

August 15, 2022

Project: 22-0264

c/o Keith Munn, President 1378 Route 8 Highway, Nashwaak Bridge, NB E6C 1T5

Attention: Justin Chase

Re: EIA Registration Document, Residential Development Glory View Estates, Penniac, New Brunswick

Boreal Environmental has prepared the following EIA Registration Document for the proposed residential development in the Glory View Estates community in Penniac, New Brunswick.

This report provides descriptions of the location, proposed activities, existing environment, potential impacts, and proposed mitigation for the project as well as a description of assessment work done to date and a description of additional planned studies.

Do not hesitate to contact the undersigned with any questions regarding the information presented herein.

Sincerely,

Derrick Mitchell, BScF, RPF.

Durch Metabell

President

Boreal Environmental Ltd.

Acronym	Definition
ACCDC	Atlantic Canada Conservation Data Centre
BMP(s)	Best Management Practice(s)
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
ECCC	Committee on the Status of Endangered Wildlife in Canada
EIA	Environmental Impact Assessment
NBNRED	(New Brunswick) Department of Energy and Resource Development
NBDELG	New Brunswick Department of Environment and Local Government
NBESA	New Brunswick Endangered Species Act
NBSARA	New Brunswick Species at Risk Act
NBHN	New Brunswick Hydrographic Network
PID	Parcel Identifier
SAR	Species at Risk
SARA	Federal Species at Risk Act
SNB	Service New Brunswick
socc	Species of Conservation Concern
TRC	EIA Technical Review Committee
WAWA	Watercourse and Wetland Alteration (Regulation)

Table of Contents

T	able of Co	ntentsntents	iv			
1	Introd	Introduction1				
2	Propo	nent and Project Information	1			
3	Projec	t Description	2			
	3.1 F	Project Location	2			
	3.2 F	Project Overview	2			
	3.3 F	Project Rationale	3			
	3.4	Siting Considerations	4			
	3.5 F	Physical Components and Dimensions of Project	5			
	3.6	Construction Details	5			
	3.7	Operation and Maintenance Details	6			
	3.8	Operation and Maintenance Details	6			
	3.9	Documentation Related to the Undertaking	7			
4	Descri	iption of the Existing Environment	7			
	4.1 F	Physical and Natural Features	7			
	4.1.1	Topography	7			
	4.1.2	Watercourses and Fish Habitat	8			
	4.1.3	General Geology	12			
	4.1.4	Groundwater	12			
	4.1.5	Protected Wellfields/Watersheds	13			
	4.1.6	Ambient Air Quality	13			
	4.1.7	Existing Ambient Noise Levels	13			
	4.1.8	Flora and Fauna Species at Risk or of Conservation Concern	13			
	4.1.9	Wetlands and Vegetation	16			
	4.1.10	Birds and Bird Habitat	22			

		4.1.12	1 Environmentally Sensitive Areas	24
	4.2	2	Cultural Features	24
		4.2.1	Traditional Use	24
		4.2.2	Heritage resources	24
		4.2.3	Existing and Historic Land Uses	24
	4.3	3	Socio-Economic Considerations	25
5		Poter	ntial Environmental Impacts	25
6		Mitig	gation of Environmental Impacts	26
	6.1	1 '	Waste	26
	6.2	2	Harm to Migratory Birds	26
	6.3	3	Disturbance to Animal SAR and SOCC	26
	6.4	1	Loss of SAR or SOCC plants	27
	6.5	5	Noise and Airborne Emissions	27
	6.6	6	Dust Emission	27
	6.7	7	Loss or Degradation of Fish Habitat and Aquatic Habitat	27
	6.8	3	Loss of Wetland	28
	6.9	9	Minor Spills	28
	6.2	10	Stormwater Management Plan	28
7		Public	c and First Nations Engagement	28
8		Appro	oval of the Project	29
9		Proje	ect Funding	29
10)	Closu	ıre	29
11	ı	Refer	rences	31

FIGURES

Figure 1. Map of the Development Area, existing and undeveloped lots
$ thm:proposed_propose$
Figure 3. View of mapped watercourse taken near the western side of the Development Area looking east (upstream) toward the northern end of Inspiration Lane. There is no flow in the channel at the time of the visit and the steep slope would be impassable to fish
Figure 4. View of mapped watercourse looking west (downstream) toward Nashwaak river from within the western side of Development Area
Figure 5. Photo of larger 'pond' in western portion of development area designated as Wetland 2 on Figure 2. View is looking North toward Route 628. This wetland is part of the headwaters for the mapped watercourse shown on Figure 1.
Figure 6. Black ash (Fraxinus nigra) saplings in Wetland 1
Figure 7. Drainage ditch to the west of inspiration lane through which drainage from wetlands 3, 4, 5, 6, and 7 flows towards the Nashwaak River
Figure 8. View of planned cul-de-sac-location showing typical vegetation conditions across most of the development area
Figure 9. Example of a small grove of mature eastern hemlock adjacent to wetland 522
TABLES
Table 1. Summary of delineated wetlands by type, area, watercourse presence and associated watershed
Table 2. Summary of grouped functions for Wetland 2
Table 3. List of Bird Species Recorded within the Development Area During Point Counts
APPENDICES
Appendix A Atlantic Canada Conservation Data Centre (ACCDC) Data Report Appendix B Wetland Delineation Sheets Appendix C Wetland Photolog Appendix D WESP-AC Functional Assessment Summary Appendix E Vascular Plant List
Appendix F Breeding Birds Point Count Data

1 Introduction

Boreal Environmental (Boreal) was retained by Murray Munn and Sons Ltd. (herein "Proponent") to prepare an Environmental Impact Assessment (EIA) Registration Document for the expansion of a residential subdivision within the existing Glory View Estates Subdivision in Penniac, New Brunswick. The residential subdivision is proposed to be constructed on portions of the two properties identified by Service New Brunswick (SNB) as Parcel Identifiers (PIDs) 75226894 and 75537191.

This registration document is required under the New Brunswick Environmental Impact Assessment Regulation 87-83 of the Clean Environment Act. As per Item (t) of Schedule "A" of "A Guide to Environmental Impact Assessment in New Brunswick", the project is a major development outside an incorporated area.

2 Proponent and Project Information

Name of Undertaking Glory View Estates

Name of Proponent Murray Munn and Sons Ltd.

Address of Proponent 1378 Route 8 Highway, Nashwaak Bridge, NB E6C 1T5

Proponent Contact Keith Munn (same address as above)

(506) 461-6077

kgmunn@hotmail.com

Property Ownership Murray Munn and Sons Ltd.

EIA Contact Derrick Mitchell, Boreal Environmental Ltd.

Derrick@borealenvironmental.com

Bus: (506) 651-1346

511 Bay Street, Saint John, NB, E2M 7L3

3 Project Description

3.1 Project Location

The Glory View Estates project is a residential development in Penniac, New Brunswick located between Route 628 and the NB Trail along the Nashwaak River, with some developed lots located along the road frontage of Route 628. The development is within the former PIDs 75226894 and 75537191, but has been subdivided into residential lots, with 76 lots having been previously sold and developed and a further 20-24 lots yet to be developed as shown in Figure 1. The Project area includes both the 76 previously sold and/or developed lots and 20 -24 undeveloped lots as well as some of the parent PID 75537191 which is included as a potential option to include up to four additional residential lots. The Road network to access the lots has largely been developed and includes a portion of Route 628, Hemlock Street, and Inspiration Lane. The remaining 20-24 lots are only anticipated to require a cul-de-sac (approximately 350 m in length) to enter the six undeveloped lots that do not currently have road access in the center of the southern portion of the development.

3.2 Project Overview

The proposed undertaking consists of the previously constructed residential subdivision with lots constructed along Route 628 and along Hemlock Street and Inspiration Lane (Figure 1) for residential lots and home development. The relocation of Route 8 and associated interchanges to the east has facilitated access to properties along the Nashwaak Valley and these properties have become more desirable for residential development purposes. The adjacent property to the south has been developed for similar purposes.

While portions of the subject properties (PIDs 75226894 and 75537191) have been developed as residential lots as a part of the Glory View Estates development since 2000, the proposal to develop additional portions of the lands for residential purposes requires that the entire development be registered under the Environmental Impact Assessment Regulation (87-83) — Clean Environment Act; Schedule A, (t) all major residential developments outside of incorporated areas.

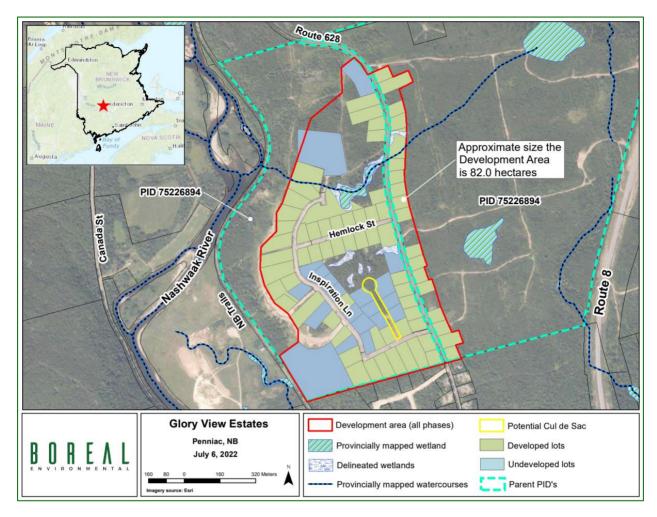


FIGURE 1. MAP OF THE DEVELOPMENT AREA, EXISTING AND UNDEVELOPED LOTS.

3.3 Project Rationale

As previously noted, sections of the parent PID properties have been developed in small phases since 2000. This project proposal is intended to enable the "build-out" of the properties to the west of Route 628 (including the previously developed residential lots on the east side of Route 628) (figure 1) for residential lots and home development. As previously stated, the re-development of Route 8 and associated interchanges has facilitated access to properties along the Nashwaak Valley and these properties have become more desirable for residential development purposes.

The proposed development is free of the flood prone area and would complete the development of Glory View Estates, adding tax revenue to the province (and future Nashwaak Ward) and will make provincial maintenance of the associated road network more cost-effective. There have been no maintenance or

drainage problems identified with the existing Inspiration Lane and Hemlock Street that might be amplified by adding additional density.

3.4 Siting Considerations

The development and the surrounding area a part of the proposed Nashwaak Ward (Entity 68), along with the communities of Stanley, Saint Marys, Estey's Bridge and Douglas. The local governance reform that will incorporate this Ward in currently underway. Future development plans or guidelines for this entity are not yet known.

This Registration seeks approval to develop areas within the Development Area as shown on Figure 1. However, the final layout of the 20-24 lots, including the identified undeveloped lots or any new potential lots, is subject to the approvals of this Environmental Impact Assessment (EIA) process.

Portions of the PID 75537191 have been omitted from the Development Area due to known constraints such as steep slopes and unmapped wetlands and will remain undeveloped. Wetlands within the Development Area will be avoided to the extent possible.

Existing wells on previously developed residential lots have been shown to have water quality that meets federal Drinking Water Quality Guidelines and no issues (quality or quantity) have been identified by existing homeowners. The proponent has engaged a qualified professional to undertake a Water Supply Source Assessment (WSSA) to ensure the is sufficient water to support the proposed development.

Additionally, there are two watercourse and wetland features on the lands proposed for development. On-site delineation of these features as a part of this EIA process will be carried out and information gained will be used to refine and finalize lot size and shape. This will also determine any further requirements for approval within the Watercourse and Wetlands Alteration Approvals process.

Lands are currently zoned Rural under the existing Rural Plan. The proposed development of residential lots is consistent with the current Rural Plan and the uses identified in the policies around a Rural zoning. Regional Service Commission 11 Planning and Development Authority will be informed through the EIA process.

To address specific requirements outlined by NBDELG in the Siting Considerations, we offer the following:

- Given the existing development and disturbance history of the Development Area, it is unlikely that archaeological resources would be identified on this site with historical context.
- It is understood that a WAWA permit will be required if the Project is approved.
- The Project is not located within Zone A or B as prescribed in "A Coastal Areas Protection Policy for New Brunswick".
- The Development Area is not within the provincially identified Flood Risk zone.

3.5 Physical Components and Dimensions of Project

The Project Includes 76 lots that have already been developed or sold over the last 20 years and 20 additional undeveloped lots, as well as some additional area to allow for flexibility to develop additional lots (to a maximum of 25 new lots) or redefine residential lot boundaries of some of the previously subdivided 20 undeveloped lots as needed, based on the findings of this EIA review. The extent of potential development area is 82 ha in size and is shown on Figure 1 as the Development Area. The final development layout is subject to mitigation required to avoid any sensitive features or other constraints identified through the EIA process. This would complete the planned residential development for the two properties and any subsequent proposal for development of the eastern portion of the properties will be subject to approvals processes that are in place at that time. Several areas of the Development Area may be reserved as land that will not be developed, although the configuration of these will also be determined by the EIA process based on findings of additional field surveys and feedback from the TRC (technical review committee).

The existing homes in the development have wells that have been developed following provincial guidelines, and the water quality and quantity information they provide will be utilized by the professional that will undertake the Water Supply Source Assessment for the proposed project.

All existing on-site wastewater management (septic) systems have been constructed to provincial standards, as will any additional future systems. All new roadways and required easements will be designed and constructed to provincial standards.

While the final layout and lot numbers have not yet been determined, the Project will include the following components:

- The 76 existing developed lots, their sceptic systems, and wells;
- The two roads that were constructed to access these lots (Hemlock Street and Inspiration Lane, which are provincially managed;
- Up to 24 new lots including the 20 undeveloped lots identified on Figure 1, along with their provincially regulated septic systems, and drinking wells; and
- A new, 350-metre-long additional cul-de-sac leading off Inspiration Lane, as shown on Figure 1 to be developed to DTI standards and ultimately maintained by the province.

3.6 Construction Details

The proponent will undertake the construction of the proposed cul-de-sac and potential pollutants that could be generated during the construction phase include:

Noise associated with the operation of machinery, vehicles, and equipment.

Airborne emissions (volatile organics) associated with the operation of machinery,

Vehicles and equipment.

- Dust associated with exposed soils and/or wind.
- Sediment in runoff during construction.
- Minor releases of hydraulic/diesel spills from equipment, vehicles and machinery operating onsite.
- Solid waste generated as part of general construction activities (i.e., excess PVC piping, concrete, asphalt, cardboard, plastics etc.).

The mitigation measures employed to reduce impacts to the environment are discussed in further detail in Section 6.0 of this report.

Following the completion of the below grade construction and finishing of the cul-de-sac, and the final step of construction consists of the individual development of the residential lots. The Proponent has indicated that the construction of the 20-24 residential dwellings will be built over a period of 10 years beginning in 2022, subject to market conditions. Individuals purchasing lots may choose to build/development in a later time frame.

3.7 Operation and Maintenance Details

Upon the completion of the construction of the infrastructure for the subdivision, each of the residential dwellings will be sold and privately owned. Therefore, the operation and maintenance that will occur post-construction will be the responsibility of the owner of the individual residences.

Potable water and septic systems will be maintained by the individual home owners. The well and septic systems will be located and designed according to provincial requirements and subject to any conditions of approval for this EIA. Typical domestic waste generated in the individual residences will be collected curb-side by regional waste management services on a weekly basis.

The maintenance and snow removal of the existing road infrastructure including Route 628, Hemlock Street and Inspiration Lane is conducted by the province. Any additional roads to access new lots, such as the cul-de-sac on Figure 1 would also be maintained by the province.

3.8 Operation and Maintenance Details

The Project will consist of the 76 existing lots and the development of a maximum 25 additional lots within the existing Glory View Estates development. The proponent is seeking approval to develop these 25 lots in any configuration within the Development area outside any constrained areas identified as a part of this approval process. Wetlands, watercourses, and rare species may affect the configuration of the development and the schedule of construction.

3.9 Documentation Related to the Undertaking

Any relevant documentation that was currently available has been Appended to this registration document, but several environmental field studies have yet to be completed and documented. These studies will be submitted as addendums to the application once complete.

Documents appended to this report or to be submitted as completed:

- Water Supply Assessment
- ACCDC Report (Included in Appendix A)

4 Description of the Existing Environment

4.1 Physical and Natural Features

The development area is in the Cardigan Ecodistrict of the Valley Lowlands Ecoregion as defined by Zelazny (2007). The Cardigan Ecodistrict is a gently rolling are of central New Brunswick that is bisected by the lower reaches of the Nashwaak River. The river divides two plateaus on either side that area around 150 m above sea level. The Development area is located along the hillside where the eastern plateau descends into the river valley. Several transportation corridors follow the river valley including the recently constructed Route 8 to the east, Canada Street (the former Route 8) on the western bank of the river, Goodspeed Road (a small farming road in the floodplain, and Route 628 (the river road) which passes through the Development Area. Watercourses in this area all flow into the Nashwaak River.

The predominant forest cover in the Cardigan Ecodistrict occurs on moist, mid-slope terrain like the Development Area and is composed of red spruce (*Picea rubens*), balsam fir (*Abies balsmaea*), and red maple (*Acer rubens*) with scattered hemlock (*Tsuga canadensis*) and white pine (*Pinus strobus*). Extensive communities of red maple, trembling aspen (*Populus tremuloides*), large-toothed aspen (*Populus grandidentata*), balsam fir, white birch (*Betula papyrifera*), and grey birch (*Betula populifolia*) occur on areas disturbed by logging activities (Zelazny 2007).

4.1.1 Topography

The site generally slopes to the west towards the Nashwaak River and is separated from the flood plain of the river by the New Brunswick Trail which is located along a decommissioned rail bed along the western edge of the Development Area. There are two major breaks in the westward slope: One along the western edge of the westernmost developed properties, and another along the extreme western margin of the Development area where the site slopes off steeply towards the NB Trail. These areas can be the site topography (Figure 2) and area considered generally inoperable and will largely be left undeveloped.

The floodplain of the Nashwaak River is immediately to the west of the NB Trail and is largely undeveloped due the frequency of flooding in spring.

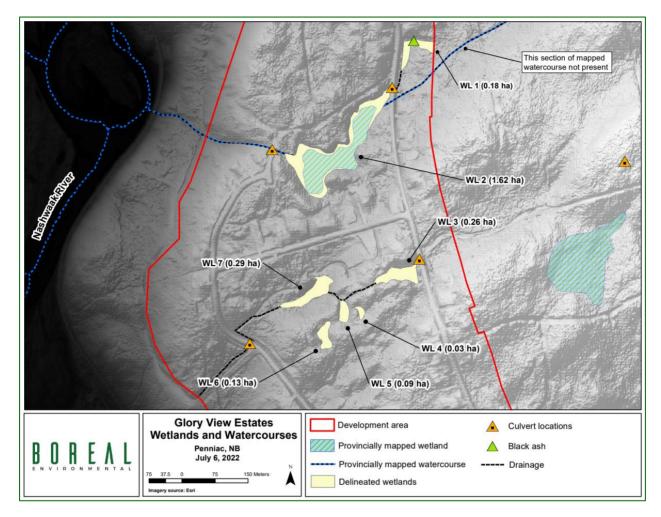


FIGURE 2. TOPOGRAPHICAL SITE MAP OF DEVELOPMENT AREA SHOWING SURFACE WATER FEATURES AND DRAINAGE.

4.1.2 Watercourses and Fish Habitat

Regulatory Framework

In New Brunswick, watercourses (and wetlands) are regulated by the New Brunswick Department of Environment and Local Government (NBDELG) through the Watercourse and Wetland Alteration Regulation (90-80) under the Clean Water Act. This regulation is intended to protect provincial streams, rivers, wetlands, and lakes from work or ground disturbance in their vicinity. Any person intending to do work (construction, demolition, clearing land, landscaping, etc.) within 30 metres of a watercourse or wetland must apply for a Watercourse and Wetland Alteration (WAWA) Permit to NBDELG. A watercourse is defined in New Brunswick as a feature in which the primary function is the conveyance or containment of water, which includes: the bed, banks, and sides of any incised channel greater than 0.5 metres in width that displays a rock or soil bed. Water or flow does not have to be continuous and may be absent during any time of year; or a natural or man-made basin.

