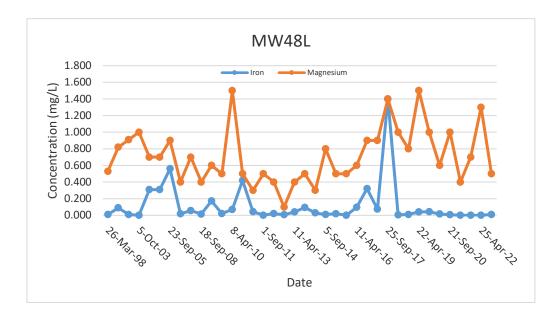


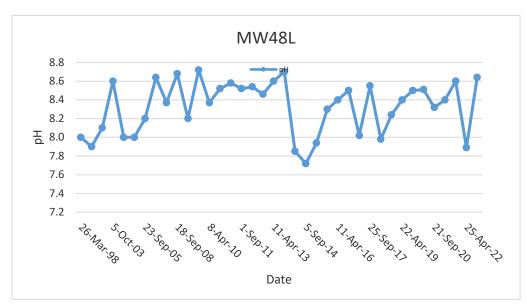


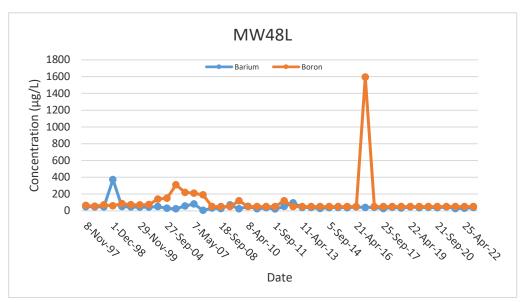


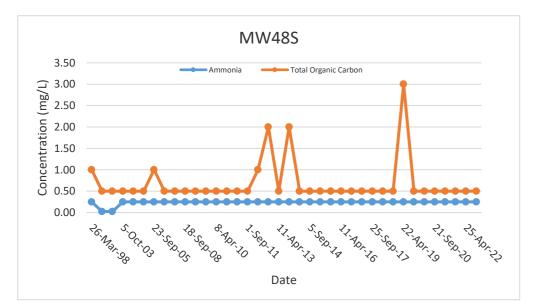


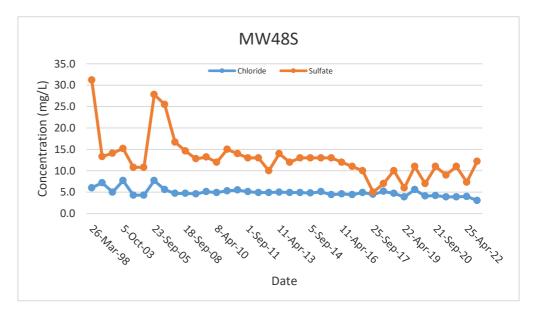
Appendix J: Trend Graphs MW48L 1997 - 2022

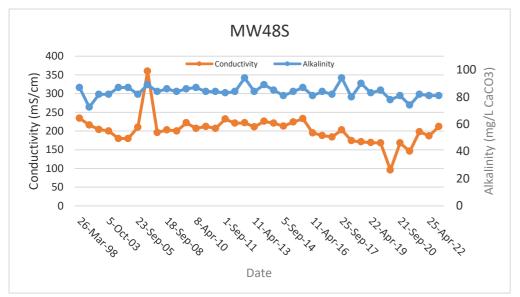


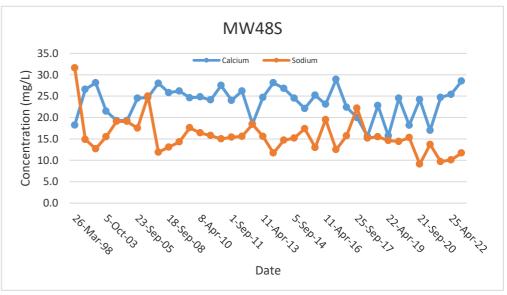




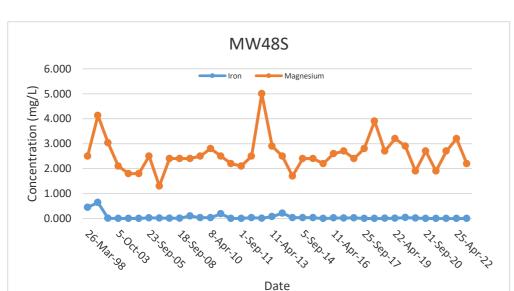


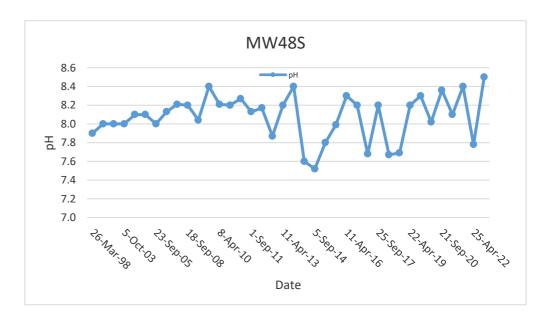


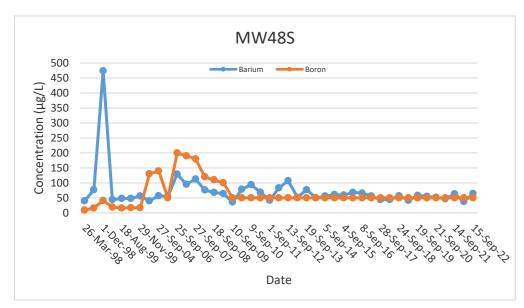


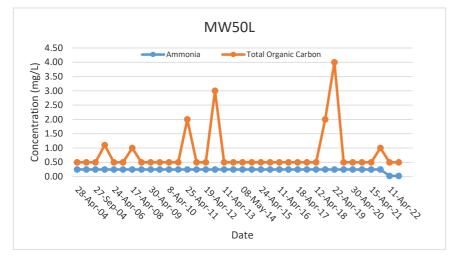


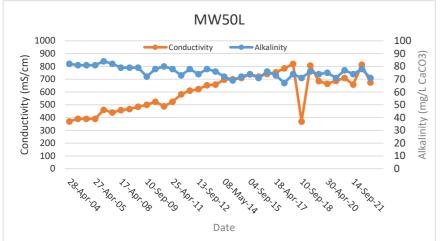
Appendix J: Trend Graphs MW48S 1997 - 2022