Fish Habitat is regulated federally under the *Fisheries Act* by the Department of Fisheries and Oceans (DFO). The fish and fish habitat protection provisions of the *Fisheries Act* include: a prohibition against causing the death of fish, by means other than fishing (Section 34.4) a prohibition against causing the harmful alteration, disruption, or destruction of fish habitat (Section 35). Fish habitat defined in the *Fisheries Act* "means water frequented by fish and any other areas on which fish depend directly or indirectly to carry out their life processes, including spawning grounds and nursery, rearing, food supply and migration areas". Fish, defined in the *Fisheries Act* "includes (a) parts of fish, (b) shellfish, crustaceans, marine animals and any parts of shellfish, crustaceans or marine animals, and (c) the eggs, sperm, spawn, larvae, spat and juvenile stages of fish, shellfish, crustaceans and marine animals ". Our focus was on lotic gill bearing organisms with a cranium of bone or cartilage, and a body with fins. There are 56 known fish species in New Brunswick, with 42 being native to the province (Gautreau and Curry 2020). These species have different life history strategies that can require varied physiochemical conditions for different life processes.

Existing Conditions

The Nashwaak River, into which the Development Area drains to the west, was once known for its Atlantic Salmon recreational fishery but numbers of Salmon have declined, and the river has been closed to angling since the early 1990s. Other fish known to occur in the Nashwaak include brook trout, striped bass, smallmouth bass, fallfish, yellow perch and chain pickerel (Zelazny 2007). There are a total of 32 species of fish known to occur in the watershed (Curry and Gautreau 2010)

Field surveys, conducted by Boreal on June 7 and July 23, 2022, confirmed the presence of one provincially mapped (NBHN) watercourse that flows west through the northern portion of the Development Area. Ground truthing confirmed that this mapped watercourse had all provincially outlined parameters to be defined as a watercourse. Small seasonal drainages were observed in the centre of the Development Area (Figure 2), draining a series of small, unmapped wetlands into a network of roadside ditches that also flowed west. The drainages were differentiated from the watercourse by the absence of a incised channel and mineral substratum.

The mapped watercourse (Figure 1) is approximately 400 m long with a small, mapped, headwater wetland located to the east of the Development Area. The total catchment area for this watercourse was calculated using LiDAR derived digital elevation model as approximately 26 ha. It has a width ranging from 0.5 to 2 m, but widths mostly 0.5 m. It flows westward from that wetland through the northern portion of the Development Area through another, smaller mapped wetland before it descends a steep incline to the floodplain and into the Nashwaak River. The steep slopes (~45%) and many of the frequent large drops throughout the 400 m portion were identified as fish passage barriers. Although there was no water flowing in the channel during the field program, the geomorphological visualization of the consistent interchange between boulder drops and sloped cobble cascading with no pooling, shows a consistent high

velocity habitat not conducive to fish passage even for the largest, fittest of fish. Even if a large fish could pass up the small watercourse, there is no resting or rearing. The flow within the watercourse is seasonal and was dry at the time of the July 23 field survey. The portion of the watercourse within the Development Area was one long, cascade/waterfall mesohabitat, with a cobble/boulder substrate. The substrate characteristics are not optimal for plunge pool creation, adding to fish passage problems and a decrease in optimal habitat conditions in regard to riffle:pool ratio, as most fish require a respite from riffle/run velocities. No impact to watercourses is anticipated and will be avoided to the extent possible.

FIGURE 3. VIEW OF MAPPED WATERCOURSE TAKEN NEAR THE WESTERN SIDE OF THE DEVELOPMENT AREA LOOKING EAST (UPSTREAM) TOWARD THE NORTHERN END OF INSPIRATION LANE. THERE IS NO FLOW IN THE CHANNEL AT THE TIME OF THE VISIT AND THE STEEP SLOPE WOULD BE IMPASSABLE TO FISH.

FIGURE 4. VIEW OF MAPPED WATERCOURSE LOOKING WEST (DOWNSTREAM) TOWARD NASHWAAK RIVER FROM WITHIN THE WESTERN SIDE OF DEVELOPMENT AREA.

The channel of the watercourse is approximately 50 cm wide within the Development Area and does not match the path shown on provincial mapping at the eastern side of the Development Area. Figure 1 shows the correct watercourse alignment compared to the mapped alignment near where it crosses Route 628 through a small culvert. The actual watercourse does not appear to extend as far to the east of the Development Area, and likely originates within the delineated wetland east of the road. To the west of the road, the watercourse enters a large shallow emergent marsh that appears to have been human made as much as a century ago, possible excavated as a source of water for cattle. There is standing water among the mats of vegetation within the wetland and potentially some smaller fish species. The depth of the pond is uniform, at approximately 40 cm.

FIGURE 5. PHOTO OF LARGER 'POND' IN WESTERN PORTION OF DEVELOPMENT AREA DESIGNATED AS WETLAND 2 ON **FIGURE 2.** VIEW IS LOOKING NORTH TOWARD ROUTE 628. THIS WETLAND IS PART OF THE HEADWATERS FOR THE MAPPED WATERCOURSE SHOWN ON **FIGURE 1.**

4.1.3 General Geology

According to Zelazny (2007), the bedrock in the area is composed almost entirely of Carboniferous sedimentary rocks. Most of these lithologies consist of grey to olive sandstone and conglomerate with minor siltstone and shale. Strata of red sandstone, conglomerate, and siltstone also are situated in patches near Cross Creek and McLeod Hill.

A large glaciofluvial deposit belonging to the Riverbank Soil Unit overlies Penniac Brook, whereas more recent alluvial deposits cover the Nashwaak and Tay River valleys. Both deposits are coarse textured and very gravelly with low fertility. The alluvial deposits, tend to be capped with the more fertile, fine-grained silts and sands of the Interval Unit.

The Generalized Surficial Geology Map of New Brunswick (Rampton, V.N. 1984) identifies general surficial soils as loam, silt, gravel, and rubble to a depth of 0.5 to 3 m).

4.1.4 Groundwater

The developed lots of Glory View Estates residential development is serviced by privately owned wells for water supply. Most of the maximum proposed 100 total lots are already supplied with groundwater and no water supply issues have been identified. Drinking water quality meets Canadian federal guidelines for drinking water quality. No groundwater water supply issues are anticipated for a complete buildout

of the remaining lots, but a water supply source assessment (WSSA) is being conducted by a qualified professional and the report will be submitted to ELG and provided as an addendum to this registration.

4.1.5 Protected Wellfields/Watersheds

There are no protected wellfields or watersheds in the proposed development area.

4.1.6 Ambient Air Quality

The Development Area is centered around an existing residential subdivision. Air quality is consistent with conditions expected to be present within a rural residential area. There is currently no significant generation of dust or other emissions in the area surrounding the Development Area.

4.1.7 Existing Ambient Noise Levels

The Development Area includes the existing residential subdivision. Ambient noise levels are consistent with conditions expected to be present within a rural residential area (i.e., minor traffic noise, lawnmowers, etc.). There are no major contributors to ambient noise levels in the surrounding area.

4.1.8 Flora and Fauna Species at Risk or of Conservation Concern

Regulatory Framework

Some species of flora and fauna are protected by federal and/or provincial Species at Risk legislation such as the federal Species at Risk Act (SARA) and the New Brunswick Species at Risk Act (NBSARA). Species at Risk are considered those listed as extirpated, endangered, threatened, or special concern by the federal Species at Risk Act (SARA), the New Brunswick Species at Risk Act (NB SARA), or by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Other non-protected species covered in this section include those species that are not listed under federal or provincial legislation but are considered rare in New Brunswick, or the long-term sustainability of their populations has been evaluated as tenuous and may compromised by major developments. These species are referred to here as Species of Conservation Concern (SOCC) and are defined as species ranked S1 (critically imperiled), S2 (imperiled), or S3 (vulnerable) in New Brunswick by the Atlantic Canada Conservation Data Centre (AC CDC).

Existing Conditions

The only SAR or SOCC species encountered during field surveys for birds, wildlife or plants was Black Ash (*Fraxinus nigra*), ranked S3S4 by the ACCDC and assessed as Threatened by the committee for the Status of Endangered Wildlife in Canada (COSEWIC) in 2018 due to the threat from the introduced emerald ash borer beetle which has the potential to devastate all native ash species. This species is not yet protected under Schedule A of SARA. Multiple saplings of this species were found at the location shown on Figure 2 at the northern end of Wetland 1 where no development will occur. The project is not anticipated to affect the black ash trees there.

FIGURE 6. BLACK ASH (FRAXINUS NIGRA) SAPLINGS IN WETLAND 1.

To determine the potential for presence of other Species at Risk (SAR) or SOCC not encountered in field surveys, a data report for the Development area was obtained from the ACCDC (Appendix A). This report does not include any SAR or SOCC from within the Development Area. There are 2 known records of vascular plant SOCC and SAR occurring within five kilometers of the Development Area, including a record of butternut (*Juglans cinerea*) (*Endangered* under SARA and NBSARA) occurring along the Nashwaak to the west; and a dwarf ginseng (*Panax trifolius*) (S3) record occurring approximately 3 km to southeast of the development area.

For fauna there are two **fish** SAR records listed within 5 km of the development area:

Atlantic Salmon – Inner Bay of Fundy population (Salmo salar pop 1.) (Endangered under SARA and NBSARA) located within the Nashwaak River to the north; and

 American Eel (Anguilla rostrata) (Threatened under NBSARA) located within the Nashwaak River to the north.

Additionally, there are 10 **bird** SAR listed in the report as occurring within 5 km of the Development Area, including:

- Eastern Whip-poor-will (Antrostomus vociferus), (Threatened under SARA and NBSARA);
- Bank Swallow (Riparia riparia), (Threatened under SARA);
- Barn Swallow (Hirundo rustica), (Threatened under SARA and NBSARA);
- Eastern Wood Peewee (Contopus virens), (Special Concern under SARA and NBSARA);
- Olive-sided Flycatcher (Contopus cooperi), (Threatened under SARA and NBSARA);
- Bobolink (Dulichonyx oryzivorus), (Threatened under SARA and NBSARA);
- Evening Grosbeak (Coccothraustes verspertinus), (Special Concern under SARA);
- Common Nighthawk (Chordeiles minor), (Threatened under SARA and NBSARA);
- Canada Warbler (Cardellina canadensis), (Threatened under SARA and NBSARA); and
- Bald Eagle (Haliaeetus leucocephalus), (Endangered under NBSARA).

In addition to these bird SAR, there were records for eleven bird SOCC within 5 km of the Development Area including Cliff Swallow (*Petrochelidon pyrrhonota*) (S2B); Northern Mockingbird (*Mimus polyglottus*) (S2B); Pine grosbeak (*Pinocola enucleator*) (S2B); Brown thrasher (*Toxostoma rufum*) (S2S3B); Baltimore Oriole (*Icterus galbula*) (S2S3B); Pine Siskin (*Spinus pinus*) (S3B); Kildeer (*Charadrius vociferus*) (S3B); Blackbilled Cuckoo (*Coccyzus erythropthalmus*); Scarlet tanager (*Piranga olivacea*); Rose-breated Grosbeak (*Pheucticus Iudovicianus*) (S3B); and Indigo Bunting (*Passerina cyanea*) (S3B).

The results of the bird survey are summarized below. None of these bird SAR or SOCC were recorded during the breeding bird fieldwork for the Development Area.

There is at least one record of wood turtle (*Glyptemis insculpta*) (Threatened under SARA and NBSARA) included within 5 km of the site and there is critical habitat identified for wood turtle in the proposed recovery strategy for wood turtles (Environment Canada 2016) identified in the lower Nashwaak watershed and along the lower Penniac Stream (approximately 2 km south of the Development Area), although the exact location of the critical habitat is not disclosed. The lower Nashwaak is known to support a population of wood turtles which are semi-aquatic but spend a significant proportion of their life cycle on land, travelling between feeding, nesting, and/or overwintering areas and are known to occur up to several hundred metres from watercourses although their occurrence decreases in likelihood with distance from suitable watercourses. While the Nashwaak River is known to be a suitable watercourse for foraging, nesting, and overwintering wood turtles, the unmapped watercourse within the Development Area is unlikely to support wood turtles. The location of the wood turtle record(s) near the Development Area is undisclosed. An assessment of the potential for wood turtle to occur with be included in terrestrial field surveys in 2022 and included as an addendum to this registration submission.

In addition to the above SAR and SOCC, there is one butterfly SOCC – Compton Tortoiseshell (*Nymphatus vaualbum*) (S3), and one SAR bumblebee called the Yellow-banded Bumblebee (*Bombus terricola*), (Special Concern under SARA).

4.1.9 Wetlands and Vegetation

Regulatory Framework

Wetlands are protected by the New Brunswick Watercourse and Wetland Alteration Regulation – Clean Water Act under the mandate set by the New Brunswick Wetlands Conservation Policy (NBDNR and NBDELG 1991). Any proposed alterations within a wetland, or within their 30 m regulated buffer, requires permitting and potential compensation through the NBDELG's Watercourse and Wetland Alteration (WAWA) Program. A preliminary desktop review of provincial mapping showed one wetland within the Development Area associated with the unnamed, mapped tributary to the Nashwaak River as shown on Figure 1. Another small, mapped wetland is present to the west of the NB trail, that falls within 30m of the Development Area. This wetland will not be directly or indirectly affected by the project but would require regulatory approval through the WAWA process for any disturbance that may occur within 30m.

Field Methods

Wetland and vegetation surveys were conducted on the property by Boreal on July 23, 2022. During the field surveys, any wetlands encountered were delineated in accordance with the Corps of Engineers Wetland Delineation Manual (Environmental Laboratory 1987) and the Draft Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (U.S. Army Corps of Engineers 2008).

Wetland data were recorded on a NBDELG wetland delineation data form provided in Appendix B. Atlantic Canada Conservation Data Center (ACCDC 2020) website was consulted for plant nomenclature, identification and wetland status. Munsell Soil Color Charts were used to identify hydric soils within the assessment area (Kollmorgan 1990).

Wetland habitat was identified using the following criteria in accordance with the Corps of Engineers Wetlands Delineation Manual:

- A majority of dominant vegetation species are wetland associated (hydrophytic) species;
- Hydrologic conditions exist that result in periods of flooding, ponding, or saturation during the growing season; and
- Hydric soils are present.

Data point locations were sampled to evaluate vegetation, hydrology, and soil data to support a determination of wetland or non-wetland status. The location of boundary and data points were recorded using a Trimble Nomad field computer and Garmin GLO GPS receiver with a stated accuracy of +/- 3 m.

Wetland functional assessment was completed for each wetland greater than 1 ha within the Development Area using the Wetland Ecosystem Services Protocol - Atlantic Canada (WESP-AC) wetland evaluation technique. The WESP-AC process involves the completion of three forms; a desktop review portion that examines the landscape level aerial conditions to which the wetland is situated, and two field forms. The process serves as a rapid method for assessing individual wetland functions and values.

A complete survey of all vascular plant species within the development area was conducted, recorded all species encountered and all locations of any plant SOCC or SAR.

Existing Conditions for Wetlands

A total of seven wetlands were encountered and delineated in the field by Boreal. Of the seven wetlands shown in Figure 2, only one was over one hectare (Wetland 2 at 1.62 ha), while all others combined area was less than one hectare. The drainage course that connects wetlands 3, 5 and 7 does not meet the provincial definition of a watercourse so these wetlands are not regulated under the WAWA Regulation. Wetland 1 is associated with a mapped watercourse, and while the watercourse does not meet the provincial definition of a watercourse at this location, the wetland is hydraulically contiguous with Wetland 2 and is considered to be regulated for the purposes of this report. Table 1 provides a summary of key parameters for each wetland delineated within the Development Area.

TABLE 1. SUMMARY OF DELINEATED WETLANDS BY TYPE, AREA, WATERCOURSE PRESENCE AND ASSOCIATED WATERSHED.

Wetland ID	Area (ha)	Wetland Type*	Associated	Associated Watershed	
			Watercourse		
WL 1	0.18	Drainageway swamp	Mapped (but does not	Nashwaak River	
			exist)		
WL 2	1.62	Basin marsh	Mapped Watercourse	Nashwaak River	
WL 3 and 7	0.26 and	Drainageway swamp	None	Nashwaak River	
	0.29				
WL 4, 5	0.04,	Basin marsh	None	Nashwaak River	
and 6	0.10, and				
	0.13				

^{*}Canadian Wetland Classification System (CWCS 1997)

Of these seven wetlands, wetland data points were conducted for all except for Wetland 4, which was very small and shares characteristics with Wetland 6 and so is represented by that data point. Upland data points were conducted for the largest two wetlands (WL 2 and WL 7) and are representative of the upland conditions for the others. The wetland data sheets are included in Appendix B. A photolog that includes representative wetland and adjacent upland photos for each wetland is included in Appendix C.

Wetland 1

Wetland 1 is the northernmost wetland in the Development Area, and the only one identified to the east of Route 628. This wetland was a Drainageway Swamp, dominated by mixedwood forest and shrub. The wetland may continue outside the Development Area to the east for a small distance, although it is not likely much larger than 0.2 ha in total. The wetland serves as the headwater for the only watercourse within the Development Area as shown on Figure 2. The location of this mapped watercourse in incorrectly shown on provincial mapping and does not meet the WAWA definition of a watercourse to the east of Route 628. Wetland 1 drains into Wetland 2 via a small, ~450mm culvert under Route 628.

Dominant vegetation cover in Wetland 1 is comprised of red maple (*Acer rubrum*), eastern cedar (*Thuja occidentalis*), yellow birch (*Betula alleghaniensis*), mountain maple (*Acer spicatum*), cinnamon fern (*Osmunda cinnamomea*), and spotted touch-me-not (*Impatiens capensis*). There was abundant poison ivy (*Toxicodendron radicans*) identified throughout the wetland.

Wetland 2

Wetland 2 was the only wetland that was greater than 1 ha and/pr contiguous with a watercourse and therefore meeting the provincial definition of a regulated wetland under the WAWA Regulation. The mapped watercourse shown on Figure 2 flows from the western side of the wetland and through a culvert under the end of Inspiration Lane.

Wetland 2 is a basin marsh and is similar to Wetlands 4, 5, and 6 in that they all appear to have been excavated many decades ago, possibly as water supplies for cattle. All three wetlands are shallow, uniform depth emergent marshes that occur in settings that area not typical for wetlands of those types in this region. Of these shallow marshes, Wetland 2 is the largest by far at 1.62 ha. The wetland has some open water areas but is generally well-vegetated, having large, dense matts of vegetation in the central areas. There were numerous frogs of a variety of species observed in the wetland.

The dominant vegetation cover in the wetland was comprised of broad-leaved pondweed (*Potamageton natans*), large fowl-mannagrass (*Glyceria grandis*), and woolgrass (*Scirpus cyperinus*).

A WESP-AC Functional Assessment was conducted for Wetland 2 as the only wetland over 1 ha and/or contiguous with a watercourse. A summary of the WESP-AC results for Wetland 2 is provided in Table 2 below and the full form is included in Appendix D.

The results are summarized in Table 3 as a 'Function-Benefit Product' (FBP) is calculated based upon the Grouped Functions and has a theoretical maximum of 100. Threshold values for the FBP are applied, in order to categorize the FBP scores into 'Low', 'Moderate' or 'High' scores. Thresholds are determined based upon the statistical distribution of WESP-AC scores compiled from various sites. These system of categorizing the functional importance of a wetland is borrowed from Nova Scotia, where it is used to identify wetlands of special significance (WSS). This index provides a useful summary of the WESP-AC

results and provides an estimation of the relative functional importance of this wetland compared to a set of representative benchmark wetland in the Maritime region.

TABLE 2. SUMMARY OF GROUPED FUNCTIONS FOR WETLAND 2.

Function-Benefit Products (FBP)	FBP SCORE	FBP SCORE CATEGORY
SUPPORT SUPERGROUP - HYDROLOGIC	0.08	Low
SUPPORT SUPERGROUP - WATER QUALITY SUPPORT	8.47	Low
SUPPORT SUPERGROUP - AQUATIC SUPPORT	28.93	Low
HABITAT SUPERGROUP - AQUATIC HABITAT	17.37	Low
HABITAT SUPERGROUP - TRANSITION HABITAT	1.92	Low

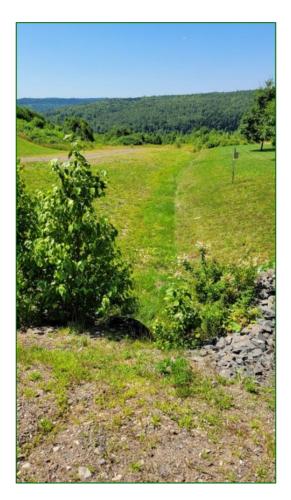
Functional Importance Rule Definitions:

Habitat Rule: Two 'High' Scores -OR- One 'High' and one 'Moderate' score

Support Rule: Three 'High' scores -OR- Two 'High' and one 'Moderate' score

Habitat/Support Hybrid Rule: One 'High' HAB score -AND- Two or three 'High' SUP Scores

Functional Importance (WSS) Determination:	(YES/NO)
Habitat Rule Satisfied	No
Support Rule Satisfied	No
Habitat/Support Hybrid Rule Satisfied	No
CONCLUSION	Site is not a WSS


Wetland 2 would not be considered a wetland of special significance based on the criteria in Table 3, but it could serve an important ecological role as amphibian habitat as it was observed to support a healthy population of frogs of various species.

Wetland 3 and Wetland 7

Wetlands 3 and 7 are described together and they are both drainageway shrub swamps with similar hydrology and vegetation cover. Wetland 3 is adjacent (west of) Route 628 and is fed by drainage from ditches and a small culvert under Route 628. Wetland 3 drains into wetland 7 to the west via an indistinct drainage that supplies water to wetland 5 as well. Wetland 7 is similar in size to wetland 3 at 0.27 ha. The drainage to wetland 7 has been altered somewhat by past excavation and drainage work along the backside of building lots on Hemlock Lane although the wetland does appear to be in largely natural condition. The surface water drainage leaves wetland to the west and continues to the ditch along Inspiration Lane and through a culvert there into a drainage ditch beyond. At no point did this drainage meet the definition of a watercourse. Figure 6 shows the drainage ditch to the west of Inspiration Lane. Representative photos of each wetland are provided in Appendix C.

The vegetation in both Wetlands 3 and 7 were dominated by a sparse tree layer of yellow birch and red maple with spotted touch-me-not, sensitive fern, and mad-dog skullcap (*Scutellaria lateriflora*). The upland conditions, as measured near Wetland 7 was immature mixedwood forest dominated by red maple balsam fir (*Abies balsmaea*), and yellow birch, with smaller grey birch (*Betula populifolia*) in the understory and a sparse herbaceous layer dominated by three-leaf-false Solomon's seal (*Maianthemum canadense*) and Sarsaparilla (*Aralia nudicaulis*). Wetland delineation sheets are provided for these wetlands in Appendix B.

FIGURE 7. DRAINAGE DITCH TO THE WEST OF INSPIRATION LANE THROUGH WHICH DRAINAGE FROM WETLANDS 3, 4, 5, 6, AND 7 FLOWS TOWARDS THE NASHWAAK RIVER.

Wetlands 4, 5, and 6

These three small, basin marsh wetlands have an unusual appearance due to their shallow, uniform depths and flat bottoms that suggests that they may have been human-made many decades ago. The surrounding upland of these wetlands had mature hemlock trees suggesting that the pond excavation was

likely done in the distant past, and to the south there is an old road with fallen transmission poles that also appear to have been abandoned many decades ago. All three wetlands had populations of frogs in and around the wetlands that included at least four species: Green Frogs (*Lithobates clamitans*), Mink Frogs (*Lithobates septentrionalis*), Pickerel Frogs (*Lithobates palustris*), and wood frogs (*Lithobates sylvaticus*).

The dominant vegetation in these wetlands included nodding sedge (*Carex gynandra*), woolgrass (*Scirpus cyperinus*), threeway sedge (*Dulichium arundinaceum*), and water hemlock (*Cicuta maculata*). At the time of the visit, Wetlands 4 and 5 had clear, standing water, suggesting ground water inputs but wetland 6 was largely dry. Wetland delineation sheets for these wetlands are included in Appendix B and representative photos are in Appendix C.

Existing Conditions for Vegetation

The vegetation communities encountered within the Development Area were mostly developed for the existing residences and most undeveloped areas showed evidence of recent disturbance and forestry activity. Figure 8 shows the typical conditions for the vegetation community in areas of planned future development.

FIGURE 8. VIEW OF PLANNED CUL-DE-SAC-LOCATION SHOWING TYPICAL VEGETATION CONDITIONS ACROSS MOST OF THE DEVELOPMENT AREA.

The vegetation community in undeveloped areas was typical to the region, being dominated by a mixture of deciduous and coniferous species in various stages of development. Most of the forest habitat was young or immature but adjacent to several of the wetlands such as WL 2, WL 5 and WL 4, there were small

groves of mature eastern hemlock (*Tsuga canadensis*) and red spruce (*Picea rubra*). No development is planned in these areas.

FIGURE 9. EXAMPLE OF A SMALL GROVE OF MATURE EASTERN HEMLOCK ADJACENT TO WETLAND 5.

No plants S3 or rarer were encountered during the botanical surveys but several black ash (*Fraxinus nigra*) were found at the northern end of Wetland 1. This species is ranked S3S4 by the ACCDC and listed as Threatened by COSEWIC due to the threat to the species from the ongoing invasion of the emerald ashborer (*Agrilus planipennis*), an exotic pest already present in New Brunswick that has the potential to decimate ash populations. A total of 222 different vascular plant species were recorded throughout the Development Area. The full plant list of all species encountered, and their conservation rankings is included in Appendix E.

4.1.10 Birds and Bird Habitat

Regulatory Framework

The Migratory Bird Convention Act (MBCA) provides overarching protection for individual and populations of birds and their nests against harm or destruction (Government of Canada, 1994). The MBCA and associated regulations are administered by Environment Canada through the Canadian Wildlife Service (Government of Canada 1994a). Species groups protected by the MBCA include; songbirds, waterfowl, and seabirds; however, grouse, hawks, eagles, owls, blackbirds or jays are not afforded protection under the MBCA (Environment Canada 1991), but are covered under the New Brunswick Fish and Wildlife Act (2004).

Field Methods

Point count surveys for breeding birds were conducted by Boreal on June 7, 2022 at nine point count stations. The point counts were placed in forested habitats of the Development Area that were not yet developed. During travel between point count stations and during other field surveys, any bird species encountered that had not yet been recorded were recorded. The raw data and coordinates for the point count stations are included in Appendix E. The first survey began at 6:08 am in clear weather and low wind speed (Beaufort 0) and continued until approximately 8:45 am. The temperature varied between 6 and 10 degrees Celsius.

Existing Conditions

During point counts, a total of 98 individual birds from 25 species were recorded in and around the Development Area (Table 3). None of the species recorded were SAR or SOCC. The most common species encountered were Red-eyed Vireo (*Vireo olivaceous*) (9), American Robin (*Turdus migratorius*) (8), American redstart (*Setophaga ruticillia*) (7), and Common Yellowthroat (*Geothylpis trichus*) (7).

TABLE 3. LIST OF BIRD SPECIES RECORDED WITHIN THE DEVELOPMENT AREA DURING POINT COUNTS.

Alder Flycatcher	Empidonax alnorum				Number
Aluei Tiycatchei	Empluonax amorum	S5B	Secure	PO	6
American Crow	Corvus brachyrhynchos	S 5	Secure	PO	1
American Goldfinch	Spinus tristis	S5	Secure	ОВ	1
American Redstart	Setophaga ruticilla	S5B	Secure	PO	7
American Robin	Turdus migratorius	S5B	Secure	PO	8
Black-and-White Warbler	Mniotilta varia	S5B	Secure	PO	4
Blackburnian Warbler	Setophaga fusca	S5B	Secure	PO	2
Black-capped Chickadee	Poecile atricapillus	S5	Secure	PO	3
Blue Jay	Cyanocitta cristata	S5	Secure	PO	2
Broad-winged Hawk	Buteo platypterus	S5B	Secure	PO	1
Chestnut-sided Warbler	Setophaga pensylvanica	S5B	Secure	PO	6
Common Yellowthroat	Geothlypis trichas	S5B	Secure	PO	7
Downy Woodpecker	Dryobates pubescens	S5	Secure	ОВ	1
Hermit Thrush	Catharus guttatus	S5B	Secure	PO	2
Mallard	Anas platyrhynchos	S5B, S4N	Secure	ОВ	1
Northern Flicker	Colaptes auratus	S5B	Secure	PO	2
Northern Parula	Setophaga americana	S5B	Secure	PO	6
Ovenbird	Seiurus aurocapilla	S5B	Secure	PO	5
Plieated Woodpecker	Dryocopus pileatus	S5	Secure	ОВ	1
Purple Finch	Haemorhous purpureus	S4S5B,SUN,S5M	Secure	PO	6
Red-eyed Vireo	Vireo olivaceus	S5B	Secure	PO	9
Song Sparrow	Melospiza melodia	S5B	Secure	PO	5
Veery	Catharus fuscescens	S4B	Secure	PO	4
White-throated Sparrow	Zonotrichia albicollis	S5B	Secure	PO	6

Common Name	Scientific Name	S-Rank	NB NRED	Status	Number
Winter Wren	Troglodytes hiemalis	S5B	Secure	PO	2
Total					98

Bird habitat within the Development Area was generally suited to birds commonly found in residential areas due to the presence of the existing development and the generally disturbed state of the undeveloped areas. There was no interior forest habitat identified and no suitable nesting habitat available for bird SAR with nearby records (as listed in Section 4.1.8.) such as Bald Eagles, Bank Swallows, and Cliff Swallows.

4.1.11 Environmentally Sensitive Areas

The ACCDC data report does not identify and protected or sensitive habitats within or near the Development Area, although it is understood that there may be Critical Habitat for Wood turtles within 5 km.

4.2 Cultural Features

4.2.1 Traditional Use

The Development Area, which lies in the traditional territory of the Wolastoqey Nation, consists largely of residential development. While the Nashwaak River Valley has long been used for hunting and fishing, and for overland excursions into Miramichi country (Zelazny 2007), there are no specific records of use for the Development Area and it is not known to be used provincially, federally or locally for tourism operations or cultural activities.

4.2.2 Heritage resources

There are no known heritage resources/areas such as historic sites, buildings or structures, national/provincial parks, fossil sites within proximity to the Development Area.

4.2.3 Existing and Historic Land Uses

The earliest non-aboriginal inhabitants of the lower Nashwaak River were French grant-holders in the 1600's, who set up forts at the mouth of the Nashwaak River. The upper Nashwaak, however, remained essentially unsettled until construction of the Royal Road in 1832 (Zelazny 2007). The road encouraged settlement by English, Scottish, and Irish immigrants who established such villages as Durham Bridge, Taymouth, and Penniac (Zelazny 2007).

The Development Area itself has likely long been subject to timber harvesting by European settlers and shows evidence of past and ongoing forestry activities but no obvious evidence of agricultural use. The steep slope along the western edge of the Development Area prevents easy access to the Nashwaak River

flood plain from the Development Area which may have historically discouraged human occupation of the site. The NB Trail that lies between the Development Area and the river was historically part of the Canada Nation Railway, along which nearby Penniac became a flag station around the turn of the 20th century.

The Development Area does not show evidence of past agricultural use but has recent human disturbance across the site, including roadbuilding, forestry, and excavation.

4.3 Socio-Economic Considerations

The project will have a positive effect on the local economy. New housing options in an already developed area within the Fredericton area will help to close the gap associated with the current housing shortage in central New Brunswick, in particular the City of Fredericton. Despite being located outside of Fredericton, it is less than five minutes' drive to the city limits and has ready access to the NB Trail for bicycling and walking.

The construction of new residential dwellings will generate property tax revenue for the province and future Nashwaak Ward. It will also provide work for laborers employed by a New Brunswick-owned and operated company. The completion of the work will permit the continued economic growth of the Capital Region.

5 Potential Environmental Impacts

The Development area includes 76 developed lots and up to a maximum of 25 additional single-unit residential lots. The development includes a section of the existing River Road (Route 628), and the already constructed Hemlock Street and Inspiration Lane. To access some of the proposed additional residential lots, a 350m long cul-de-sac will be constructed from Inspiration Lane, as shown on Figure 1.

The proposed undertaking will involve new construction and development within an existing subdivision. Potential environmental impact considerations associated with the project could include the following:

- Solid waste generated as part of general construction activities (i.e., excess PVC piping, concrete, asphalt, cardboard, plastics etc.).
- Harm to Migratory Birds
- Disturbance of animal SAR and SOCC that may be present in the area, including wood turtles.
- Loss of SAR or SOCC plants.
- Noise and airborne emissions (volatile organics) associated with the operation of machinery, vehicles, and equipment.
- Dust associated with exposed soils and/or wind.
- Loss or degradation of fish habitat through spills or sediment in runoff during construction.
- The potential net loss of XX hectares of wetland.

 Minor releases of hydraulic/diesel spills from equipment, vehicles and machinery operating onsite.

The mitigations for these potential effects are discussed below in Section 6.

6 Mitigation of Environmental Impacts

6.1 Waste

To avoid the potential impact to the environment associated with construction waste generated on-site, the construction site will have covered disposal bins for solid waste. The waste bins will be taken off-site for disposal at an approved facility (either a C&D disposal facility or the sanitary landfill). No construction waste will remain on-site following the completion of the Project. This waste stream will be associated with construction of individual residences and is typically managed by private individuals. As much of the lands have been previously developed it is anticipated that community standards will ensure wastes associated with residential construction will be properly managed.

6.2 Harm to Migratory Birds

Migratory birds are known to occur and breed within the Development Area but the habitat types present are not rare or limited in availability in the surrounding region and much of the Development Area is already cleared, and/or developed. To avoid effects on Migratory Birds for the remainder of the project, any clearing of vegetation will be conducted outside of the breeding bird season (April 1st to August 31st). If this is not possible in some areas, a survey will be conducted to ensure that no breeding birds are present in the area to be cleared.

6.3 Disturbance to Animal SAR and SOCC

While no bird SAR or SOCC were found using the Development Area during bird surveys and no records of SAR or SOCC or their critical habitat are present in the ACCDC report (Appendix A), there is a potential that some could occur on the site during construction. Avoiding clearing within the breeding season as prescribed in Section 5.1.2. will mitigate any additional potential effects on bird SAR and SOCC. To discourage bank swallow nesting, any exposed soil slopes or aggregate piles created during construction will be maintained at a slope less than 70 degrees angle.

In the unlikely event that a wood turtle should stray into the Development Area during construction, measures will be taken to avoid effects on them. Construction crews will be provided within information pamphlets on the identification of wood turtles and will check their work areas prior to grubbing or disturbing ground for wood turtle presence. Any exposed gravel or sand material left inactive during the months of June and July will be covered to prevent wood turtle nesting on the site.

6.4 Loss of SAR or SOCC plants

The only SAR or SOCC known to occur on the site is black ash (S3S4 Threatened) which occurs at the northeastern edge of Wetland 1, to the east of Route 628. The adjacent lots to the wetland are already developed and not impact to the wetland is anticipated as a result of the Project. No mitigation for this species is recommended. While several species of SAR and SOCC are known to occur within 5 km of the Development Area, none of these were found.

6.5 Noise and Airborne Emissions

To reduce the potential impact to the surrounding environment associated with noise and airborne emissions (volatile organics), the operation of machinery, vehicles and equipment will take place during routine business hours (7 am to 7pm, Monday through Friday). This will also be mitigated by ensuring equipment is in good condition and by establishing a no-idling policy. Any increase in noise levels or airborne emissions will only take place during the construction phase; upon completion of the Project, there will be no long-term increase in noise or airborne emissions on the Site in comparison to surrounding areas, as the land use will be the same as surrounding areas (i.e., typical residential subdivision).

Again, this is particular to the phase that will see construction of a proposed 350 m cul-de-sac. House construction (foundation and the building) will be short term and subject to private individuals that acquire lots.

6.6 Dust Emission

To mitigate dust emissions, the Proponent will minimize exposed stockpile areas of overburden material during the construction phases of the Project (i.e., will be reused or taken off-site). If dust becomes an issue, water trucks will be used to moisten exposed soils to limit dust emissions. Upon completion of work in any area of the Site, appropriate stabilization methods (i.e., hydroseeding, sodding or mulching) will be implemented to reduce the potential for dust emissions (for road construction only).

6.7 Loss or Degradation of Fish Habitat and Aquatic Habitat

Direct Impacts to Watercourses will be avoided to the extent possible. If watercourses are found to occur within the Development Area and cannot be avoided, a WAWA permit will be obtained for the alteration/crossing and the conditions and prescribed mitigation of that permit will be followed. Loss of fish habitat will be avoided. There is no plan to cross or impact the mapped watercourse present on the site.

Prior to commencement of the project, erosion and sediment control (ESC) structures will be installed as required to protect any watercourses in or near the development Area where sedimentation and erosion may affect aquatic habitat. To reduce or eliminate potential for erosion and/or sedimentation, the structures will be inspected on a regular basis to ensure that they are functioning as intended and removed once construction area is stabilized.

Excavated soils, grubbings and fill will not be stored in immediate proximity to wetlands or watercourses to reduce potential for off-site impacts. In the event of a major rain event, stockpiled materials will be taken off-site or covered to eliminate the potential for erosion.

6.8 Loss of Wetland

There are no plans to affect the mapped wetland present within the Development Area and any unmapped wetlands will be avoided to the extent possible. If any impacts or alterations within 30m of a wetland are not avoidable, a WAWA permit for the alteration will be obtained and the conditions of that permit followed, including the typical requirement for compensation for loss of wetlands at a ratio of 2:1 by area of affected. No wetland loss is anticipated for the Project.

Indirect effects on wetlands will be avoided by avoidance of refueling equipment within 30m of wetlands, and the use of sediment fence where work occurs within 30m of any wetland. The compensation will be conducted based on the requirements outlined in the NBDELG's "Wetland Compensation General Guidance" dated August 19, 2020.

6.9 Minor Spills

To reduce the potential for minor fuel spills during construction and operation activities, all equipment should be in good working condition and free of any known fluid leaks. Inspection of the equipment will also be completed regularly in order to prevent any equipment failure which could potentially cause a fuel release. Spill kits will be available in proximity to any fuel-operated machinery in the event of an unexpected release. Any releases of fuel would be reported to NBDELG and remediated immediately in accordance with provincial guidelines.

6.10 Stormwater Management Plan

The roadway and surface drainage systems for Glory View Estates have been constructed and operational as the development of the subdivision(s) has taken place since 2000. As the only modification to this network is the proposed addition of a cul-de-sac (350 m) it is expected that the existing infrastructure will continue to provide storm water management as the inputs are consistent with what exists today, and all storm water flows towards the Nashwaak River floodplain lands.

7 Public and First Nations Engagement

The proponent will inform existing residents of Glory View Estates of the project and solicit inputs from them. The Development has been previously approved by the Regional Planning Commission, and it is assumed that any additional public consultation is not required for the completion of the ongoing development beyond the required posting of the registration on the Government of New Brunswick website for public access.

The proponent will provide a project overview directly to St Marys (Sitansisk), Kingsclear (Pilick), and Oromocto (Welamukotuk) First Nations and request project related inputs from those communities. They will be informed that the proposed development has been registered under the provincial EIA process and further project related detail will be available through the EIA project web-site. Any information received from these communities will be provided to the EIA Project manager.

8 Approval of the Project

The following approval is required for the proposed project:

- Authorization/conditional approval of the undertaking under the provincial EIA requirements outlined in NB Regulation 87-83.
- A potential Watercourse and Wetland Alteration Permit under the Clean Water Act in NB Regulation 90-80, depending on the final findings of the terrestrial and aquatic technical studies.

9 Project Funding

The project is solely funded by the Proponent and does not include any municipal, provincial, or federal funding.

10 Closure

The report was prepared for the sole benefit of Murray Munn and Sons Ltd.. This report and any of its content cannot be relied upon by any other person or entity without the express written consent of Boreal Environmental Limited and Murray Munn and Sons Ltd.. This document is submitted to NBDELG to initiate the Project Registration process, in advance of some additional technical reports (as outlined in Section 3.9) that will be submitted upon completion. The conclusions presented herein represent the best technical judgement of Boreal Environmental personnel based on current engineering and scientific practices and environmental standards at the time the work was performed. The conclusions are based on the site conditions encountered at the time the work was performed at the locations presented in this report.

Boreal accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report or data by any third party.

This report was prepared by Derrick Mitchell, *B.Sc.F.*, *R.P.F*. Please contact the undersigned if you have any questions or concerns about this report.

Kind Regards,

Derrick Mitchell (RPF, BScF)

Durick Metabell

11 References

Atlantic Canada Conservation Data Centre. "Data Report 7374: Penniac, NB". June 30, 2022.