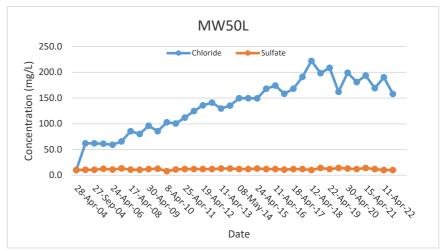


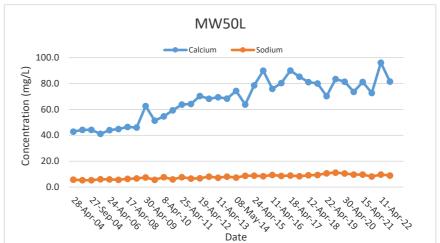




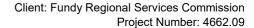


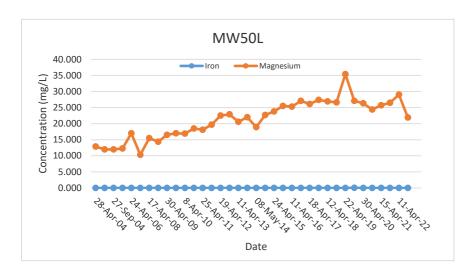


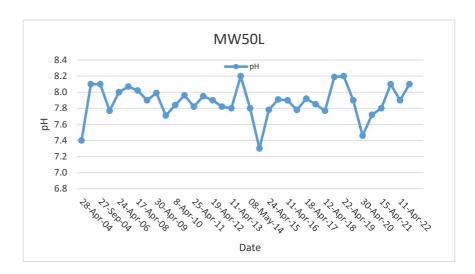


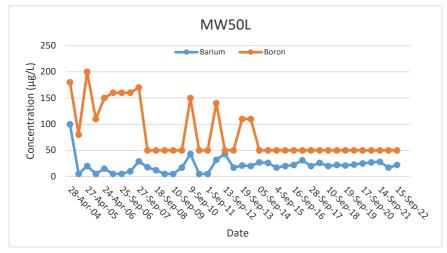


Appendix J: Trend Graphs MW50L 1997 - 2022

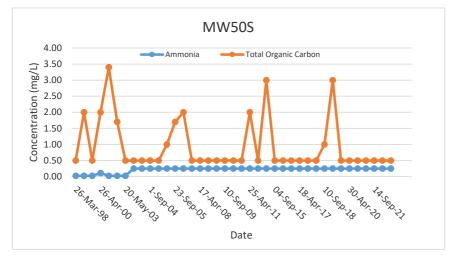




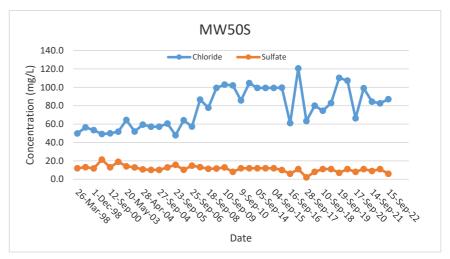


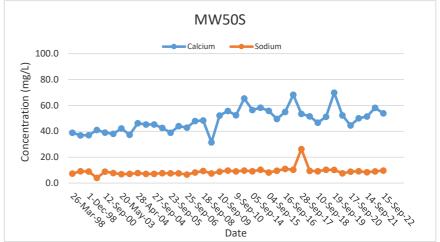


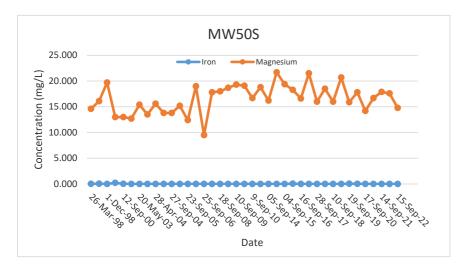


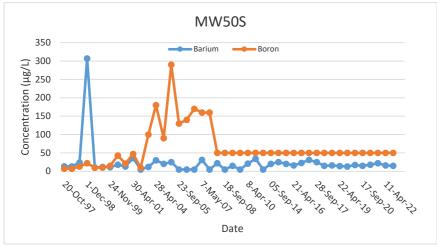

CONSULTING ENGINEERS AND SCIENTISTS

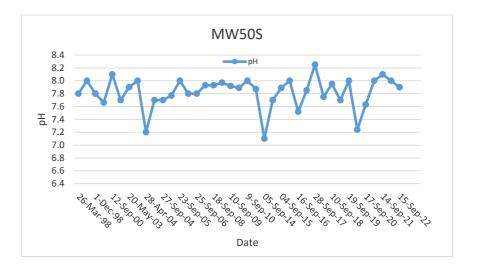


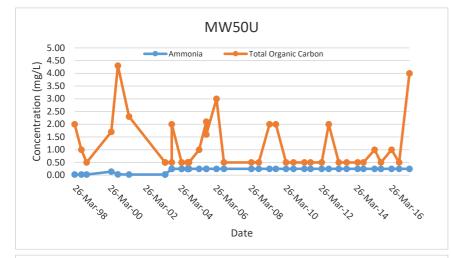


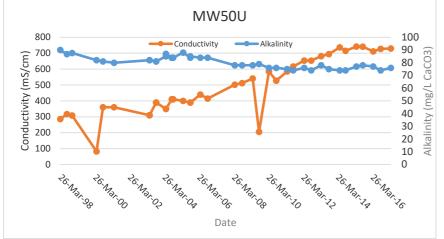


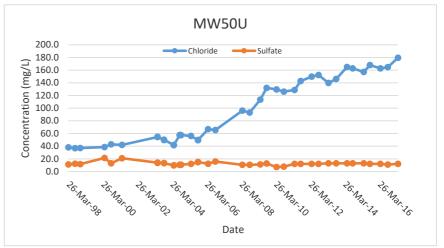


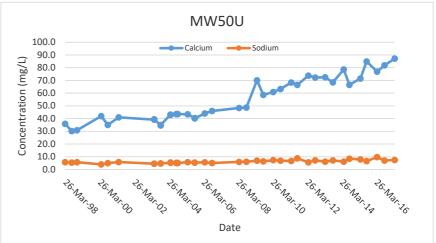


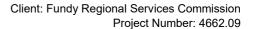


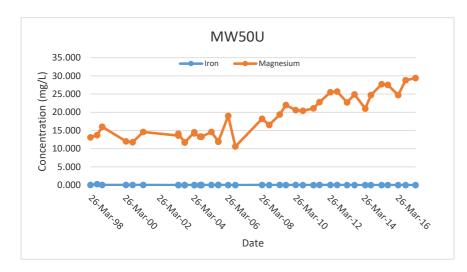