Environment Canada. 2016. Recovery Strategy for the Wood Turtle (Glyptemys insculpta) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. v + 48 pp.

Gautreau M and Curry A. 2020. Inland Fishes of New Brunswick. Canadian Rivers Institute.

Curry, R., & Gautreau, M. (2010). Freshwater fishes of the Atlantic Maritime Ecozone. In D. McAlpine, & I. Smith (Eds.), Assessment of Specieis Diversity in the Atlantic Maritime Ecozone (pp. 599-612). Ottawa, Ontario: NRC Research Press.

New Brunswick Department of Environment and Local Government's "A Guide to Environmental Impact Impact Assessment in New Brunswick" dated January 2018.

Rampton, V.N., 1984. "Generalized surficial geology map of New Brunswick" Department of Natural Resources and Energy, Minerals, Policy and Planning Division. NR-8 Scale 1:500,000.

Zelazny. V.F. 2007. Our Landscape Heritage: The Story of Ecological Land Classification in New Brunswick. Chapter 11. Retrieved from: http://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/ForestsCrownLands/ProtectedNaturalAreas/OurLandscapeHeritage/Chapter11-e.pdf

Appendix A

ACCDC Data Report

DATA REPORT 7347: Penniac, NB

Prepared 30 June 2022 by J. Pender, Data Manager

CONTENTS OF REPORT

1.0 Preface

- 1.1 Data List
- 1.2 Restrictions
- 1.3 Additional Information

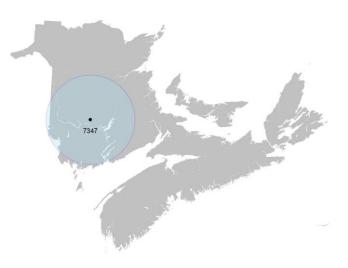
Map 1: Buffered Study Area

2.0 Rare and Endangered Species

- 2.1 Flora
- 2.2 Fauna

Map 2: Flora and Fauna

3.0 Special Areas


- 3.1 Managed Areas
- 3.2 Significant Areas
- Map 3: Special Areas

4.0 Rare Species Lists

- 4.1 Fauna
- 4.2 Flora
- 4.3 Location Sensitive Species
- 4.4 Source Bibliography

5.0 Rare Species within 100 km

5.1 Source Bibliography

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (AC CDC; www.accdc.com) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Included datasets:

Filename (Contents
------------	----------

PenniacNB_7347ob.xls Rare or legally-protected Flora and Fauna in your study area

PenniacNB_7347ob100km.xls A list of Rare and legally protected Flora and Fauna within 100 km of your study area

PenniacNB_7347ff_py.xls Rare Freshwater Fish in your study area (DFO database)

Data Report 7347: Penniac, NB Page 2 of 26

1.2 RESTRICTIONS

The AC CDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting AC CDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The AC CDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) AC CDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) AC CDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an AC CDC data response.

1.3 ADDITIONAL INFORMATION

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries	Sean Blaney	Senior Scientist / Executive Director	(506) 364-2658	sean.blaney@accdc.ca
Animals (Fauna)	John Klymko	Zoologist	(506) 364-2660	john.klymko@accdc.ca
Data Management, GIS	James Churchill	Conservation Data Analyst / Field Biologist		james.churchill@accdc.ca
Billing	Jean Breau	Financial Manager / Executive Assistant	(506) 364-2657	jean.breau@accdc.ca

Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

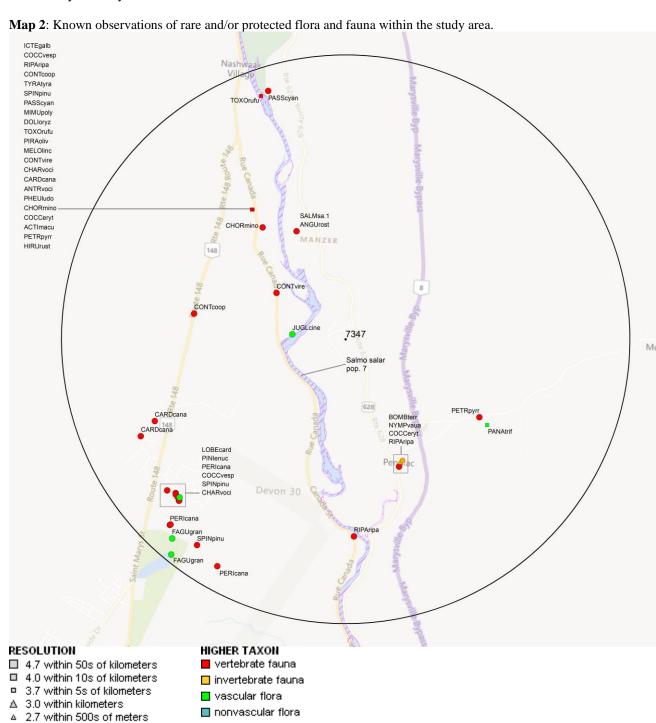
New Brunswick. For information about rare taxa, protected areas, game animals, deer yards, old growth forests, archeological sites, fish habitat etc., or to determine if location-sensitive species (section 4.3) occur near your study site, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

Nova Scotia. For information about Species at Risk or general questions about Nova Scotia location-sensitive species please contact the Biodiversity Program at biodiversity@novascotia.ca. For questions about protected areas, game animals, deer yards, old growth forests, archeological sites, fish habitat etc., or to determine if location-sensitive species (section 4.3) occur near your study site please contact a Regional Biologist:

DIGB, ANNA, KING	Emma Vost	(902) 670-8187	Emma.Vost@novascotia.ca
SHEL, YARM	Sian Wilson	(902) 930-2978	Sian.Wilson@novascotia.ca
QUEE, LUNE	Peter Kydd	(902) 523-0969	Peter.Kydd@novascotia.ca
HALI, HANT	Shavonne Meyer	(902) 893-0816	Shavonne.Meyer@novascotia.ca
Central Region	Jolene Laverty	(902) 324-8953	Jolene.Laverty@novascotia.ca
COLC, CUMB	Kimberly George	(902) 890-1046	Kimberly.George@novascotia.ca
ANTI, GUYS	Harrison Moore	(902) 497-4119	Harrison.Moore@novascotia.ca
INVE, VICT	Maureen Cameron-MacMillan	(902) 295-2554	Maureen.Cameron-MacMillan@novascotia.ca
CAPE, RICH, PICT	Elizabeth Walsh	(902) 563-3370	Elizabeth.Walsh@novascotia.ca

Prince Edward Island. For information about rare taxa, protected areas, game animals, fish habitat etc., please contact Garry Gregory, PEI Department of Environment, Energy and Climate Action: (902) 569-7595.

2.0 within 100s of meters
1.7 within 10s of meters


2.0 RARE AND ENDANGERED SPECIES

2.1 FLORA

The study area contains 5 records of 4 vascular, no records of nonvascular flora (Map 2 and attached: *ob.xls), excluding 'location-sensitive' species.

2.2 FAUNA

The study area contains 89 records of 26 vertebrate, 3 records of 2 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List), excluding 'location-sensitive' species. Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

3.0 SPECIAL AREAS

3.1 MANAGED AREAS

The GIS scan identified no managed areas in the vicinity of the study area (Map 3).

3.2 SIGNIFICANT AREAS

The GIS scan identified no biologically significant sites in the vicinity of the study area (Map 3).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.

Data Report 7347: Penniac, NB Page 5 of 26

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Ρ	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	1	0.9 ± 0.0
Ρ	Panax trifolius	Dwarf Ginseng				S3	1	2.9 ± 2.0
Ρ	Lobelia cardinalis	Cardinal Flower				S3S4	1	4.0 ± 0.0
Р	Fagus grandifolia	American Beech				S3S4	2	4.6 ± 0.0

4.2 FAUNA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy population	Endangered	Endangered	Endangered	S2	3	2.1 ± 0.0
Α	Antrostomus vociferus	Eastern Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	1	2.8 ± 7.0
Α	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	6	2.4 ± 0.0
Α	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	1	2.1 ± 0.0
Α	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	6	2.8 ± 7.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	4	1.5 ± 0.0
Α	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	3	2.7 ± 0.0
Α	Dolichonyx oryzivorus	Bobolink	Special Concern	Threatened	Threatened	S3B	6	2.8 ± 7.0
Α	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	2	2.8 ± 7.0
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	5	2.5 ± 0.0
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	9	2.8 ± 7.0
Α	Petrochelidon pyrrhonota	Cliff Swallow				S2B	5	2.7 ± 0.0
Α	Mimus polyglottos	Northern Mockingbird				S2B	1	2.8 ± 7.0
Α	Pinicola enucleator	Pine Grosbeak				S2B,S4S5N,S4S5M	2	4.1 ± 0.0
Α	Toxostoma rufum	Brown Thrasher				S2S3B	3	2.8 ± 7.0
Α	Icterus galbula	Baltimore Oriole				S2S3B	2	2.8 ± 7.0
Α	Spinus pinus	Pine Siskin				S3	3	2.8 ± 7.0
Α	Charadrius vociferus	Killdeer				S3B	4	2.8 ± 7.0
Α	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	2	2.4 ± 0.0
Α	Piranga olivacea	Scarlet Tanager				S3B	2	2.8 ± 7.0
Α	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	3	2.8 ± 7.0
Α	Passerina cyanea	Indigo Bunting				S3B	3	2.8 ± 7.0
Α	Perisoreus canadensis	Canada Jay				S3S4	4	4.1 ± 0.0
Α	Tyrannus tyrannus	Eastern Kingbird				S3S4B	5	2.8 ± 7.0
Α	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	3	2.8 ± 7.0
Α	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	1	2.8 ± 7.0
I	Bombus terricola	Yellow-banded Bumble Bee	Special Concern	Special Concern		S4	2	2.4 ± 0.0
I	Nymphalis I-album	Compton Tortoiseshell				S3	1	2.4 ± 2.0

Data Report 7347: Penniac, NB Page 6 of 26

4.3 LOCATION SENSITIVE SPECIES

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

New Brunswick

Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle	Special Concern		No
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	YES
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat hibernaculum or bat spec	cies occurrence	[Endangered] ¹	[Endangered] ¹	No

¹ Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

# recs	CITATION
53	Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
22	Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
14	iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
4	Cowie, F. 2007. Electrofishing Population Estimates 1979-98. Canadian Rivers Institute, 2698 recs.
2	Richardson, Leif. 2018. Maritimes Bombus records from various sources. Richardson, Leif.
1	Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.

- Dept of Fisheries & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- 1 Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017.

Data Report 7347: Penniac, NB Page 7 of 26

5.0 RARE SPECIES WITHIN 100 KM

Tavonomic

A 100 km buffer around the study area contains 28079 records of 151 vertebrate and 1713 records of 79 invertebrate fauna; 13351 records of 353 vascular, 716 records of 156 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Α	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	60	10.9 ± 1.0	NB
Α	Myotis septentrionalis	Northern Myotis	Endangered	Endangered	Endangered	S1	15	10.9 ± 1.0	NB
Α	Perimyotis subflavus	Tricolored Bat	Endangered	Endangered	Endangered	S1	6	79.6 ± 100.0	NB
	-	Rainbow Smelt - Lake	_	_	=				NB
Α	Osmerus mordax pop. 2	Utopia Large-bodied	Endangered	Threatened	Threatened	S1	1	98.6 ± 10.0	
	• •	population	· ·						
۸	Charadrius melodus	Piping Plover melodus	Endangered	Endangered	Endangered	S1B	5	96.1 ± 0.0	NB
Α	melodus	subspecies	Endangered	Endangered	Endangered	SID	5	90.1 ± 0.0	
Α	Dermochelys coriacea pop.	Leatherback Sea Turtle -	Endangered	Endangered	Endangered	S1S2N	1	99.6 ± 50.0	NB
A	2	Atlantic population	Liluarigereu	Liluarigereu	Liluarigereu	313211	'	99.0 ± 30.0	
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay	Endangered	Endangered	Endangered	S2	439	2.1 ± 0.0	NB
A	Sairio Saiai pop. 1	of Fundy population	Liluarigereu	Liluarigereu	Liluarigereu	32	433	2.1 ± 0.0	
Α	Melanerpes erythrocephalus	Red-headed Woodpecker	Endangered	Threatened		SNA	1	91.9 ± 7.0	NB
Α	Empidonax virescens	Acadian Flycatcher	Endangered	Endangered		SNA	2	13.9 ± 0.0	NB
Α	Protonotaria citrea	Prothonotary Warbler	Endangered	Endangered		SNA	1	97.7 ± 2.0	NB
Α	Icteria virens	Yellow-Breasted Chat	Endangered	Endangered		SNA	1	84.8 ± 7.0	NB
Α	Salmo salar pop. 7	Atlantic Salmon - Outer Bay	Endangered		Endangered	SNR	39	25.9 ± 0.0	NB
Α	Saimo Saiai pop. 1	of Fundy population	Liluangereu		Lituarigered	ONIX	39	20.9 1 0.0	
Α	Rangifer tarandus pop. 2	Caribou - Atlantic-	Endangered	Endangered	Extirpated	SX	4	50.5 ± 1.0	NB
Α		Gasp ├⊏sie population	ū	Liluarigered	Lxiiipateu	OX.			
Α	Colinus virginianus	Northern Bobwhite	Endangered	Endangered			4	62.6 ± 0.0	NB
Α	Sturnella magna	Eastern Meadowlark	Threatened	Threatened	Threatened	S1B	52	14.2 ± 7.0	NB
Α	Asio flammeus	Short-eared Owl	Threatened	Special Concern	Special Concern	S1S2B	15	47.2 ± 7.0	NB
Α	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	30	8.1 ± 7.0	NB
Α	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	235	12.3 ± 7.0	NB
Α	Antrostomus vociferus	Eastern Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	99	2.8 ± 7.0	NB
Α	Catharus bicknelli	Bicknell's Thrush	Threatened	Threatened	Threatened	S2B	4	75.0 ± 7.0	NB
Α	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	505	2.4 ± 0.0	NB
Α	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	2054	1.6 ± 0.0	NB
Α	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	590	7.8 ± 0.0	NB
Α	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened		Threatened	S3B,S3N	2	49.1 ± 1.0	NB
Α	Tringa flavipes	Lesser Yellowlegs	Threatened			S3M	207	16.9 ± 0.0	NB
Α	Limosa haemastica	Hudsonian Godwit	Threatened			S3M	25	97.9 ± 0.0	NB
Α	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	132	2.1 ± 0.0	NB
Α	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B,SUM	3	30.6 ± 7.0	NB
Α	Histrionicus histrionicus pop.	Harlequin Duck - Eastern	Special Concern	Special Concern	Endangered	S1B,S1S2N,S2M	1	20.6 ± 0.0	NB
	1	population	•	•	· ·				
Α	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	1240	2.8 ± 7.0	NB
		Atlantic Salmon - Gaspe -							NB
Α	Salmo salar pop. 12	Southern Gulf of St.	Special Concern		Special Concern	S2S3	1171	34.5 ± 0.0	
		Lawrence population							
Α	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S2S3B,S3M	278	11.5 ± 2.0	NB
Α	Bucephala islandica	Barrow's Goldeneye	Special Concern	Special Concern	Special Concern	S2S3N,S3M	50	10.2 ± 0.0	NB
Α	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	12	23.5 ± 10.0	NB
Α	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	66	7.7 ± 0.0	NB
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	947	1.5 ± 0.0	NB

Data Report 7347: Penniac, NB Page 8 of 26

Taxonom	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Α	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	791	2.7 ± 0.0	NB
Α	Dolichonyx oryzivorus	Bobolink	Special Concern	Threatened	Threatened	S3B	1108	2.8 ± 7.0	NB
Α	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	355	2.8 ± 7.0	NB
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	521	2.5 ± 0.0	NB
Α	Phalaropus lobatus	Red-necked Phalarope	Special Concern	Special Concern		S3M	2	87.8 ± 0.0	NB
Α	Podiceps auritus	Horned Grebe	Special Concern	Special Concern	Special Concern	S3N	20	22.9 ± 0.0	NB
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	1571	2.8 ± 7.0	NB
Α	Phocoena phocoena	Harbour Porpoise	Special Concern		Spec.Concern	S4	5	95.1 ± 100.0	NB
A	Chrysemys picta picta	Eastern Painted Turtle	Special Concern	Special Concern		S4	82	7.6 ± 13.0	NB
A	Calidris subruficollis	Buff-breasted Sandpiper	Special Concern	Special Concern		SNA	16	98.5 ± 1.0	NB
A	Fulica americana	American Coot	Not At Risk	openal collecti		S1B	9	47.3 ± 7.0	NB
A	Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius	Not At Risk	Special Concern	Endangered	S1B,S3M	135	10.7 ± 0.0	NB
Α	Bubo scandiacus	Snowy Owl	Not At Risk			S1N.S2S3M	11	8.1 ± 1.0	NB
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B	19	11.0 ± 0.0	NB
A	Buteo lineatus	Red-shouldered Hawk	Not At Risk			S1S2B	59	22.2 ± 7.0	NB
A	Sorex dispar	Long-tailed Shrew	Not At Risk			\$132B \$2	4	67.5 ± 5.0	NB
							-		
A A	Chlidonias niger Podiceps grisegena	Black Tern Red-necked Grebe	Not At Risk Not At Risk			S2B S2N.S3M	347 14	11.0 ± 5.0 10.7 ± 0.0	NB NB
						- /			
Α .	Globicephala melas Desmognathus fuscus pop.	Long-finned Pilot Whale Northern Dusky Salamander	Not At Risk			S2S3	1	99.8 ± 1.0	NB NB
Α	2	 Quebec / New Brunswick population 	Not At Risk			S3	96	10.6 ± 1.0	
Α	Sterna hirundo	Common Tern	Not At Risk			S3B,SUM	228	10.7 ± 0.0	NB
Α	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4	1	99.8 ± 1.0	NB
Α	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	859	2.8 ± 7.0	NB
Α	Lynx canadensis	Canada Lynx	Not At Risk		Endangered	S4	35	5.3 ± 10.0	NB
Α	Canis Iupus	Grey Wolf	Not At Risk		Extirpated	SX	4	48.0 ± 1.0	NB
Α	Puma concolor pop. 1	Cougar - Eastern population Red Knot rufa subspecies -	Data Deficient		Endangered	SU	62	16.3 ± 1.0	NB NB
Α	Calidris canutus rufa	Tierra del Fuego / Patagonia wintering population	E,SC	Endangered	Endangered	S2M	19	95.5 ± 0.0	
Α	Morone saxatilis	Striped Bass	E,SC			S3S4B,S3S4N	11	9.9 ± 0.0	NB
Α	Salmo salar	Atlantic Salmon	E,T,SC			S2S3	1	84.4 ± 0.0	NB
Α	Thryothorus Iudovicianus	Carolina Wren	, ,			S1	37	8.1 ± 7.0	NB
Α	Salvelinus alpinus	Arctic Char				S1	2	71.9 ± 1.0	NB
A	Vireo flavifrons	Yellow-throated Vireo				S1?B	10	8.1 ± 7.0	NB
A	Tringa melanoleuca	Greater Yellowlegs				S1?B.S4S5M	316	12.1 ± 1.0	NB
A	Aythya americana	Redhead				S1B	7	61.2 ± 7.0	NB
A	Gallinula galeata	Common Gallinule				S1B	24	8.1 ± 7.0	NB
A	Grus canadensis	Sandhill Crane				S1B	14	74.9 ± 0.0	NB
A	Bartramia longicauda	Upland Sandpiper				S1B	30	19.6 ± 7.0	NB
A	Phalaropus tricolor	Wilson's Phalarope				S1B	42	15.9 ± 7.0	NB
A	Leucophaeus atricilla	Laughing Gull				S1B	3	12.1 ± 1.0	NB
		Razorbill				S1B S1B	1		NB
A	Alca torda					S1B S1B		98.9 ± 0.0	
A	Progne subis	Purple Martin					302 33	14.2 ± 7.0 25.5 ± 7.0	NB NB
A	Aythya marila	Greater Scaup				S1B,S2N,S4M			
A	Oxyura jamaicensis	Ruddy Duck				S1B,S2S3M	44	10.7 ± 0.0	NB
A	Aythya affinis	Lesser Scaup				S1B,S4M	199	10.2 ± 0.0	NB
A	Eremophila alpestris	Horned Lark				S1B,S4N,S5M	33	11.0 ± 0.0	NB
A	Chroicocephalus ridibundus	Black-headed Gull				S1N,S2M	4	12.1 ± 1.0	NB
A	Branta bernicla	Brant				S1N,S2S3M	11	22.9 ± 0.0	NB
A	Calidris alba	Sanderling				S1N,S3S4M	113	10.7 ± 0.0	NB
A	Butorides virescens	Green Heron				S1S2B	21	11.0 ± 0.0	NB
Α	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B	9	71.4 ± 0.0	NB
Α	Empidonax traillii	Willow Flycatcher				S1S2B	97	8.1 ± 7.0	NB
Α	Stelgidopteryx serripennis	Northern Rough-winged Swallow				S1S2B	20	8.1 ± 7.0	NB

Data Report 7347: Penniac, NB Page 9 of 26

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Α	Troglodytes aedon	House Wren				S1S2B	26	19.6 ± 0.0	NB
Α	Calidris bairdii	Baird's Sandpiper				S1S2M	29	79.0 ± 0.0	NB
Α	Melanitta americana	American Scoter				S1S2N,S3M	35	10.4 ± 0.0	NB
Α	Microtus chrotorrhinus	Rock Vole				S2?	5	81.4 ± 1.0	NB
Α	Petrochelidon pyrrhonota	Cliff Swallow				S2B	564	2.7 ± 0.0	NB
Α	Cistothorus palustris	Marsh Wren				S2B	396	8.1 ± 7.0	NB
Α	Mimus polyglottos	Northern Mockingbird				S2B	108	2.8 ± 7.0	NB
Α	Pooecetes gramineus	Vesper Sparrow				S2B	91	22.2 ± 7.0	NB
Α	Mareca strepera	Gadwall				S2B,S3M	81	10.9 ± 30.0	NB
Α	Tringa solitaria	Solitary Sandpiper				S2B,S4S5M	117	10.3 ± 0.0	NB
Α	Pinicola enucleator	Pine Grosbeak				S2B,S4S5N,S4S5 M	68	4.1 ± 0.0	NB
Α	Phalacrocorax carbo	Great Cormorant				S2N	5	24.3 ± 0.0	NB
Α	Larus hyperboreus	Glaucous Gull				S2N	87	10.7 ± 0.0	NB

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Melanitta perspicillata

Picoides dorsalis

Toxostoma rufum

Somateria mollissima

Larus delawarensis

Calcarius Iapponicus

Salvelinus namaycush

Sorex maritimensis

Charadrius vociferus

Tringa semipalmata

Myiarchus crinitus

Piranga olivacea

Passerina cyanea

Setophaga tigrina

Anser caerulescens

Arenaria interpres

Calidris melanotos

Bucephala albeola

Poecile hudsonicus

Calidris maritima

Eptesicus fuscus

Limnodromus griseus

Phalaropus fulicarius

Perisoreus canadensis

Calidris pusilla

Numenius phaeopus

Mergus serrator

Anas acuta

hudsonicus

Molothrus ater

Coccyzus erythropthalmus

Pheucticus Iudovicianus

Spatula clypeata

Cepphus grylle

Pluvialis dominica

Larus marinus

Spinus pinus Prosopium cylindraceum

Picoides arcticus

Loxia curvirostra

Icterus galbula

Asio otus

Surf Scoter Long-eared Owl

Woodpecker Brown Thrasher

Baltimore Oriole

Common Eider

Ring-billed Gull

Red Crossbill

Round Whitefish

Maritime Shrew

Black Guillemot

Scarlet Tanager

Indigo Bunting

Northern Pintail

Ruddy Turnstone

Pectoral Sandpiper

Red Phalarope

Purple Sandpiper

Boreal Chickadee

Bufflehead

Canada Jay

Big Brown Bat

Short-billed Dowitcher

Snow Goose

Whimbrel

Black-billed Cuckoo

Great Crested Flycatcher

Rose-breasted Grosbeak

Brown-headed Cowbird

Red-breasted Merganser

Semipalmated Sandpiper

Cape May Warbler

Northern Shoveler

Pine Siskin

Lake Trout

Killdeer

Willet

Lapland Longspur

American Golden-Plover

Great Black-backed Gull

Black-backed Woodpecker

American Three-toed

S2N,S4M

S2S3

S2S3

S2S3B

S2S3B

S2S3M

S3

S3

S3

S3

S3

S3

S3

S3B

S3M

S3M

S3M

S3M

S₃M

S₃M

S3M

S3N

S3N

S3S4

S3S4

S3S4

S3B,S4S5M

S3B,S5M

S3B,S4S5N,S5M

S2S3B,S2S3N,S4

S2S3B,S4N,S5M

S2S3N,SUM

NB

 90.4 ± 8.0

 14.2 ± 7.0

 12.1 ± 1.0

 2.8 ± 7.0

 2.8 ± 7.0

 11.6 ± 0.0

 10.6 ± 0.0

 14.4 ± 0.0

 14.7 ± 0.0

 9.3 ± 1.0

 8.8 ± 0.0

 8.1 ± 7.0

 2.8 ± 7.0

 26.6 ± 0.0

 60.2 ± 0.0

 32.9 ± 1.0

 8.1 ± 7.0

 2.8 ± 7.0

 20.9 ± 0.0

 2.4 ± 0.0

 8.1 ± 7.0

 2.8 ± 7.0

 2.8 ± 7.0

 2.8 ± 7.0

 8.1 ± 7.0

 12.3 ± 7.0

 14.2 ± 7.0

 11.4 ± 1.0

 17.6 ± 0.0

 44.0 ± 0.0

 42.5 ± 0.0

 10.7 ± 0.0

 10.3 ± 0.0

 20.9 ± 0.0

 79.0 ± 0.0

 10.7 ± 0.0

 99.0 ± 0.0

 4.1 ± 0.0

 8.5 ± 7.0

 7.8 ± 10.0

 97.7 ± 20.0

20

30

92

246

103

233

51

17

145

100

139

291

2

1

94

648

13

8

194

433

368

977

130

279

185

47

51

6

43

65

312

126

184

1

430

2

453

273

44

Data Report 7347: Penniac, NB Page 10 of 26

Taxonomic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Synaptomys cooperi	Southern Bog Lemming				S3S4	75	15.4 ± 1.0	NB
Ą	Tyrannus tyrannus	Eastern Kingbird				S3S4B	733	2.8 ± 7.0	NB
A	Vireo gilvus	Warbling Vireo				S3S4B	314	8.1 ± 7.0	NB
A	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	781	2.8 ± 7.0	NB
Α	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	412	2.8 ± 7.0	NB
A	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	1027	8.1 ± 7.0	NB
A	Setophaga striata	Blackpoll Warbler				S3S4B,S5M	50	12.3 ± 7.0	NB
À	Pluvialis squatarola	Black-bellied Plover				S3S4M	175	20.9 ± 0.0	NB
A	Morus bassanus	Northern Gannet				SHB	4	81.6 ± 0.0	NB
`	Quercus macrocarpa - Acer	Bur Oak - Red Maple /				OLID	-	01.0 ± 0.0	NB
С	rubrum / Onoclea sensibilis -	Sensitive Fern - Northern				S2	1	36.9 ± 0.0	ND
,	Carex arcta Forest	Clustered Sedge Forest				32		30.9 ± 0.0	
	Acer saccharinum / Onoclea	Silver Maple / Sensitive Fern							NB
С						S3	1	42.2 ± 0.0	ND
,	sensibilis - Lysimachia	- Swamp Yellow Loosestrife				53		42.2 ± 0.0	
	terrestris Forest	Forest							NID
	Acer saccharum - Fraxinus	Sugar Maple - White Ash /							NB
0	americana / Gymnocarpium	Common Oak Fern - Silvery				S3	2	93.8 ± 0.0	
•	dryopteris - Deparia	Glade Fern Forest				•	_	00.0 = 0.0	
	acrostichoides Forest	Siddo i citi i citost							
	Acer saccharum - Fraxinus	Sugar Maple - White Ash /							NB
0	americana / Polystichum	Christmas Fern Forest				S3S4	2	85.5 ± 0.0	
	acrostichoides Forest	Chilstinas Ferri Forest							
	Bombus bohemicus	Ashton Cuckoo Bumble Bee	Endangered	Endangered		S1	9	13.1 ± 5.0	NB
	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	175	5.8 ± 0.0	NB
	Bombus affinis	Rusty-patched Bumble Bee	Endangered	Endangered		SH	1	11.0 ± 5.0	NB
	Gomphurus ventricosus	Skillet Clubtail	Special Concern	Endangered	Endangered	S2	99	11.6 ± 1.0	NB
	Cicindela marginipennis	Cobblestone Tiger Beetle	Special Concern	Endangered	Endangered	S2S3	221	32.6 ± 0.0	NB
	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S2S3	45	60.2 ± 0.0	NB
	Alasmidonta varicosa	Brook Floater	Special Concern	Special Concern	Special Concern	S3	13	46.2 ± 0.0	NB
	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S3	104	40.2 ± 0.0 11.4 ± 0.0	NB
		Yellow-banded Bumble Bee			Special Concern	S4	134		NB
	Bombus terricola	reliow-parided burnble bee	Special Concern	Special Concern		34	134	2.4 ± 0.0	NB
	Coccinella transversoguttata	Transverse Lady Beetle	Special Concern			SH	19	13.6 ± 5.0	IND
	richardsoni	0 11 11 0 1 0 11	N A. D. I			000		00.4.00	NID
	Appalachina sayana sayana	Spike-lip Crater Snail	Not At Risk			S3?	3	29.4 ± 0.0	NB
	Conotrachelus juglandis	Butternut Curculio				S1	3	14.4 ± 0.0	NB
	Haematopota rara	Shy Cleg				S1	1	15.4 ± 1.0	NB
	Corythucha juglandis	a lace bug				S1	1	83.0 ± 0.0	NB
	Tharsalea dorcas	Dorcas Copper				S1	20	74.3 ± 0.0	NB
	Erora laeta	Early Hairstreak				S1	11	34.3 ± 7.0	NB
	Somatochlora septentrionalis	Muskeg Emerald				S1	5	46.0 ± 1.0	NB
	Polites origenes	Crossline Skipper				S1?	8	15.1 ± 0.0	NB
	Icaricia saepiolus	Greenish Blue				S1S2	4	10.9 ± 2.0	NB
	Pachydiplax longipennis	Blue Dasher				S1S2	2	30.7 ± 0.0	NB
	Cicindela ancocisconensis	Appalachian Tiger Beetle				S2	5	70.7 ± 0.0	NB
		Cerulean Long-horned							NB
	Encyclops caeruleus	Beetle				S2	3	12.8 ± 0.0	IND
	Scaphinotus viduus	Bereft Snail-eating Beetle				S2	2	13.3 ± 13.0	NB
	ocapililotus viduus	Dark-shouldered Long-						10.0 ± 10.0	NB
	Brachyleptura circumdata					S2	6	21.1 ± 0.0	IND
	Onto information and a second	horned Beetle				00	00	04.70	NID
	Satyrium calanus	Banded Hairstreak				S2	29	8.1 ± 7.0	NB
	Satyrium calanus falacer	Falacer Hairstreak				S2	1	11.6 ± 1.0	NB
	Strymon melinus	Gray Hairstreak				S2	5	43.8 ± 2.0	NB
	Aeshna juncea	Sedge Darner				S2	1	94.7 ± 0.0	NB
	Somatochlora brevicincta	Quebec Emerald				S2	8	85.9 ± 0.0	NB
	Hybomitra frosti	Frost's Horse Fly				S2S3	1	80.1 ± 0.0	NB
	Tabanus vivax	Vivacious Horse Fly				S2S3	1	86.0 ± 0.0	NB
	Ophiogomphus colubrinus	Boreal Snaketail				S2S3	38	10.8 ± 0.0	NB
	Sphaeroderus nitidicollis	Polished Snail-eating Beetle				S3	1	29.9 ± 0.0	NB
	•								

Data Report 7347: Penniac, NB Page 11 of 26

ax		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
I	Lepturopsis biforis	Two-spotted Long-horned Beetle				S3	1	98.1 ± 1.0	NB
I	Orthosoma brunneum	Moist Long-horned Beetle				S3	1	37.8 ± 5.0	NB
I	Elaphrus americanus	Boreal Elaphrus Beetle				S3	1	21.2 ± 0.0	NB
I	Semanotus terminatus	Light Long-horned Beetle				S3	1	23.4 ± 0.0	NB
I	Desmocerus palliatus	Elderberry Borer				S3	7	12.2 ± 0.0	NB
I	Agonum excavatum	Excavated Harp Ground Beetle				S3	1	21.2 ± 0.0	NB
I	Clivina americana	America Pedunculate Ground Beetle				S3	1	21.2 ± 0.0	NB
I	Olisthopus parmatus	Tawny-bordered Harp Ground Beetle				S3	1	29.9 ± 0.0	NB
I	Tachys scitulus	Handsome Riverbank Ground Beetle				S3	1	21.2 ± 0.0	NB
ı	Carabus serratus	Serrated Ground Beetle				S3	1	41.4 ± 0.0	NB
•	Coccinella hieroglyphica								NB
1	kirbyi	a Ladybird Beetle				S3	1	98.1 ± 1.0	
!	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	5	23.4 ± 0.0	NB
I	Stenocorus vittiger	Shrub Long-horned Beetle				S3	1	21.2 ± 0.0	NB
I	Gnathacmaeops pratensis	Meadow Flower Longhorn Beetle				S3	5	98.1 ± 1.0	NB
ı	Pogonocherus mixtus	Mixed-spotted Flatface				S 3	1	98.1 ± 1.0	NB
	· ·	Sawyer							
!	Badister neopulchellus	Red-black Spotted Beetle				S3	1	21.2 ± 0.0	NB
1	Gonotropis dorsalis	Birch Fungus Weevil				S3	1	23.4 ± 0.0	NB
I	Ceruchus piceus	Black Stag Beetle				S3	1	50.4 ± 0.0	NB
I	Saperda lateralis	Red-edged Long-horned Beetle				S3	2	83.4 ± 0.0	NB
I	Epargyreus clarus	Silver-spotted Skipper				S3	10	33.3 ± 0.0	NB
i	Hesperia sassacus	Indian Skipper				S3	24	14.2 ± 7.0	NB
i I	Euphyes bimacula	Two-spotted Skipper				S3	25	18.0 ± 7.0	NB
i i	Satyrium acadica	Acadian Hairstreak				S3	17	14.5 ± 0.0	NB
i	Callophrys eryphon	Western Pine Elfin				S3	3	62.7 ± 7.0	NB
! !	Plebejus idas empetri	Crowberry Blue				S3	9	96.2 ± 0.0	NB
i i						S3		10.9 ± 2.0	NB
!	Argynnis aphrodite	Aphrodite Fritillary				S3	22		NB NB
!	Boloria eunomia	Bog Fritillary				53	8	27.6 ± 0.0	
!	Boloria bellona	Meadow Fritillary				S3	84	5.8 ± 0.0	NB
1	Boloria chariclea	Arctic Fritillary				S3	2	67.3 ± 2.0	NB
I	Nymphalis I-album	Compton Tortoiseshell				S3	20	2.4 ± 2.0	NB
I	Gomphurus vastus	Cobra Clubtail				S3	124	10.8 ± 0.0	NB
I	Celithemis martha	Martha's Pennant				S3	8	79.3 ± 0.0	NB
I	Ladona exusta	White Corporal				S3	4	56.6 ± 0.0	NB
1	Enallagma pictum	Scarlet Bluet				S3	6	67.9 ± 0.0	NB
1	Ischnura kellicotti	Lilypad Forktail				S3	19	52.3 ± 0.0	NB
I	Arigomphus furcifer	Lilypad Clubtail				S3	23	21.2 ± 0.0	NB
i	Alasmidonta undulata	Triangle Floater				S3	52	23.1 ± 0.0	NB
i	Atlanticoncha ochracea	Tidewater Mucket				S3	168	11.4 ± 0.0	NB
i	Striatura ferrea	Black Striate Snail				S3	1	14.8 ± 1.0	NB
<u>:</u>	Neohelix albolabris	Whitelip Snail				S3	3	14.8 ± 1.0	NB
! !		•				S3			
!	Spurwinkia salsa	Saltmarsh Hydrobe				S3 S3B	34	74.0 ± 0.0	NB NB
1	Pantala hymenaea	Spot-Winged Glider					4	23.4 ± 0.0	
!	Bombus griseocollis	Brown-belted Bumble Bee				S3S4	2	9.8 ± 0.0	NB
I	Lanthus vernalis	Southern Pygmy Clubtail				S3S4	1	94.6 ± 0.0	NB
l	Somatochlora forcipata	Forcipate Emerald				S3S4	17	11.6 ± 1.0	NB
1	Somatochlora tenebrosa	Clamp-Tipped Emerald				S3S4	10	14.6 ± 1.0	NB
N	Pannaria lurida	Wrinkled Shingle Lichen	Threatened	Threatened		S1?	45	82.2 ± 0.0	NB
N	Anzia colpodes	Black-foam Lichen	Threatened	Threatened		S1S2	3	7.7 ± 0.0	NB

Data Report 7347: Penniac, NB Page 12 of 26

ic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Peltigera hydrothyria	Lichen Eastern Waterfan	Threatened	Threatened		S2S3	9	72.1 ± 0.0	NB
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk	Tilleaterieu		S2S3	6	67.9 ± 0.0	NB
N	Aphanorrhegma serratum	a Moss	NOT ALKISK			S2SS S1	1	94.9 ± 0.0	NB
							1		
N	Imbribryum muehlenbeckii	Muehlenbeck's Bryum Moss				S1 S1	4	86.5 ± 1.0 71.9 ± 0.0	NB NB
N	Sphagnum macrophyllum	Sphagnum					-		
N	Coscinodon cribrosus	Sieve-Toothed Moss				S1	1	97.5 ± 0.0	NB
N	Syntrichia ruralis	a Moss				S1	1	95.1 ± 0.0	NB
N	Leptogium hirsutum	Jellyskin Lichen				S1	4	98.2 ± 0.0	NB
N	Coccocarpia palmicola	Salted Shell Lichen				S1	1	93.7 ± 0.0	NB
N	Atrichum angustatum	Lesser Smoothcap Moss				S1?	1	78.0 ± 2.0	NB
N	Pseudocalliergon trifarium	Three-ranked Spear Moss				S1?	1	93.0 ± 0.0	NB
N	Dichelyma falcatum	a Moss				S1?	2	9.3 ± 10.0	NB
N	Dicranum bonjeanii	Bonjean's Broom Moss				S1?	1	12.6 ± 1.0	NB
N	Entodon brevisetus	a Moss				S1?	2	80.2 ± 10.0	NB
N	Oxyrrhynchium hians	Light Beaked Moss				S1?	3	10.9 ± 1.0	NB
N	Homomallium adnatum	Adnate Hairy-gray Moss				S1?	2	80.2 ± 10.0	NB
N	Niphotrichum ericoides	Dense Rock Moss				S1?	1	54.0 ± 3.0	NB
N	Splachnum pensylvanicum	Southern Dung Moss				S1?	2	19.7 ± 1.0	NB
N	Platylomella lescurii	a Moss				S1?	1	94.1 ± 1.0	NB
N	Heterodermia squamulosa	Scaly Fringe Lichen				S1?	1	78.9 ± 0.0	NB
N	Pilophorus fibula	New England Matchstick Lichen				S1?	1	94.7 ± 0.0	NB
N	Peltigera venosa	Fan Pelt Lichen				S1?	2	58.0 ± 0.0	NB
N	Cephaloziella spinigera	Spiny Threadwort				S1S2	2	88.3 ± 0.0	NB
N	Pallavicinia lyellii	Lyell's Ribbonwort				S1S2	3	36.6 ± 0.0	NB
N	Solenostoma obovatum	Egg Flapwort				S1S2	1	84.7 ± 0.0	NB
N	Brachythecium acuminatum	Acuminate Ragged Moss				S1S2	3	10.9 ± 10.0	NB
N	Pseudocampylium radicale	Long-stalked Fine Wet Moss				S1S2	1	10.9 ± 1.0	NB
N		Pale Cow-hair Moss				S1S2	4	41.5 ± 1.0	NB
N N	Ditrichum pallidum Drummondia prorepens	a Moss				S1S2 S1S2	1	86.9 ± 1.0	NB
N	Fissidens taxifolius	Yew-leaved Pocket Moss				S1S2 S1S2	4	81.3 ± 0.0	NB
							2		
N	Sphagnum platyphyllum	Flat-leaved Peat Moss				S1S2		41.5 ± 1.0	NB
N	Timmia norvegica	a moss				S1S2	1	91.7 ± 0.0	NB
N	Pseudotaxiphyllum distichaceum	a Moss				S1S2	1	12.4 ± 1.0	NB
N	Pilophorus cereolus	Powdered Matchstick Lichen				S1S2	1	94.7 ± 0.0	NB
N	Calypogeia neesiana	Nees' Pouchwort				S1S3	1	86.6 ± 1.0	NB
N	Fuscocephaloziopsis	Forcipated Pincerwort				S1S3	1	88.4 ± 0.0	NB
IN	connivens	·							
N	Cephaloziella elachista	Spurred Threadwort				S1S3	1	93.4 ± 5.0	NB
N	Porella pinnata	Pinnate Scalewort				S1S3	2	81.8 ± 1.0	NB
N	Amphidium mougeotii	a Moss				S2	1	84.4 ± 1.0	NB
N	Anomodon viticulosus	a Moss				S2	8	86.9 ± 0.0	NB
N	Cirriphyllum piliferum	Hair-pointed Moss				S2	2	80.2 ± 1.0	NB
N	Dicranella palustris	Drooping-Leaved Fork Moss				S2	2	55.0 ± 100.0	NB
N	Didymodon ferrugineus	Rusty Beard Moss				S2	3	80.0 ± 0.0	NB
N	Ditrichum flexicaule	Flexible Cow-hair Moss				S2	1	84.4 ± 1.0	NB
N	Anomodon tristis	a Moss				S2	1	57.5 ± 1.0	NB
N	Hypnum pratense	Meadow Plait Moss				S2	3	84.2 ± 1.0	NB
N	Isothecium myosuroides	Slender Mouse-tail Moss				S2	1	84.4 ± 1.0	NB
N						S2	2		NB
N N	Meesia triquetra	Three-ranked Cold Moss a Moss				S2 S2	2 7	55.0 ± 100.0 10.9 ± 1.0	NB NB
	Physcomitrium immersum								
N	Seligeria calcarea	Chalk Brittle Moss				S2	1	84.4 ± 1.0	NB
N	Seligeria brevifolia	a Moss				S2	1	80.7 ± 1.0	NB
N	Sphagnum lindbergii	Lindberg's Peat Moss				S2	1	93.5 ± 1.0	NB
N	Sphagnum flexuosum	Flexuous Peatmoss				S2	1	84.2 ± 0.0	NB
N	Tayloria serrata	Serrate Trumpet Moss				S2	1	93.3 ± 1.0	NB