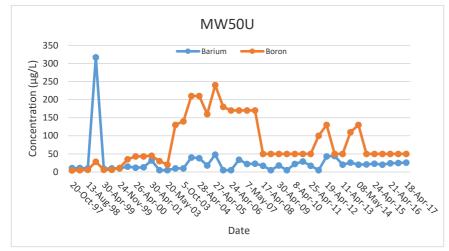




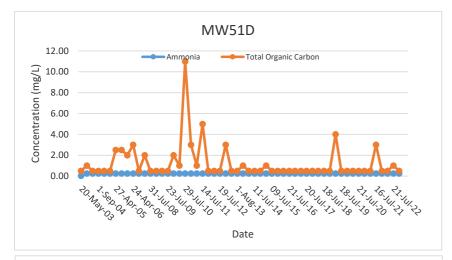


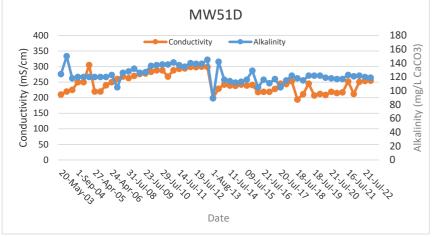


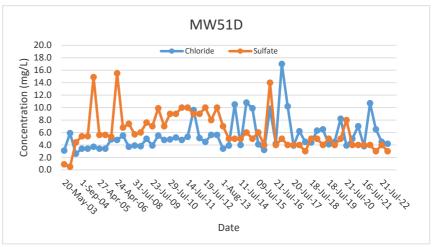


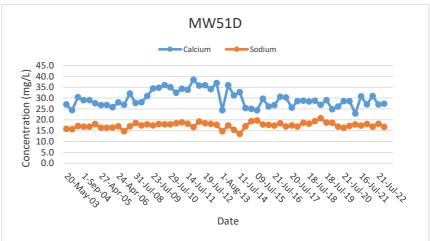


Appendix J: Trend Graphs MW50U 1997 - 2017

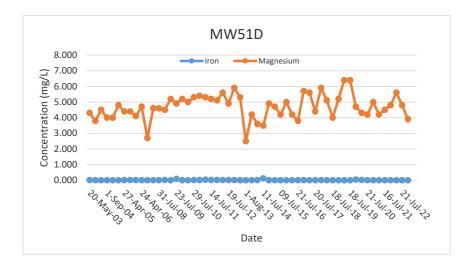




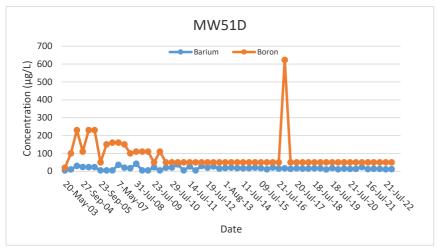




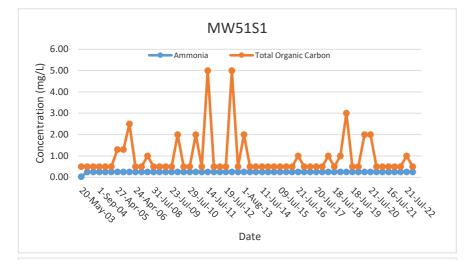
Appendix J: Trend Graphs MW51D 1997 - 2022

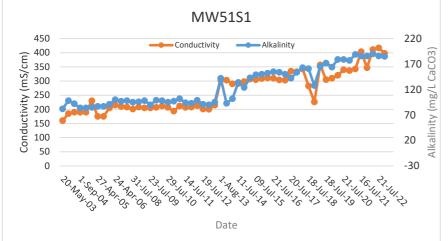


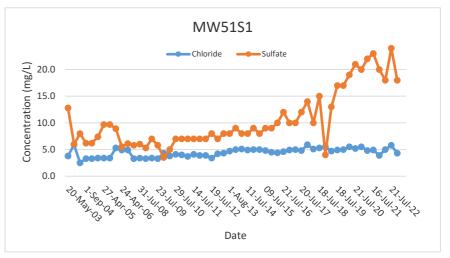


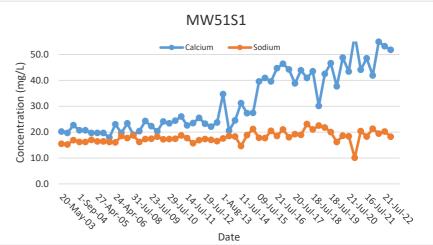


Appendix J: Trend Graphs MW51D 1997 - 2022

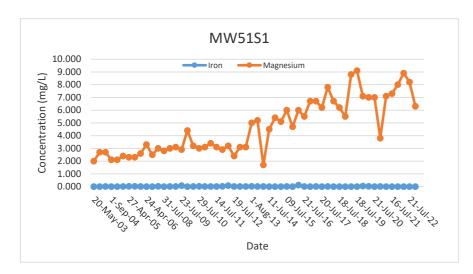


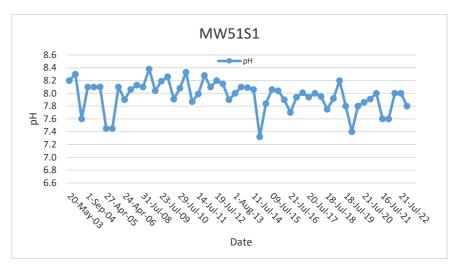


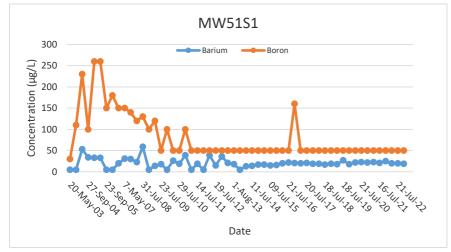




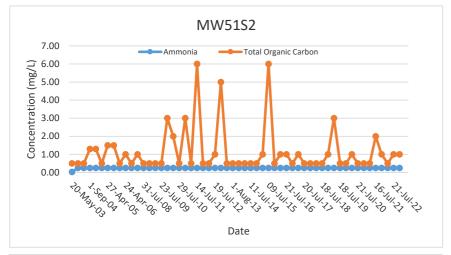
Appendix J: Trend Graphs MW51S1 1997 - 2022