Data Report 7347: Penniac, NB Page 13 of 26

ax		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Tetraplodon mnioides	Entire-leaved Nitrogen Moss		•/	1 101 <u></u>	S2	1	98.8 ± 0.0	NB
N	Thamnobryum alleghaniense	a Moss				S2	4	40.9 ± 0.0	NB
N	Tortula mucronifolia	Mucronate Screw Moss				S2	1	96.5 ± 0.0	NB
N	Anomobryum julaceum	Slender Silver Moss				S2 S2	1	10.9 ± 1.0	NB
N						S2 S2	1	92.7 ± 0.0	NB
	Usnea ceratina	Warty Beard Lichen							
N	Leptogium corticola	Blistered Jellyskin Lichen				S2	3	25.2 ± 0.0	NB
N	Leptogium milligranum	Stretched Jellyskin Lichen				S2	3	82.8 ± 0.0	NB
N	Nephroma laevigatum	Mustard Kidney Lichen				S2	2	35.4 ± 0.0	NB
N	Peltigera lepidophora	Scaly Pelt Lichen				S2	3	58.0 ± 0.0	NB
N	Anomodon minor	Blunt-leaved Anomodon				S2?	2	89.3 ± 1.0	NB
11		Moss						03.3 ± 1.0	
N	Ptychostomum pallescens	Tall Clustered Bryum				S2?	2	61.6 ± 1.0	NB
N	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	2	56.9 ± 4.0	NB
N	Schistostega pennata	Luminous Moss				S2?	5	10.9 ± 1.0	NB
N	Seligeria diversifolia	a Moss				S2?	1	43.2 ± 0.0	NB
N	Sphagnum angermanicum	a Peatmoss				S2?	2	74.6 ± 1.0	NB
N	Plagiomnium rostratum	Long-beaked Leafy Moss				S2?	1	92.1 ± 0.0	NB
N	Collema leptaleum	Crumpled Bat's Wing Lichen				S2?	7	23.0 ± 0.0	NB
N	Physcia subtilis	Slender Rosette Lichen				S2?	1	83.8 ± 0.0	NB
N	Buxbaumia aphylla	Brown Shield Moss				S2S3	1	98.2 ± 15.0	NB
N	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	5	90.6 ± 0.0	NB
N	Drepanocladus polygamus	Polygamous Hook Moss				S2S3	1	80.9 ± 1.0	NB
N	Palustriella falcata	Curled Hook Moss				S2S3	1	84.4 ± 1.0	NB
N	Didymodon rigidulus	Rigid Screw Moss				S2S3	3	41.6 ± 8.0	NB
N	Ephemerum serratum	a Moss				S2S3	3	21.3 ± 0.0	NB
N	Fissidens bushii	Bush's Pocket Moss				S2S3	6	81.6 ± 1.0	NB
N	Isopterygiopsis pulchella	Neat Silk Moss				S2S3	1	82.9 ± 1.0	NB
N	Neckera complanata	a Moss				S2S3	3	84.4 ± 1.0	NB
N	Orthotrichum elegans					S2S3	4	41.3 ± 3.0	NB
N		Showy Bristle Moss				S2S3	5		NB
	Scorpidium scorpioides	Hooked Scorpion Moss						90.6 ± 0.0	
N	Seligeria campylopoda	a Moss				S2S3	1	80.0 ± 0.0	NB
N	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2S3	1	80.0 ± 0.0	NB
N	Zygodon viridissimus	a Moss				S2S3	1	99.6 ± 5.0	NB
N	Schistidium agassizii	Elf Bloom Moss				S2S3	2	97.2 ± 2.0	NB
N	Loeskeobryum brevirostre	a Moss				S2S3	1	84.4 ± 1.0	NB
N	Cyrtomnium hymenophylloides	Short-pointed Lantern Moss				S2S3	1	97.7 ± 0.0	NB
N	Sphaerophorus globosus	Northern Coral Lichen				S2S3	1	90.2 ± 0.0	NB
	, ,	Snowbed Icelandmoss							NB
N	Cetrariella delisei	Lichen				S2S3	2	95.8 ± 0.0	ND
	Dendriscocaulon	Lichen							NB
N		a lichen				S2S3	1	100.0 ± 0.0	IND
	umhausense	Fued Meastherns							NB
N	Polychidium muscicola	Eyed Mossthorns Woollybear Lichen				S2S3	3	68.5 ± 0.0	IND
N	Punctelia caseana	110011yboar Lionen				S2S3	3	85.3 ± 0.0	NB
N		Curved-leaved Plait Moss				S3	2	89.3 ± 0.0	NB
	Hypnum curvifolium								
N	Tortella fragilis	Fragile Twisted Moss				S3	1	20.9 ± 0.0	NB
N	Collema nigrescens	Blistered Tarpaper Lichen				S3	8	74.2 ± 0.0	NB
N	Solorina saccata	Woodland Owl Lichen				S3	1	58.0 ± 0.0	NB
N	Cladonia strepsilis	Olive Cladonia Lichen				S3	1	80.0 ± 0.0	NB
N	Scytinium lichenoides	Tattered Jellyskin Lichen				S3	2	57.9 ± 0.0	NB
N	Peltigera degenii	Lustrous Pelt Lichen				S3	1	84.1 ± 0.0	NB
NI	Lantagium lagaraidea	Short-bearded Jellyskin				62	0	040.00	NB
N	Leptogium laceroides	Lichen				S3	9	84.8 ± 0.0	
N	Peltigera membranacea	Membranous Pelt Lichen				S3	8	36.2 ± 0.0	NB
N	Cladonia botrytes	Wooden Soldiers Lichen				S3	7	95.3 ± 0.0	NB
N	Aulacomnium androgynum	Little Groove Moss				S3?	3	84.4 ± 1.0	NB
	and ogynam						•	= 1.0	

Data Report 7347: Penniac, NB Page 14 of 26

ax		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Dicranella rufescens	Red Forklet Moss			.	S3?	2	11.5 ± 4.0	NB
N	Sphagnum lescurii	a Peatmoss				S3?	1	88.7 ± 0.0	NB
N	Sphagnum inundatum	a Sphagnum				S3?	2	29.0 ± 0.0	NB
N	Rostania occultata	Crusted Tarpaper Lichen				S3?	1	23.0 ± 0.0	NB
N	Cystocoleus ebeneus	Rockgossamer Lichen				S3?	1	87.4 ± 0.0	NB
N	Scytinium subtile	Appressed Jellyskin Lichen				S3?	5	8.1 ± 0.0	NB
N	Anomodon rugelii	Rugel's Anomodon Moss				S3S4	5	85.7 ± 0.0	NB
	Anomodon rugelli	Lesser Bird's-claw Beard							NB
N	Barbula convoluta	Moss				S3S4	2	41.6 ± 8.0	ND
N	Brachytheciastrum velutinum	Velvet Ragged Moss				S3S4	4	43.5 ± 4.0	NB
N	Dicranum majus	Greater Broom Moss				S3S4	2	98.2 ± 15.0	NB
N	Fissidens bryoides	Lesser Pocket Moss				S3S4	4	21.5 ± 0.0	NB
N	Elodium blandowii	Blandow's Bog Moss				S3S4	3	82.9 ± 1.0	NB
N	Heterocladium dimorphum	Dimorphous Tangle Moss				S3S4	1	97.2 ± 2.0	NB
N	Isopterygiopsis muelleriana	a Moss				S3S4	5	43.5 ± 4.0	NB
N	Myurella julacea	Small Mouse-tail Moss				S3S4	1	84.4 ± 1.0	NB
N	Orthotrichum speciosum	Showy Bristle Moss				S3S4	1	19.0 ± 0.0	NB
N	Physcomitrium pyriforme	Pear-shaped Urn Moss				S3S4	8	10.9 ± 10.0	NB
N	Sphagnum torreyanum	a Peatmoss				S3S4	1	100.0 ± 0.0	NB
N	Sphagnum austinii	Austin's Peat Moss				S3S4	1	98.7 ± 1.0	NB
N	Sphagnum contortum	Twisted Peat Moss				S3S4	1	90.1 ± 0.0	NB
N	Sphagnum quinquefarium	Five-ranked Peat Moss				S3S4	1	84.4 ± 1.0	NB
N	Tetraphis geniculata	Geniculate Four-tooth Moss				S3S4	3	91.9 ± 0.0	NB
N	Tomentypnum nitens	Golden Fuzzy Fen Moss				S3S4	1	81.7 ± 3.0	NB
N	Weissia controversa	Green-Cushioned Weissia				S3S4	2	21.3 ± 0.0	NB
N	Abietinella abietina	Wiry Fern Moss				S3S4	1	83.0 ± 0.0	NB
N	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	4	80.0 ± 0.0	NB
N	Scorpidium revolvens	Limprichtia Moss				S3S4	2	86.2 ± 0.0	NB
N	Rauiella scita	Smaller Fern Moss				S3S4	5	88.1 ± 3.0	NB
N	Pannaria rubiginosa	Brown-eyed Shingle Lichen				S3S4	24	23.4 ± 0.0	NB
N	Pseudocyphellaria holarctica	Yellow Specklebelly Lichen				S3S4	84	12.6 ± 0.0	NB
N	Scytinium teretiusculum	Curly Jellyskin Lichen				S3S4	1	75.2 ± 0.0	NB
N	Montanelia panniformis	Shingled Camouflage Lichen				S3S4	1	87.4 ± 0.0	NB
N	Cladonia floerkeana	Gritty British Soldiers Lichen				S3S4	1	80.0 ± 0.0	NB
N	Cladonia parasitica	Fence-rail Lichen				S3S4	1	97.2 ± 0.0	NB
N	Nephroma parile	Powdery Kidney Lichen				S3S4	14	20.8 ± 0.0	NB
N	Nephroma resupinatum	a lichen				S3S4	9	80.8 ± 0.0	NB
		Brown-gray Moss-shingle					•		NB
N	Protopannaria pezizoides	Lichen				S3S4	8	51.1 ± 0.0	
N	Parmelia fertilis	Fertile Shield Lichen				S3S4	1	80.8 ± 0.0	NB
N	Usnea strigosa	Bushy Beard Lichen				S3S4	3	83.2 ± 0.0	NB
N	Fuscopannaria sorediata	a Lichen				S3S4	5	27.3 ± 1.0	NB
N	Pannaria conoplea	Mealy-rimmed Shingle				S3S4	37	26.6 ± 0.0	NB
N	Physcia tenella	Lichen Fringed Rosette Lichen				S3S4	1	89.4 ± 0.0	NB
N	Anaptychia palmulata	Shaggy Fringed Lichen				S3S4 S3S4	11	71.8 ± 0.0	NB
N	Grimmia anodon	Toothless Grimmia Moss				SH	2	95.5 ± 10.0	NB
N	Leucodon brachypus	a Moss				SH	2	24.6 ± 10.0	NB
N	Orthotrichum gymnostomum	a Moss				SH	1	25.9 ± 10.0	NB
N	Thelia hirtella	a Moss				SH	1	55.0 ± 100.0	NB
N	Cyrto-hypnum minutulum	Tiny Cedar Moss				SH	3	75.1 ± 10.0	NB
P	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	719	0.9 ± 0.0	NB
P	Polemonium vanbruntiae	Van Brunt's Jacob's-ladder	Threatened	Threatened	Threatened	S1	6	97.7 ± 1.0	NB
P	Fraxinus nigra	Black Ash	Threatened	imeatened	inicalciicu	S3S4	938	7.9 ± 0.0	NB
P	Isoetes prototypus	Prototype Quillwort	Special Concern	Special Concern	Endangered	S1	23	19.0 ± 0.0	NB
P	Symphyotrichum	Anticosti Aster	Special Concern	Special Concern	Endangered	S3	63	19.0 ± 0.0 23.0 ± 0.0	NB
Р	anticostense Pterospora andromedea	Woodland Pinedrops	•	•	Endangered	S1	33	15.4 ± 0.0	NB
					J				

Data Report 7347: Penniac, NB Page 15 of 26

	no	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Cryptotaenia canadensis	Canada Honewort				S1	5	75.7 ± 1.0	NB
Р	Antennaria parlinii ssp. fallax	Parlin's Pussytoes				S1	7	54.8 ± 1.0	NB
_	Antennaria howellii ssp.	•					_		NB
Р	petaloidea	Pussy-Toes				S1	2	85.6 ± 1.0	
Р	Bidens discoidea	Swamp Beggarticks				S1	4	29.2 ± 0.0	NB
Р	Pseudognaphalium obtusifolium	Eastern Cudweed				S1	2	44.8 ± 0.0	NB
Р	Helianthus decapetalus	Ten-rayed Sunflower				S1	21	18.4 ± 0.0	NB
Р	Hieracium paniculatum	Panicled Hawkweed				S1	4	35.7 ± 0.0	NB
Р	Andersonglossum boreale	Northern Wild Comfrey				S1	14	82.3 ± 0.0	NB
Р	Barbarea orthoceras	American Yellow Rocket				S1	1	79.8 ± 1.0	NB
Р	Cardamine parviflora	Small-flowered Bittercress				S1	3	72.9 ± 0.0	NB
Р	Cardamine concatenata	Cut-leaved Toothwort				S1	14	20.0 ± 0.0	NB
Р	Draba arabisans	Rock Whitlow-Grass				S1	3	80.4 ± 1.0	NB
Р	Draba cana	Lance-leaved Draba				S1	10	9.1 ± 0.0	NB
Р	Draba glabella	Rock Whitlow-Grass				S1	8	54.6 ± 1.0	NB
Р	Mononeuria groenlandica	Greenland Stitchwort				S1	2	81.8 ± 0.0	NB
Р	Chenopodiastrum simplex	Maple-leaved Goosefoot				S1	7	11.6 ± 5.0	NB
Р	Blitum capitatum	Strawberry-Blite				S1	5	13.3 ± 6.0	NB
Р	Hypericum virginicum	Virginia St. John's-wort				S1	7	60.7 ± 0.0	NB
Р	Drosera anglica	English Sundew				S1	2	80.8 ± 0.0	NB
Р	Drosera linearis	Slender-Leaved Sundew				S1	6	80.8 ± 0.0	NB
Р	Corema conradii	Broom Crowberry				S1	1	97.5 ± 10.0	NB
Р	Vaccinium boreale	Northern Blueberry				S1	1	89.0 ± 0.0	NB
Р	Vaccinium corymbosum	Highbush Blueberry				S1	9	89.2 ± 0.0	NB
Р	Hylodesmum glutinosum	Large Tick-trefoil				S1	8	56.1 ± 0.0	NB
Р	Lespedeza capitata	Round-headed Bush-clover				S1	11	39.5 ± 0.0	NB
Р	Gentiana rubricaulis	Purple-stemmed Gentian				S1	10	76.5 ± 0.0	NB
Р	Ribes cynosbati	Prickly Gooseberry				S1	1	79.7 ± 0.0	NB
Р	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	1	92.3 ± 0.0	NB
Р	Pycnanthemum virginianum	Virginia Mountain Mint				S1	4	71.0 ± 0.0	NB
Р	Decodon verticillatus	Swamp Loosestrife				S1	4	58.8 ± 0.0	NB
Р	Polygala verticillata	Whorled Milkwort				S1	2	86.8 ± 0.0	NB
Р	Polygonum douglasii	Douglas Knotweed				S1	1	97.3 ± 0.0	NB
Р	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	14	71.4 ± 0.0	NB
Р	Hepatica acutiloba	Sharp-lobed Hepatica				S1	11	88.2 ± 0.0	NB
Р	Coptidium lapponicum	Lapland Buttercup				S1	1	82.0 ± 1.0	NB
Р	Crataegus jonesiae	Jones' Hawthorn				S1	4	12.8 ± 1.0	NB
Р	Potentilla canadensis	Canada Cinquefoil				S1	1	55.5 ± 0.0	NB
P	Rubus flagellaris	Northern Dewberry				S1	2	10.5 ± 0.0	NB
Р	Galium brevipes	Limestone Swamp Bedstraw				S1	6	68.4 ± 5.0	NB
Р	Saxifraga paniculata ssp. laestadii	Laestadius' Saxifrage				S1	8	84.4 ± 1.0	NB
Р	Agalinis tenuifolia	Slender Agalinis				S1	9	9.3 ± 0.0	NB
P	Gratiola lutea	Golden Hedge-hyssop				S1	2	86.4 ± 0.0	NB
P	Pedicularis canadensis	Canada Lousewort				S1	4	15.4 ± 0.0	NB
Р	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	13	10.8 ± 0.0	NB
Р	Carex annectens	Yellow-Fruited Sedge				S1	1	80.7 ± 0.0	NB
Р	Carex backii	Rocky Mountain Sedge				S1	6	9.2 ± 0.0	NB
P	Carex blanda	Eastern Woodland Sedge				S1	1	80.4 ± 0.0	NB
P	Carex salina	Saltmarsh Sedge				S1	2	97.1 ± 1.0	NB
P	Carex saima Carex sterilis	Sterile Sedge				S1	13	97.1 ± 1.0 25.8 ± 0.0	NB
		Inflated Narrow-leaved							NB NB
P	Carex grisea	Sedge				S1	16	16.0 ± 1.0	
P	Carex saxatilis	Russet Sedge				S1	14	82.2 ± 0.0	NB
P	Cyperus diandrus	Low Flatsedge				S1	7	12.7 ± 0.0	NB
P	Rhynchospora capillacea	Slender Beakrush				S1	3	22.3 ± 0.0	NB
Р	Scirpus pendulus	Hanging Bulrush				S1	1	65.9 ± 0.0	NB