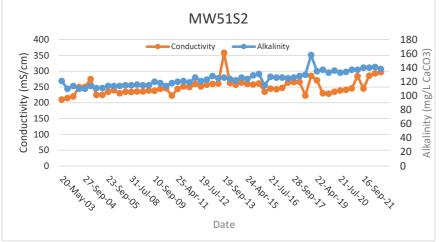


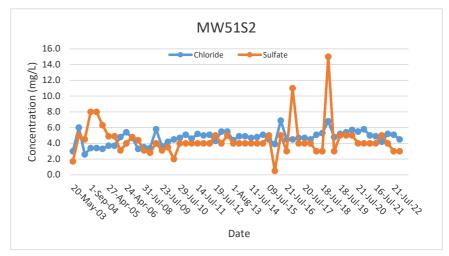


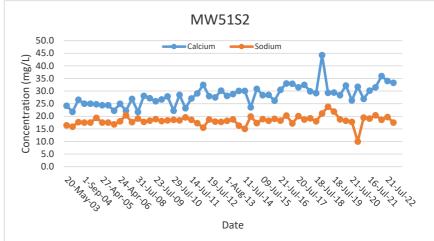


Appendix J: Trend Graphs MW51S1 1997 - 2022

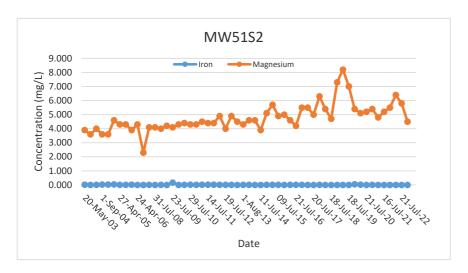


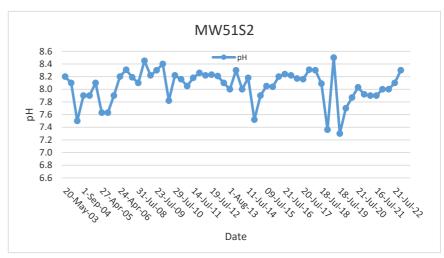


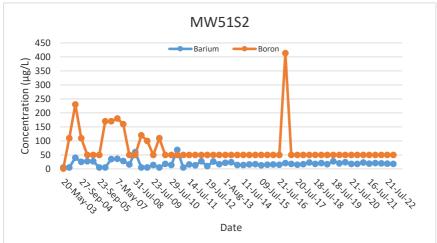



Appendix J: Trend Graphs MW51S2 1997 - 2022

Client: Fundy Regional Services Commission Project Number: 4662.09

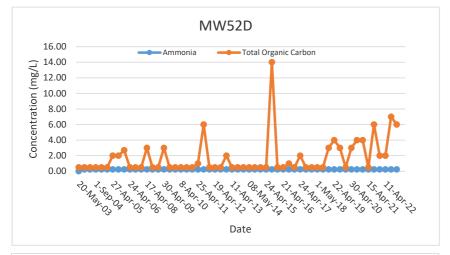


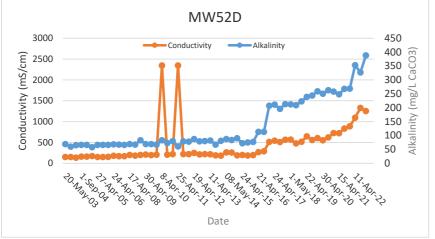


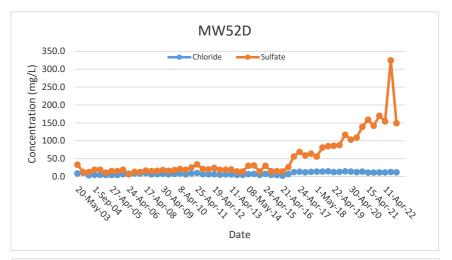


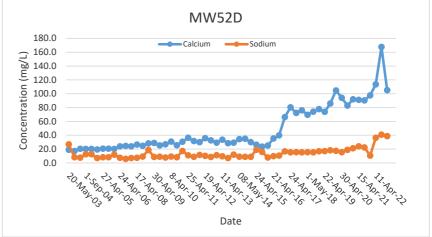
Appendix J: Trend Graphs MW51S2 1997 - 2022

Client: Fundy Regional Services Commission Project Number: 4662.09

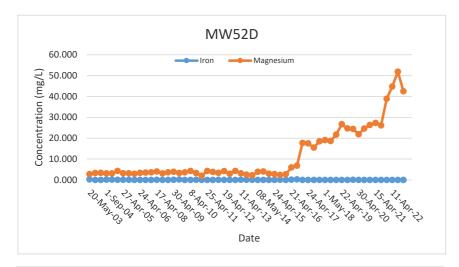


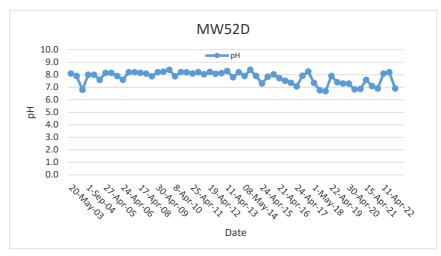


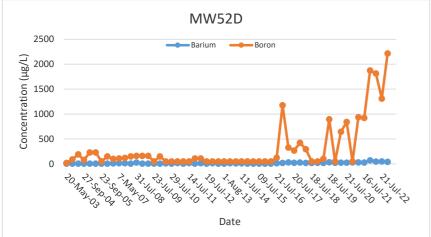




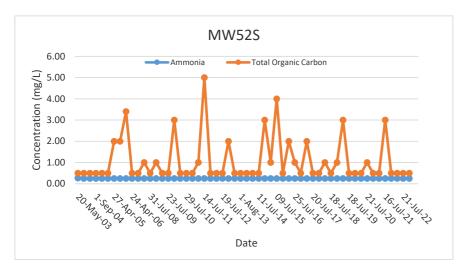
Appendix J: Trend Graphs MW52D 1997 - 2022

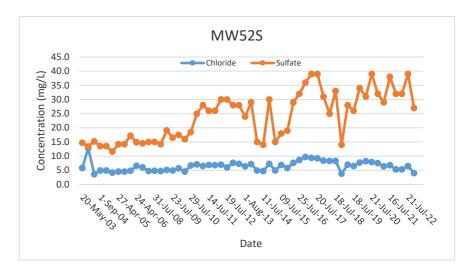


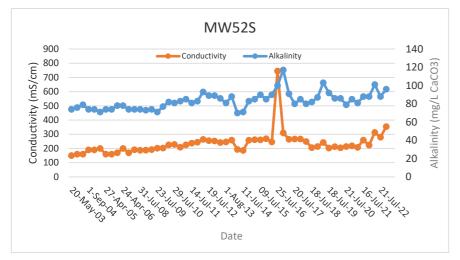


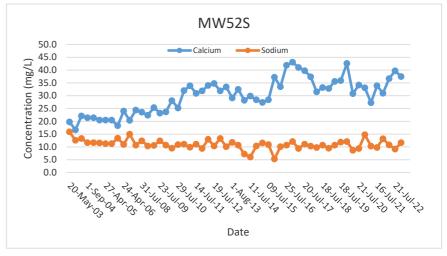


Appendix J: Trend Graphs MW52D 1997 - 2022

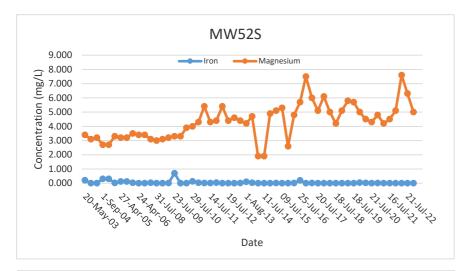


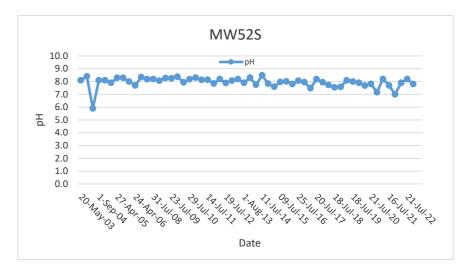


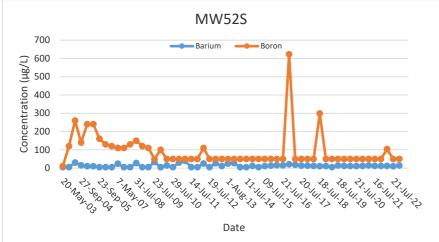




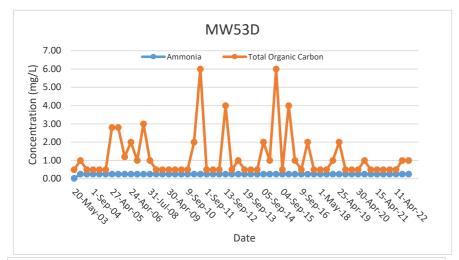
Appendix J: Trend Graphs MW52S 1997 - 2022

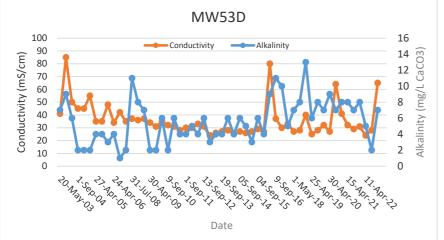


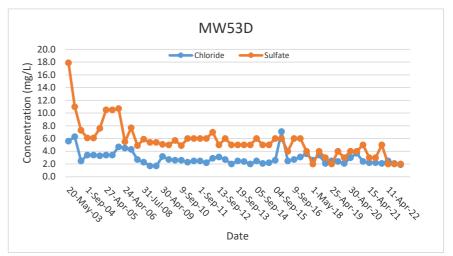


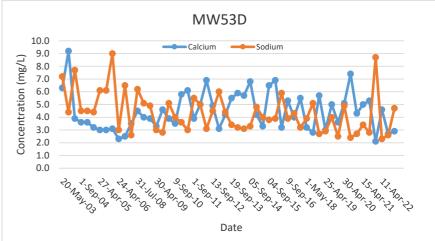


Appendix J: Trend Graphs MW52S 1997 - 2022

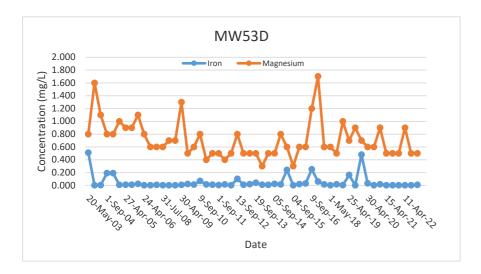


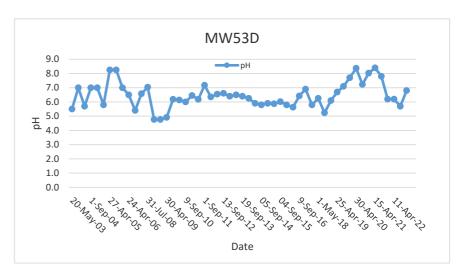


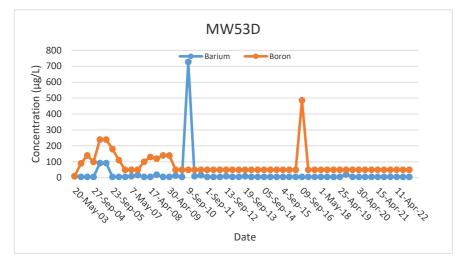




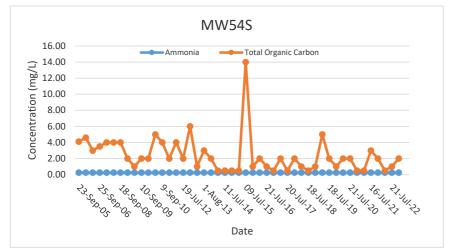
Appendix J: Trend Graphs MW53D 1997 - 2022