Data Report 7347: Penniac, NB Page 16 of 26

ax		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed- grass				S1	6	53.0 ± 0.0	NB
>	Juncus subtilis	Creeping Rush				S1	1	54.8 ± 5.0	NB
•	Allium canadense	Canada Garlic				S1	11	20.0 ± 1.0	NB
•	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	9	12.4 ± 0.0	NB
)	Malaxis monophyllos var.	North American White				S1	10	20.2.00	NB
	brachypoda	Adder's-mouth				31	12	26.2 ± 0.0	
	Platanthera flava var.	Pale Green Orchid				S1	10	23.5 ± 10.0	NB
)	herbiola	Pale Green Orchid				31	13	23.5 ± 10.0	
•	Platanthera macrophylla	Large Round-Leaved Orchid				S1	4	13.0 ± 1.0	NB
)	Spiranthes casei	Case's Ladies'-Tresses				S1	6	15.4 ± 0.0	NB
)	Bromus pubescens	Hairy Wood Brome Grass				S1	6	36.3 ± 0.0	NB
)	Calamagrostis stricta ssp.	Clim atammad Daad Crass				C4	4	00 5 . 0 0	NB
	inexpansa .	Slim-stemmed Reed Grass				S1	1	98.5 ± 0.0	
•	Cinna arundinacea	Sweet Wood Reed Grass				S1	37	23.2 ± 0.0	NB
	Danthonia compressa	Flattened Oat Grass				S1	5	60.3 ± 0.0	NB
	Dichanthelium [']	Clarata Baria Cara				04	•	00.0 . 0.0	NB
0	xanthophysum	Slender Panic Grass				S1	6	60.2 ± 0.0	
)	Dichanthelium dichotomum	Forked Panic Grass				S1	1	77.4 ± 1.0	NB
)	Glyceria obtusa	Atlantic Manna Grass				S1	2	78.0 ± 0.0	NB
)	Sporobolus compositus	Rough Dropseed				S1	17	19.5 ± 0.0	NB
•	Potamogeton friesii	Fries' Pondweed				S1	6	10.8 ± 5.0	NB
•	Potamogeton nodosus	Long-leaved Pondweed				S1	19	15.7 ± 1.0	NB
•	Potamogeton strictifolius	Straight-leaved Pondweed				S1	2	81.0 ± 2.0	NB
)	Xyris difformis	Bog Yellow-eyed-grass				S1	5	79.3 ± 0.0	NB
	Asplenium ruta-muraria var.					_			NB
	cryptolepis	Wallrue Spleenwort				S1	4	84.4 ± 1.0	ND
•	Dryopteris clintoniana	Clinton's Wood Fern				S1	4	27.8 ± 0.0	NB
,	Huperzia selago	Northern Firmoss				S1	1	89.3 ± 1.0	NB
	Sceptridium oneidense	Blunt-lobed Moonwort				S1	8	24.0 ± 0.0	NB
))	Sceptridium rugulosum	Rugulose Grapefern				S1 S1	5	63.9 ± 0.0	NB
	Selaginella rupestris	Rock Spikemoss				S1	13	22.4 ± 1.0	NB
		Field Dodder				S1?	3		NB
	Cuscuta campestris	Field Dodder				51?	3	42.4 ± 10.0	
	Polygonum aviculare ssp.	Narrow-leaved Knotweed				S1?	5	9.9 ± 0.0	NB
	neglectum								ND
)	Galium trifidum ssp.	Three-petaled Bedstraw				S1?	1	85.1 ± 1.0	NB
	subbiflorum	•							
	Alisma subcordatum	Southern Water Plantain				S1?	8	11.9 ± 0.0	NB
•	Carex laxiflora	Loose-Flowered Sedge				S1?	3	79.6 ± 0.0	NB
1	Carex appalachica	Appalachian Sedge				S1?	1	86.3 ± 0.0	NB
)	Sisyrinchium mucronatum	Michaux's Blue-eyed-grass				S1?	3	83.8 ± 0.0	NB
)	Wolffia columbiana	Columbian Watermeal				S1?	7	11.1 ± 0.0	NB
)	Galium kamtschaticum	Northern Wild Licorice				S1S2	6	59.8 ± 0.0	NB
)	Galearis spectabilis	Showy Orchis				S1S2	71	71.4 ± 0.0	NB
•	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1S2	3	54.6 ± 0.0	NB
•	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	5	68.3 ± 0.0	NB
)	Eriophorum russeolum ssp.	Smooth-fruited Russet				S1S3		40.7 . 0.0	NB
,	albidum ,	Cottongrass				\$153	6	48.7 ± 0.0	
)	Spiranthes cernua	Nodding Ladies'-Tresses				S1S3	13	10.8 ± 0.0	NB
•	Spiranthes arcisepala	Appalachian Ladies'-tresses				S1S3	6	9.1 ± 0.0	NB
	Neottia bifolia	Southern Twayblade			Endangered	S2	39	22.7 ± 0.0	NB
	Sanicula trifoliata	Large-Fruited Sanicle				S2	24	71.4 ± 0.0	NB
•	Sanicula unollata Sanicula odorata	Clustered Sanicle				S2	28	23.8 ± 0.0	NB
•	Hieracium robinsonii	Robinson's Hawkweed				S2	1	59.7 ± 0.0	NB
)	Betula minor	Dwarf White Birch				S2 S2	1	20.6 ± 0.0	NB
·)	Hypericum x dissimulatum	Disquised St. John's-wort				S2 S2	2	31.9 ± 0.0	NB
	Viburnum dentatum var.	0							NB
>	lucidum	Northern Arrow-Wood				S2	50	71.2 ± 0.0	ND
	IUCIUUIII								

Data Report 7347: Penniac, NB Page 17 of 26

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Astragalus eucosmus	Elegant Milk-vetch				S2	12	22.2 ± 1.0	NB
Р	Quercus macrocarpa	Bur Oak				S2	175	8.9 ± 0.0	NB
Р	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	18	9.0 ± 0.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Astragalus eucosmus	Elegant Milk-vetch				S2	12	22.2 ± 1.0	NB
P	Quercus macrocarpa	Bur Oak				S2	175	8.9 ± 0.0	NB
P	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	18	9.0 ± 0.0	NB
P	Polygaloides paucifolia	Fringed Milkwort				S2	19	11.6 ± 0.0	NB
	Persicaria amphibia var.	· ·							NB
P	emersa	Long-root Smartweed				S2	55	9.6 ± 1.0	ND
Р	Geum fragarioides	Barren Strawberry				S2	27	71.3 ± 1.0	NB
P	Micranthes virginiensis	Early Saxifrage				S2	14	15.5 ± 0.0	NB
P							12		NB
P	Scrophularia lanceolata	Lance-leaved Figwort				S2		28.0 ± 100.0	NB NB
	Viola canadensis	Canada Violet				S2	86	67.0 ± 0.0	
Р	Carex cephaloidea	Thin-leaved Sedge				S2	25	37.5 ± 0.0	NB
Р	Carex albicans var.	White-tinged Sedge				S2	7	37.3 ± 0.0	NB
	emmonsii	3				-			
Р	Cyperus Iupulinus ssp.	Hop Flatsedge				S2	69	28.6 ± 0.0	NB
	macilentus	, ,							
P	Galearis rotundifolia	Small Round-leaved Orchid				S2	3	85.9 ± 0.0	NB
Р	Calypso bulbosa var.	Calypso				S2	41	13.0 ± 1.0	NB
1	americana	Calypso					41	13.0 ± 1.0	
P	Coeloglossum viride	Long-bracted Frog Orchid				S2	11	24.8 ± 5.0	NB
Р	Cypripedium parviflorum var.	Small Valloud adula Clina				S2	14	25.1 ± 0.0	NB
Р	makasin	Small Yellow Lady's-Slipper				52	14	25.1 ± 0.0	
Р	Platanthera huronensis	Fragrant Green Orchid				S2	3	24.0 ± 0.0	NB
P	Elymus hystrix	Spreading Wild Rye				S2	32	66.3 ± 50.0	NB
P	Festuca subverticillata	Nodding Fescue				S2	12	85.6 ± 0.0	NB
Р	Puccinellia nutkaensis	Alaska Alkaligrass				S2	1	99.5 ± 1.0	NB
P	Botrychium minganense	Mingan Moonwort				S2	1	81.4 ± 0.0	NB
P	Schizaea pusilla	Little Curlygrass Fern				S2 S2	8	98.9 ± 0.0	NB
P	Coryphopteris simulata	Bog Fern				S2 S2	34	27.7 ± 0.0	NB
Г	Toxicodendron radicans var.	Bog Felli				32	34	21.1 ± 0.0	NB
Р		Eastern Poison Ivy				S2?	17	15.4 ± 0.0	IND
	radicans	•							ND
Р	Symphyotrichum novi-belgii	New York Aster				S2?	3	14.2 ± 1.0	NB
	var. crenifolium					-			
Р	Humulus lupulus var.	Common Hop				S2?	6	10.3 ± 5.0	NB
•	lupuloides	·				_			
Р	Rubus x recurvicaulis	arching dewberry				S2?	5	41.8 ± 10.0	NB
P	Osmorhiza longistylis	Smooth Sweet Cicely				S2S3	9	24.1 ± 5.0	NB
Р	Symphyotrichum	Small White Aster				S2S3	13	21.2 ± 0.0	NB
Г	racemosum	Siliali Wille Aster				3233	13	21.2 ± 0.0	
Р	Canadanthus modestus	Great Northern Aster				S2S3	12	92.1 ± 0.0	NB
Р	Alnus serrulata	Smooth Alder				S2S3	39	31.8 ± 8.0	NB
Р	Cuscuta cephalanthi	Buttonbush Dodder				S2S3	2	83.9 ± 0.0	NB
Р	Gentiana linearis	Narrow-Leaved Gentian				S2S3	24	9.3 ± 1.0	NB
Р	Hedeoma pulegioides	American False Pennyroyal				S2S3	9	36.6 ± 0.0	NB
P	Aphyllon uniflorum	One-flowered Broomrape				S2S3	13	45.3 ± 1.0	NB
Р	Polygala senega	Seneca Snakeroot				S2S3	34	36.8 ± 1.0	NB
P	Persicaria careyi	Carey's Smartweed				S2S3	14	11.9 ± 1.0	NB
P	Hepatica americana	Round-lobed Hepatica				S2S3	63	13.4 ± 0.0	NB
P						S2S3			NB
P	Ranunculus sceleratus Rosa acicularis ssp. sayi	Cursed Buttercup Prickly Rose				\$2\$3 \$2\$3	6 35	6.1 ± 0.0 55.9 ± 0.0	NB
P	Cephalanthus occidentalis	Common Buttonbush				S2S3	51	33.2 ± 0.0	NB
P	Galium obtusum	Blunt-leaved Bedstraw				S2S3	9	18.9 ± 0.0	NB
P	Dirca palustris	Eastern Leatherwood				S2S3	87	15.4 ± 0.0	NB
P	Phryma leptostachya	American Lopseed				S2S3	89	20.1 ± 1.0	NB
Р	Verbena urticifolia	White Vervain				S2S3	35	15.4 ± 2.0	NB
						S2S3	10	400 40	NB
Р	Viola novae-angliae	New England Violet					10	46.8 ± 1.0	IND
		New England Violet Bearded Sedge				S2S3	8	46.8 ± 1.0 87.4 ± 0.0	NB
Р	Viola novae-angliae								

Data Report 7347: Penniac, NB Page 18 of 26

	no	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р .	Juncus ranarius	Seaside Rush			•	S2S3	1	91.5 ± 0.0	NB
P	Allium tricoccum	Wild Leek				S2S3	36	24.6 ± 0.0	NB
	Corallorhiza maculata var.								NB
Р	occidentalis	Spotted Coralroot				S2S3	12	13.0 ± 1.0	
Р	Corallorhiza maculata var. maculata	Spotted Coralroot				S2S3	7	12.9 ± 1.0	NB
Р	Elymus canadensis	Canada Wild Rye				S2S3	26	13.5 ± 5.0	NB
Р	Piptatheropsis canadensis	Canada Ricegrass				S2S3	5	43.7 ± 0.0	NB
Р	Poa glauca	Glaucous Blue Grass				S2S3	1	97.5 ± 2.0	NB
P	Piptatheropsis pungens	Slender Ricegrass				S2S3	5	59.9 ± 0.0	NB
Р	Potamogeton vaseyi	Vasey's Pondweed				S2S3	12	37.7 ± 0.0	NB
	Isoetes tuckermanii ssp.	vasey s i ondweed						31.1 ± 0.0	NB
Р	acadiensis ,	Acadian Quillwort				S2S3	9	36.0 ± 1.0	
Р	Botrychium tenebrosum	Swamp Moonwort				S2S3	1	98.1 ± 0.0	NB
Р	Panax trifolius	Dwarf Ginseng				S3	17	2.9 ± 2.0	NB
Р	Artemisia campestris ssp. caudata	Tall Wormwood				S3	148	16.7 ± 1.0	NB
Р	Artemisia campestris	Field Wormwood				S3	1	35.8 ± 0.0	NB
P	Nabalus racemosus	Glaucous Rattlesnakeroot				S3	75	10.9 ± 5.0	NB
Р	Solidago racemosa	Racemose Goldenrod				S3	23	18.9 ± 0.0	NB
P	Tanacetum bipinnatum ssp.	Lake Huron Tansy				S3	44	15.6 ± 5.0	NB
_	huronense	· ·							
P	Ionactis linariifolia	Flax-leaved Aster				S3	84	10.8 ± 0.0	NB
Р	Pseudognaphalium macounii	Macoun's Cudweed				S3	13	9.3 ± 0.0	NB
Р	Impatiens pallida	Pale Jewelweed				S3	6	12.5 ± 0.0	NB
Р	Turritis glabra	Tower Mustard				S3	15	46.6 ± 0.0	NB
Р	Arabis pycnocarpa	Cream-flowered Rockcress				S3	19	9.2 ± 0.0	NB
Р	Cardamine maxima	Large Toothwort				S3	130	9.7 ± 0.0	NB
Р	Boechera stricta	Drummond's Rockcress				S3	12	9.2 ± 0.0	NB
Р	Sagina nodosa	Knotted Pearlwort				S3	1	91.5 ± 0.0	NB
Р	Stellaria humifusa	Saltmarsh Starwort				S3	1	98.7 ± 0.0	NB
Р	Stellaria longifolia	Long-leaved Starwort				S3	13	10.9 ± 10.0	NB
Р	Oxybasis rubra	Red Goosefoot				S3	4	87.4 ± 1.0	NB
P	Hudsonia tomentosa	Woolly Beach-heath				S3	4	83.7 ± 0.0	NB
Р	Cornus obliqua	Silky Dogwood				S3	155	31.8 ± 8.0	NB
Р	Lonicera oblongifolia	Swamp Fly Honeysuckle				S3	145	69.6 ± 0.0	NB
r P	Triosteum aurantiacum	Orange-fruited Tinker's				S3	182	22.5 ± 1.0	NB
_		Weed							
P	Viburnum lentago	Nannyberry				S3	64	63.3 ± 0.0	NB
P	Rhodiola rosea	Roseroot				S3	6	81.0 ± 5.0	NB
Р	Astragalus alpinus	Alpine Milk-vetch				S3	3	19.0 ± 0.0	NB
Р	Astragalus alpinus var. brunetianus	Alpine Milk-Vetch				S3	14	19.2 ± 0.0	NB
Р	Oxytropis campestris var. johannensis	Field Locoweed				S3	16	19.5 ± 0.0	NB
Р	Bartonia paniculata ssp. iodandra	Branched Bartonia				S3	9	72.9 ± 0.0	NB
Р	Gentianella amarella ssp. acuta	Northern Gentian				S3	9	57.0 ± 0.0	NB
Р	Geranium bicknellii	Bicknell's Crane's-bill				S3	16	19.9 ± 5.0	NB
Р	Myriophyllum farwellii	Farwell's Water Milfoil				S3	34	37.9 ± 0.0	NB
r P	Myriophyllum humile	Low Water Milfoil				S3	16	30.1 ± 1.0	NB
P	Myriophyllum quitense	Andean Water Milfoil				S3	71	71.3 ± 0.0	NB
P	Proserpinaca palustris	Marsh Mermaidweed				S3	38	71.3 ± 0.0 52.9 ± 0.0	NB
P	Utricularia resupinata	Inverted Bladderwort				S3	36 16	60.7 ± 0.0	NB
P	Fraxinus pennsylvanica	Red Ash				S3	155	11.0 ± 0.0	NB
P P							3		NB NB
P P	Rumex pallidus	Seabeach Dock				S3 S3		43.9 ± 1.0	
٢	Rumex occidentalis	Western Dock				33	1	20.4 ± 1.0	NB

Data Report 7347: Penniac, NB

ax		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Podostemum ceratophyllum	Horn-leaved Riverweed				S3	35	42.8 ± 0.0	NB
P	Primula mistassinica	Mistassini Primrose				S3	22	20.6 ± 0.0	NB
P	Pyrola minor	Lesser Pyrola				S3	4	58.7 ± 0.0	NB
P	Anemone multifida	Cut-leaved Anemone				S3	5	24.0 ± 0.0	NB
	Anemone multifida var.								NB
P	multifida	Early Anemone				S3	2	79.7 ± 5.0	ND
Р	Clematis occidentalis	Purple Clematis				S3	31	9.2 ± 0.0	NB
P	Ranunculus flabellaris	Yellow Water Buttercup				S3	20	11.6 ± 0.0	NB
P	Amelanchier gaspensis	Gasp - Serviceberry				S3	1	80.2 ± 0.0	NB
P		Canada Serviceberry				S3	16	11.0 ± 0.0	NB
P	Amelanchier canadensis					S3			
	Crataegus scabrida	Rough Hawthorn					10	41.0 ± 1.0	NB
P	Rubus occidentalis	Black Raspberry				S3	149	11.6 ± 0.0	NB
P	Salix candida	Sage Willow				S3	12	39.2 ± 1.0	NB
P	Salix myricoides	Bayberry Willow				S3	16	19.5 ± 0.0	NB
P	Salix nigra	Black Willow				S3	183	11.5 ± 0.0	NB
P	Salix interior	Sandbar Willow				S3	48	10.6 ± 3.0	NB
P	Comandra umbellata	Bastard's Toadflax				S3	2	41.8 ± 10.0	NB
Р	Agalinis purpurea var.	Small-flowered Purple False				S3	11	8.5 ± 0.0	NB
	parviflora	Foxglove					11	0.5 ± 0.0	
P	Castilleja septentrionalis	Northeastern Paintbrush				S3	9	59.7 ± 0.0	NB
P	Valeriana uliginosa	Swamp Valerian				S3	55	69.6 ± 0.0	NB
Р	Viola adunca	Hooked Violet				S3	18	55.0 ± 1.0	NB
Р	Symplocarpus foetidus	Eastern Skunk Cabbage				S3	47	54.6 ± 0.0	NB
Р	Carex adusta	Lesser Brown Sedge				S3	11	21.9 ± 6.0	NB
P	Carex arcta	Northern Clustered Sedge				S3	62	21.2 ± 0.0	NB
P	Carex conoidea	Field Sedge				S3	17	26.6 ± 1.0	NB
Р	Carex garberi	Garber's Sedge				S3	17	25.6 ± 0.0	NB
P	Carex granularis	Limestone Meadow Sedge				S3	9	12.7 ± 0.0	NB
P	Carex gynocrates	Northern Bog Sedge				S3	50	80.8 ± 0.0	NB
P	Carex hirtifolia					S3	81	27.3 ± 0.0	NB
P	Carex Ilivida	Pubescent Sedge				S3	7	89.1 ± 0.0	NB
P		Livid Sedge				S3	7 28		NB NB
P	Carex ormostachya	Necklace Spike Sedge						9.2 ± 0.0	
	Carex plantaginea	Plantain-Leaved Sedge				S3	166	22.2 ± 0.0	NB
P	Carex prairea	Prairie Sedge				S3	35	88.9 ± 0.0	NB
P	Carex rosea	Rosy Sedge				S3	264	9.4 ± 0.0	NB
Р	Carex sprengelii	Longbeak Sedge				S3	52	16.7 ± 0.0	NB
P	Carex tenuiflora	Sparse-Flowered Sedge				S3	29	73.6 ± 0.0	NB
P	Carex vaginata	Sheathed Sedge				S3	18	69.6 ± 0.0	NB
P	Cyperus esculentus	Perennial Yellow Nutsedge				S3	1	36.2 ± 0.0	NB
Р	Cyperus esculentus var.	Perennial Yellow Nutsedge				S3	89	10.2 ± 0.0	NB
Г	leptostachyus	refermal reliow Nulseuge				33	09	10.2 ± 0.0	
Р	Cyperus squarrosus	Awned Flatsedge				S3	46	12.8 ± 0.0	NB
P	Eriophorum gracile	Slender Cottongrass				S3	17	32.8 ± 0.0	NB
Р	Blysmopsis rufa	Red Bulrush				S3	1	91.5 ± 0.0	NB
Р	Elodea nuttallii	Nuttall's Waterweed				S3	8	10.8 ± 5.0	NB
P	Juncus brachycephalus	Small-Head Rush				S3	6	73.7 ± 0.0	NB
P	Juncus vaseyi	Vasey Rush				S3	10	59.2 ± 0.0	NB
Р	Najas gracillima	Thread-Like Naiad				S3	6	28.4 ± 0.0	NB
P	Cypripedium reginae	Showy Lady's-Slipper				S3	129	69.7 ± 0.0	NB
	Cypripediani reginae	Menzies' Rattlesnake-					123	03.7 ± 0.0	NB
P	Goodyera oblongifolia	plantain				S3	1	33.1 ± 0.0	ND
Р	Noattia auriaulata					63	0	20 5 . 0 0	ND
P	Neottia auriculata	Auricled Twayblade				S3	9	29.5 ± 0.0	NB
	Platanthera grandiflora	Large Purple Fringed Orchid				S3	41	10.5 ± 0.0	NB
P	Platanthera orbiculata	Small Round-leaved Orchid				S3	44	10.5 ± 1.0	NB
P	Spiranthes lucida	Shining Ladies'-Tresses				S3	27	26.2 ± 0.0	NB
						(CO)	2		NB
P	Agrostis mertensii	Northern Bent Grass				S3		34.3 ± 0.0	
P P	Agrostis mertensii Bromus latiglumis Dichanthelium linearifolium	Northern Bent Grass Broad-Glumed Brome Narrow-leaved Panic Grass				S3 S3	36 11	34.3 ± 0.0 23.3 ± 0.0 26.7 ± 0.0	NB NB