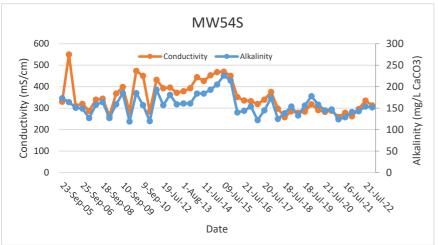


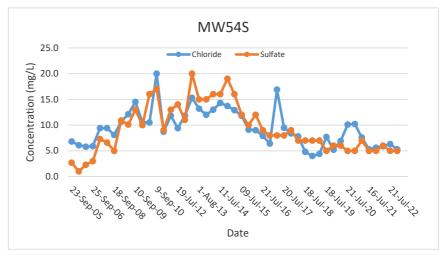


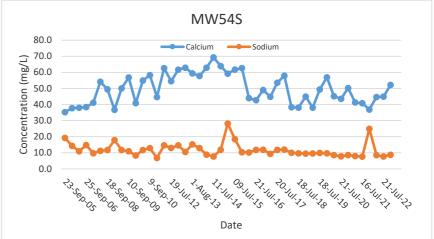


Appendix J: Trend Graphs MW53D 1997 - 2022

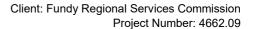


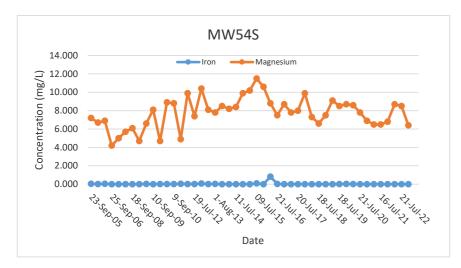


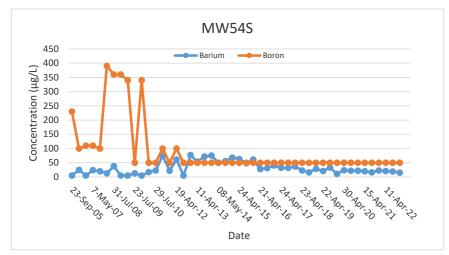


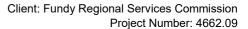

Appendix J: Trend Graphs MW54S 1997 - 2022

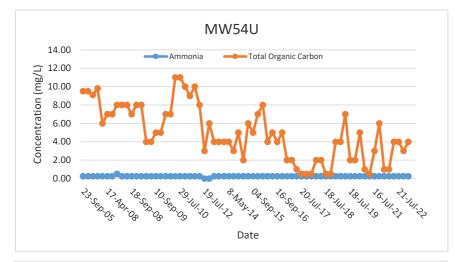
Client: Fundy Regional Services Commission Project Number: 4662.09

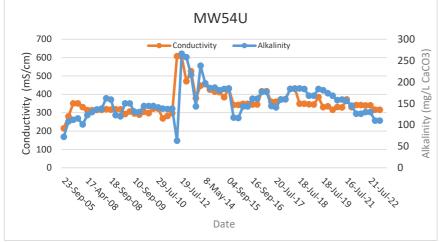


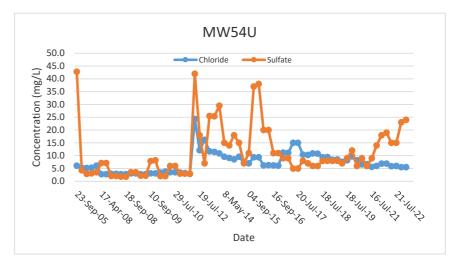


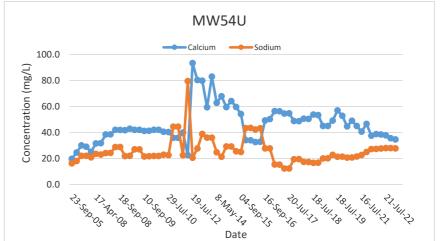


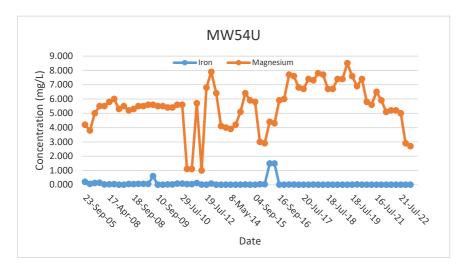

Appendix J: Trend Graphs MW54S 1997 - 2022

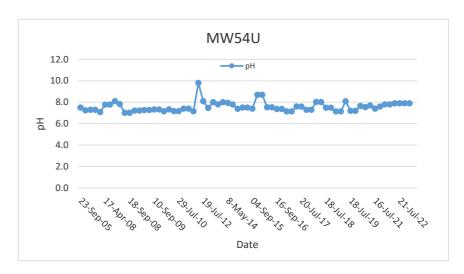


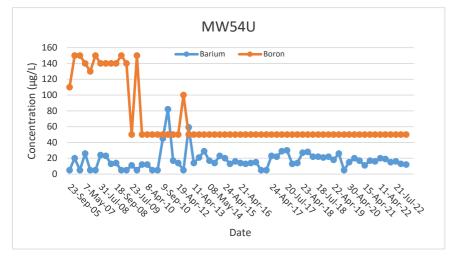




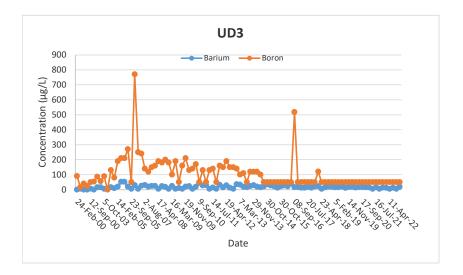


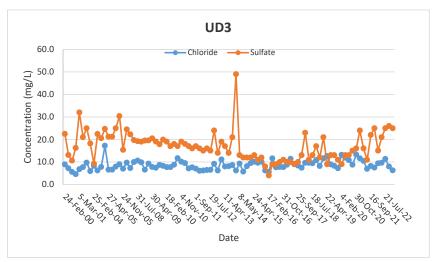


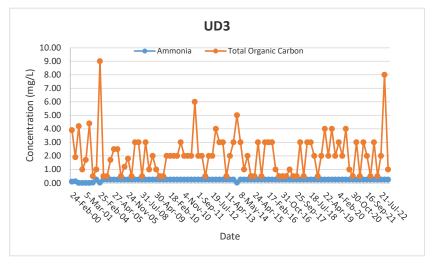


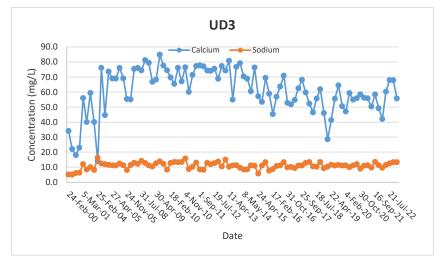


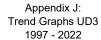
Appendix J: Trend Graphs MW54U 1997 - 2022

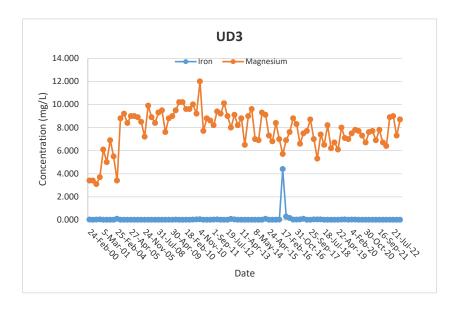


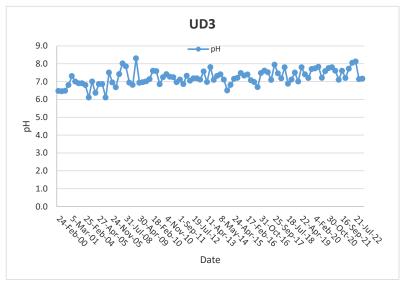


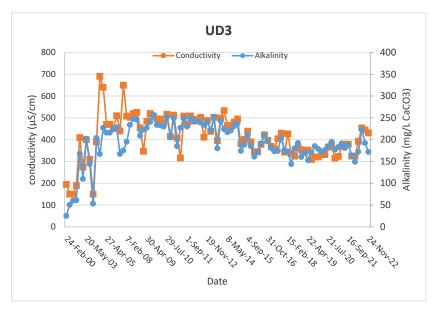


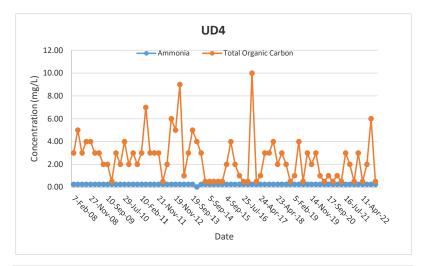


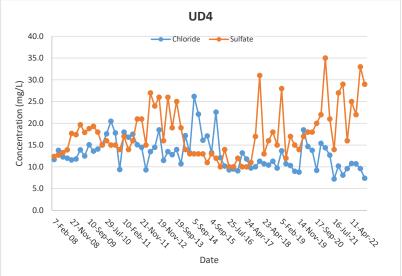


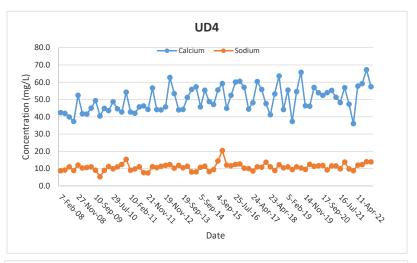


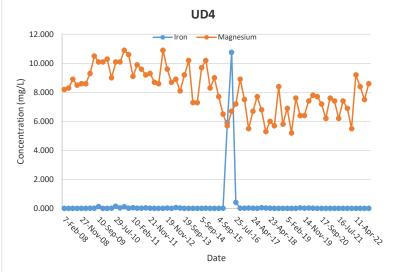


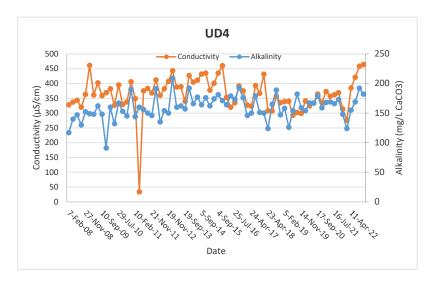


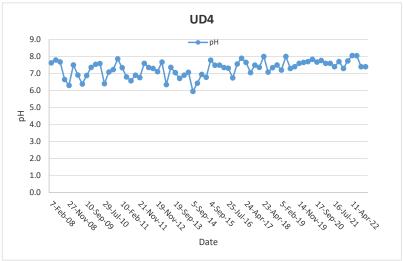


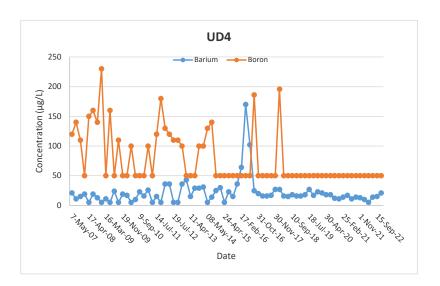


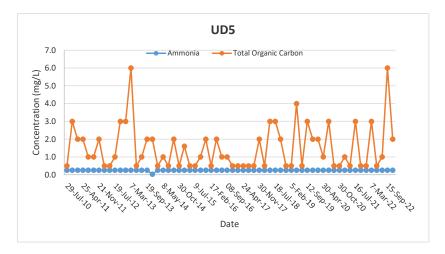


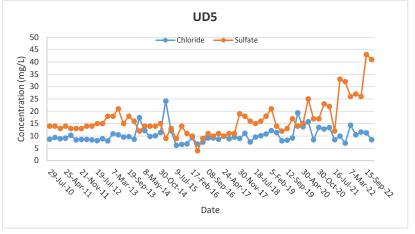


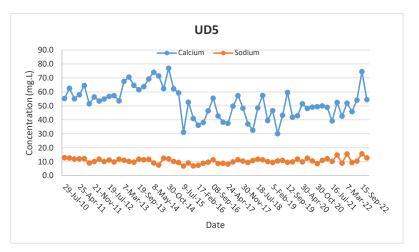


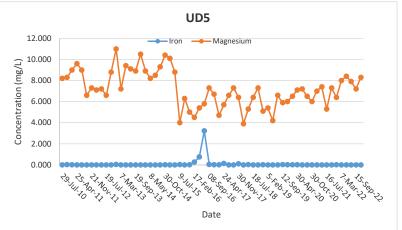


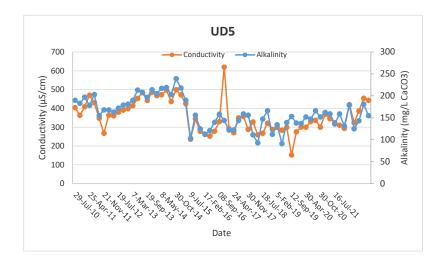


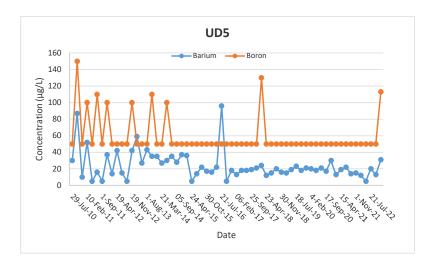


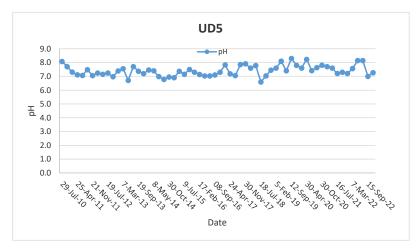


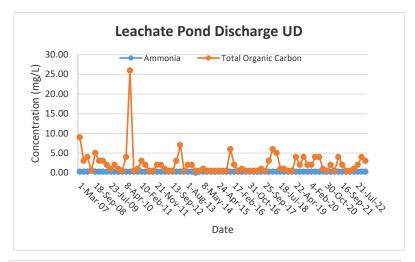


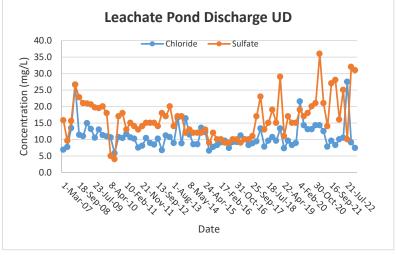


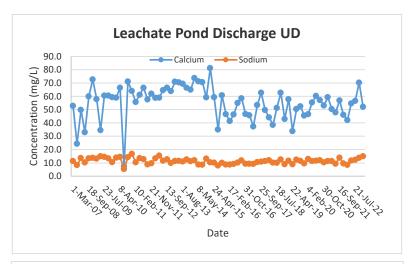


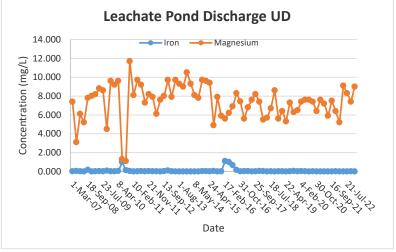




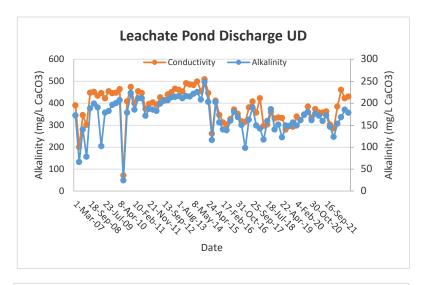


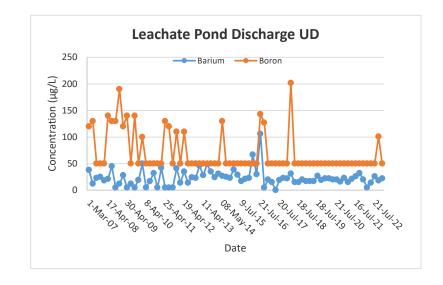


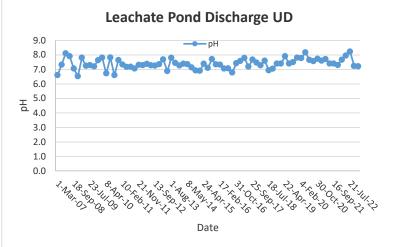




Appendix J: Trend Graphs Leachate Pond Discharge 1997 - 2022







Appendix J: Trend Graphs Leachate Pond Discharge 1997 - 2022

civil

geotechnical

environmental

structural

field services

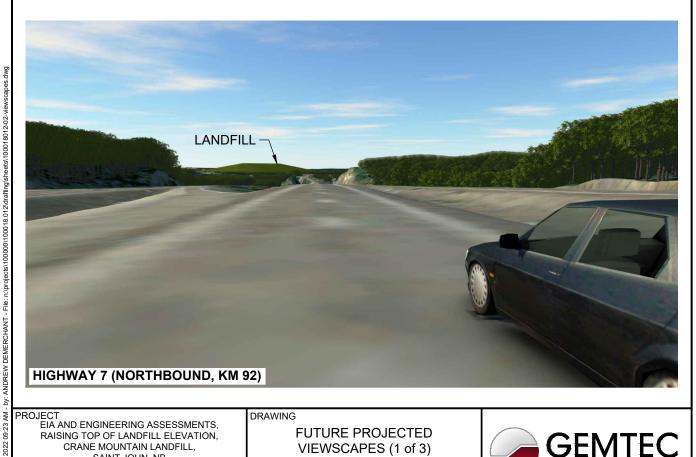
materials testing

civil

géotechnique

environnement

structures


surveillance de chantier

service de laboratoire des matériaux

PROJECT
EIA AND ENGINEERING ASSESSMENTS,
RAISING TOP OF LANDFILL ELEVATION,
CRANE MOUNTAIN LANDFILL,
CAINT JOHN NB SAINT JOHN, NB

DRAWING

FUTURE PROJECTED VIEWSCAPES (1 of 3)

DRAWN BY DATE DRAWING NO. REVISION NO. FILE NO. **AGSD** OCT, 2022 100018012-02 FIGURE H-1 0

PROJECT
EIA AND ENGINEERING ASSESSMENTS,
RAISING TOP OF LANDFILL ELEVATION,
CRANE MOUNTAIN LANDFILL,
CAINT JOHN NB SAINT JOHN, NB

DRAWING

FUTURE PROJECTED VIEWSCAPES (2 of 3)

DRAWN BY DATE DRAWING NO. REVISION NO. FILE NO. **AGSD** OCT, 2022 100018012-02 FIGURE H-2 0

2022 09:23 AM - by: ANDREW DEMERCHANT - File: n:\projects\100000\100018.012\drafting\sheets\100018012-02-viewscapes.dwg

PROJECT
EIA AND ENGINEERING ASSESSMENTS,
RAISING TOP OF LANDFILL ELEVATION,
CRANE MOUNTAIN LANDFILL, SAINT JOHN, NB

DRAWING

FUTURE PROJECTED VIEWSCAPES (3 of 3)

DATE DRAWING NO. REVISION NO. DRAWN BY FILE NO. **AGSD** OCT, 2022 100018012-02 FIGURE H-3 0

civil

geotechnical

environmental

structural

field services

materials testing

civil

géotechnique

environnement

structures

surveillance de chantier

service de laboratoire des matériaux