Data Report 7347: Penniac, NB Page 20 of 26

ax		

Taxonomic	Out off Nove	0	000514/10	0484	5	D. D. W. D. J.		D (1)	_
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Leersia virginica	White Cut Grass				S3	42	10.5 ± 0.0	NB
Р	Muhlenbergia richardsonis	Mat Muhly				S3	34	20.9 ± 0.0	NB
P	Schizachyrium scoparium	Little Bluestem				S3	63	11.9 ± 0.0	NB
Р	Zizania aquatica	Southern Wild Rice				S3	2	35.4 ± 0.0	NB
Р	Zizania aquatica var.	Eastern Wild Rice				S3	6	10.9 ± 5.0	NB
Г	aquatica	Lastern wild Rice				33	O	10.9 ± 3.0	
Р	Adiantum pedatum	Northern Maidenhair Fern				S3	396	21.3 ± 0.0	NB
Р	Asplenium trichomanes	Maidenhair Spleenwort				S3	9	35.9 ± 0.0	NB
Р	Anchistea virginica	Virginia chain fern				S3	60	18.9 ± 0.0	NB
P	Dryopteris goldieana	Goldie's Woodfern				S3	265	19.3 ± 5.0	NB
Р	Woodsia alpina	Alpine Cliff Fern				S3	7	84.4 ± 1.0	NB
•	Isoetes tuckermanii ssp.	•							NB
Р	tuckermanii	Tuckerman's Quillwort				S3	17	45.8 ± 0.0	110
Р	Diphasiastrum x sabinifolium	Savin-leaved Ground-cedar				S3	16	11.6 ± 0.0	NB
P	Huperzia appressa	Mountain Firmoss				S3	1	94.2 ± 1.0	NB
P	Sceptridium dissectum	Dissected Moonwort				S3	55	10.8 ± 0.0	NB
г		Dissected Moonwort				33	55	10.0 ± 0.0	
Р	Botrychium lanceolatum ssp.	Narrow Triangle Moonwort				S3	28	10.9 ± 5.0	NB
Р	angustisegmentum					00	40	44.0	ND
•	Botrychium simplex	Least Moonwort				S3	18	11.0 ± 0.0	NB
Р	Ophioglossum pusillum	Northern Adder's-tongue				S3	9	50.5 ± 1.0	NB
Р	Selaginella selaginoides	Low Spikemoss				S3	2	92.4 ± 6.0	NB
P	Crataegus submollis	Quebec Hawthorn				S3?	15	10.0 ± 1.0	NB
P	Crataegus succulenta	Fleshy Hawthorn				S3?	1	10.9 ± 5.0	NB
Р	Platanthera hookeri	Hooker's Orchid				S3?	52	12.2 ± 1.0	NB
Р	Arnica lanceolata	Lance-leaved Arnica				S3S4	30	19.7 ± 0.0	NB
Р	Bidens hyperborea	Estuary Beggarticks				S3S4	1	91.5 ± 0.0	NB
Р	Solidago altissima	Tall Goldenrod				S3S4	47	15.5 ± 0.0	NB
P	Symphyotrichum boreale	Boreal Aster				S3S4	159	20.2 ± 10.0	NB
P	Betula pumila	Bog Birch				S3S4	74	30.1 ± 0.0	NB
Р	Mertensia maritima	Sea Lungwort				S3S4	8	91.5 ± 0.0	NB
	Subularia aquatica ssp.	Sea Lungwort					O	31.3 ± 0.0	NB
P	americana	American Water Awlwort				S3S4	17	49.5 ± 0.0	ND
Р	Lobelia cardinalis	Cardinal Flower				S3S4	318	4.0 ± 0.0	NB
P	Callitriche hermaphroditica	Northern Water-starwort				S3S4	7	52.4 ± 0.0	NB
P							, 11	22.0 ± 1.0	NB
P	Viburnum edule	Squashberry				S3S4			
P	Crassula aquatica	Water Pygmyweed				S3S4	3	28.6 ± 1.0	NB
	Penthorum sedoides	Ditch Stonecrop				S3S4	67	9.1 ± 1.0	NB
Р	Elatine americana	American Waterwort				S3S4	7	29.4 ± 1.0	NB
Р	Hedysarum americanum	Alpine Hedysarum				S3S4	36	75.8 ± 0.0	NB
P	Fagus grandifolia	American Beech				S3S4	367	4.6 ± 0.0	NB
P	Geranium robertianum	Herb Robert				S3S4	21	79.8 ± 1.0	NB
Р	Stachys hispida	Smooth Hedge-Nettle				S3S4	17	15.4 ± 0.0	NB
P	Stachys pilosa	Hairy Hedge-Nettle				S3S4	8	20.4 ± 0.0	NB
Р	Utricularia radiata	Little Floating Bladderwort				S3S4	93	64.8 ± 0.0	NB
Р	Utricularia gibba	Humped Bladderwort				S3S4	40	37.8 ± 0.0	NB
Р	Fraxinus americana	White Ash				S3S4	334	10.7 ± 0.0	NB
Р	Epilobium strictum	Downy Willowherb				S3S4	69	26.6 ± 1.0	NB
P	Fallopia scandens	Climbing False Buckwheat				S3S4	52	10.9 ± 5.0	NB
P	Littorella americana	American Shoreweed				S3S4	39	30.5 ± 0.0	NB
P	Thalictrum confine	Northern Meadow-rue				S3S4 S3S4	115	14.3 ± 0.0	NB
P	Drymocallis arguta	Tall Wood Beauty				S3S4 S3S4	56	9.2 ± 0.0	NB NB
P	, ,	,							
	Rosa palustris	Swamp Rose				S3S4	171	37.3 ± 0.0	NB
P	Rubus pensilvanicus	Pennsylvania Blackberry				S3S4	15	14.6 ± 0.0	NB
Р	Galium boreale	Northern Bedstraw				S3S4	14	16.6 ± 0.0	NB
Р	Galium labradoricum	Labrador Bedstraw				S3S4	113	29.2 ± 0.0	NB
Р	Salix pedicellaris	Bog Willow				S3S4	89	24.0 ± 0.0	NB
Р	Geocaulon lividum	Northern Comandra				S3S4	9	64.0 ± 0.0	NB
Р	Parnassia glauca	Fen Grass-of-Parnassus				S3S4	13	25.4 ± 0.0	NB
	-								

Data Report 7347: Penniac, NB Page 21 of 26

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Agalinis neoscotica	Nova Scotia Agalinis				S3S4	8	11.0 ± 0.0	NB
Р	Ulmus americana	White Elm				S3S4	284	9.3 ± 1.0	NB
Р	Boehmeria cylindrica	Small-spike False-nettle				S3S4	59	18.9 ± 0.0	NB
Р	Juniperus horizontalis	Creeping Juniper				S3S4	2	91.5 ± 0.0	NB
Р	Carex capillaris	Hairlike Sedge				S3S4	14	69.6 ± 0.0	NB
Р	Carex eburnea	Bristle-leaved Sedge				S3S4	10	41.8 ± 1.0	NB
Р	Carex exilis	Coastal Sedge				S3S4	94	60.7 ± 0.0	NB
Р	Carex haydenii	Hayden's Sedge				S3S4	92	12.2 ± 1.0	NB
Р	Carex lupulina	Hop Sedge				S3S4	99	10.7 ± 0.0	NB
Р	Carex tenera	Tender Sedge				S3S4	72	11.7 ± 0.0	NB
Р	Carex wiegandii	Wiegand's Sedge				S3S4	72	21.7 ± 10.0	NB
Р	Carex recta	Estuary Sedge				S3S4	2	43.1 ± 0.0	NB
Р	Carex atratiformis	Scabrous Black Sedge				S3S4	5	60.5 ± 0.0	NB
Р	Cladium mariscoides	Smooth Twigrush				S3S4	119	33.3 ± 0.0	NB
Р	Cyperus dentatus	Toothed Flatsedge				S3S4	237	19.2 ± 0.0	NB
Р	Eleocharis quinqueflora	Few-flowered Spikerush				S3S4	34	18.9 ± 0.0	NB
Р	Rhynchospora capitellata	Small-headed Beakrush				S3S4	67	17.7 ± 0.0	NB
Р	Trichophorum clintonii	Clinton's Clubrush				S3S4	114	32.0 ± 1.0	NB
Р	Bolboschoenus fluviatilis	River Bulrush				S3S4	59	24.2 ± 0.0	NB
Р	Triglochin gaspensis	Gasp ├─ Arrowgrass				S3S4	7	98.3 ± 0.0	NB
Р	Lilium canadense	Canada Lily				S3S4	185	7.1 ± 2.0	NB
Р	Triantha glutinosa	Sticky False-Asphodel				S3S4	90	20.6 ± 0.0	NB
Р	Corallorhiza maculata	Spotted Coralroot				S3S4	23	26.2 ± 0.0	NB
Р	Liparis loeselii	Loesel's Twayblade				S3S4	27	17.4 ± 0.0	NB
Р	Neottia cordata	Heart-leaved Twayblade				S3S4	40	18.6 ± 1.0	NB
Р	Platanthera obtusata	Blunt-leaved Orchid				S3S4	43	21.6 ± 6.0	NB
Р	Calamagrostis pickeringii	Pickering's Reed Grass				S3S4	86	72.9 ± 0.0	NB
Р	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	4	53.7 ± 0.0	NB
Р	Eragrostis pectinacea	Tufted Love Grass				S3S4	16	10.8 ± 10.0	NB
Р	Stuckenia filiformis	Thread-leaved Pondweed				S3S4	9	79.3 ± 0.0	NB
Р	Potamogeton praelongus	White-stemmed Pondweed				S3S4	24	63.1 ± 0.0	NB
Р	Potamogeton richardsonii	Richardson's Pondweed				S3S4	43	10.7 ± 5.0	NB
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3S4	106	48.9 ± 0.0	NB
Р	Cryptogramma stelleri	Steller's Rockbrake				S3S4	2	91.5 ± 0.0	NB
Р	Asplenium viride	Green Spleenwort				S3S4	16	73.3 ± 0.0	NB
Р	Dryopteris fragrans	Fragrant Wood Fern				S3S4	21	23.6 ± 0.0	NB
Р	Equisetum palustre	Marsh Horsetail				S3S4	13	11.2 ± 5.0	NB
P	Polypodium appalachianum	Appalachian Polypody				S3S4	48	10.4 ± 0.0	NB
P	Solidago caesia	Blue-stemmed Goldenrod				SX	2	97.0 ± 1.0	NB
Р	Solidago ptarmicoides	Upland White Goldenrod				SX	3	77.5 ± 10.0	NB
P	Celastrus scandens	Climbing Bittersweet				SX	4	26.7 ± 1.0	NB

5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

•
a release,

Data Report 7347: Penniac, NB Page 22 of 26

recs CITATION

- 1380 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
- 982 iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- Askanas, H. 2016. New Brunswick Wood Turtle Database. New Brunswick Department of Energy and Resource Development.
- 824 Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
- 801 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015. Atlantic Canada Conservation Data Centre Fieldwork 2015. Atlantic Canada Conservation Data Centre, # recs.
- 771 Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
- Wallace, S. 2021. Wood Turtle Radio Tracking data from the Nashwaaksis Stream. University of New Brunswick.
- 617 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 615 Goltz, J.P. 2012. Field Notes, 1989-2005., 1091 recs.
- 516 Clayden, S.R. 1998, NBM Science Collections databases; vascular plants, New Brunswick Museum, Saint John NB, 19759 recs.
- 470 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs.
- 418 Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- 417 Blaney, C.S. 2020. Sean Blaney 2020 field data. Atlantic Canada Conservation Data Centre, 4407 records.
- 412 Wisniowski, C. & Dowding, A. 2019. NB species occurrence data for 2016-2018. Nature Trust of New Brunswick.
- 376 Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.
- 363 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
- Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
- 332 Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.
- 329 Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 326 Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
- Mazerolle, D.M. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 13515 recs.
- 288 Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
- 245 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- MacDougall, A.; Bishop, G.; et al. 1998. 1997 Appalachian Hardwood Field Data. Nature Trust of New Brunswick, 4473 recs.
- 228 Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
- 214 Klymko, J. 2020. Atlantic Canada Conservation Data Centre zoological fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 213 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 202 Chapman-Lam, C.J. 2021. Atlantic Canada Conservation Data Centre 2020 botanical fieldwork. Atlantic Canada Conservation Data Centre, 17309 recs.
- Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 198 Churchill, J.L.; Klymko, J.D. 2016. Bird Species at Risk Inventory on the Acadia Research Forest, 2016. Atlantic Canada Conservation Data Centre, 1043 recs.
- 196 Blaney, C.S. 2019. Sean Blaney 2019 field data. Atlantic Canada Conservation Data Centre, 4407 records.
- 190 Sollows, M.C,. 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
- 186 Chapman-Lam, C.J. 2022. Atlantic Canada Conservation Data Centre 2021 botanical fieldwork. Atlantic Canada Conservation Data Centre, 15099 recs.
- 177 Klymko, J. 2019. Atlantic Canada Conservation Data Centre zoological fieldwork 2018. Atlantic Canada Conservation Data Centre.
- Porter, Caitlin. 2021. Field data for 2020 in various locations across the Maritimes. Atlantic Canada Conservation Data Centre, 3977 records.
- 171 Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
- Anonymous. 2017. Observations from protected sources. Atlantic Canada Conservation Data Centre.
- Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- 165 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 161 SwiftWatch. 2022. Total Chimney Swift counts from roost watches for the duration of the SwiftWatch program (2011-2021). Birds Canada.
- 159 Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs.
- 158 Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
- 148 Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
- eBird. 2020. eBird Basic Dataset. Version: EBD relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- 144 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
- 137 Gravel, Mireille. 2010. Coordonnées GPS et suivi des tortues marquées, 2005-07. Kouchibouguac National Park, 480 recs.
- Wisniowski, C. & Dowding, A. 2020. NB species occurrence data for 2020. Nature Trust of New Brunswick.
- 130 Sabine, M. 2016. Black Ash records from the NB DNR Forest Development Survey. New Brunswick Department of Natural Resources.
- 128 Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
- 127 Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs.
- 127 Watts, Todd. 2021. Bird Species at Risk records, NB. Peskotomuhkati Nation at Skutik.
- 112 Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre, 2318 recs.
- 112 Klymko, J. 2018. Maritimes Butterfly Atlas database. Atlantic Canada Conservation Data Centre.
- 111 Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- 101 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 101 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 98 Paquet, Julie. 2018. Atlantic Canada Shorebird Survey (ACSS) database 2012-2018. Environment Canada, Canadian Wildlife Service.

Data Report 7347: Penniac, NB Page 23 of 26

recs CITATION

- 96 Mazerolle, D.M. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 96 Watts, T. 2021. Fuscopannaria leucosticta, Pannaria lurida and Fraxinus nigra records from western Charlotte County, New Brunswick. Peskotomuhkati Nation at Skutik, 273 records.
- 95 Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs.
- 95 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 88 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 85 Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- 84 Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 83 Honeyman, K. 2019. Unique Areas Database, 2018. J.D. Irving Ltd.
- 79 O'Malley, Z., Z.G. Compson, J.M. Orlofske, D.J. Baird, R.A. Curry, and W.A. Monk. 2021. Riparian and in channel habitat properties linked to dragonfly emergence. Scientific Reports, 10(17665):1-12.
- 79 Richardson, Leif, 2018, Maritimes Bombus records from various sources, Richardson, Leif,
- 78 Beardmore, T. 2017. Wood turtle data: observations May 2017. Nashwaaksis Stream, NB. Natural Resources Canada, 78 records.
- 74 iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs.
- 71 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 69 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 65 Robinson, S.L. 2015. 2014 field data.
- 64 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- 62 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 61 Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
- 60 Blaney, C.S. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 60 Chapman, C.J. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 11171 recs.
- 58 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 57 Belliveau, A.G. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 55 Klymko, J.J.D. 2016. 2015 field data. Atlantic Canada Conservation Data Centre.
- 54 Thomas, A.W. 1996. A preliminary atlas of the butterflies of New Brunswick. New Brunswick Museum.
- 52 Neily, T. H. 2018. Lichen and Bryophyte records, AEI 2017-2018. Tom Neily; Atlantic Canada Conservation Data Centre.
- 49 Belliveau, A.G. 2020. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2019, 2020. E.C. Smith Herbarium.
- 49 Klymko, J. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 49 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 48 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
- 48 Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- 48 Nussey, Pat & NCC staff. 2019. AEI tracked species records, 2016-2019. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 333.
- 46 Spicer, C.D. 2002, Fieldwork 2002, Atlantic Canada Conservation Data Centre, Sackville NB, 211 recs.
- 45 e-Butterfly. 2016. Export of Maritimes records and photos. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 42 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
- 41 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 39 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 38 Patrick, Allison. 2021. Animal and plant records from NCC properties from 2019 and 2020. Nature Conservancy Canada.
- 37 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 31 Klymko, J. 2021. Atlantic Canada Conservation Data Centre zoological fieldwork 2020. Atlantic Canada Conservation Data Centre.
- Miramichi River Environmental Assessment Committee. 2017. Wood Turtle (Glyptemys insculpta) Miramichi & Richibucto Watersheds Inventory 2016. Vladimir King Trajkovic (ed.) Miramichi River Environmental Assessment Committee.
- 28 Sabine, M. 2016. NB DNR staff incidental Black Ash observations. New Brunswick Department of Natural Resources.
- 26 Klymko, J.J.D. 2016. 2014 field data. Atlantic Canada Conservation Data Centre.
- 26 Klymko, J.J.D.: Robinson, S.L. 2014, 2013 field data, Atlantic Canada Conservation Data Centre.
- Nature Trust of New Brunswick. 2020. Nature Trust of New Brunswick 2020 staff observations of species occurence data. Nature Trust of New Brunswick, 133 records.
- 26 Shortt, R. UNB specimen data for various tracked species formerly considered secure. Connell Memorial Herbarium, UNB, Fredericton NB. 2019.
- 25 Beardmore, T. 2017. 2017 Butternut observations. Natural Resources Canada.
- 24 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- 24 Shortt, R. Connell Herbarium Black Ash specimens. University New Brunswick, Fredericton. 2019.
- 23 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 23 Sollows, M.C,. 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
 - Wood Turtle (Glyptemys insculpta) Miramichi Watershed Synopsis 2013
- 23 Compiled by: Vladimir King Trajkovic, EPt
 - Miramichi River Environmental Assessment Committee
- 22 Klymko, John. 2022. Atlantic Canada Conservation Data Centre zoological fieldwork 2021. Atlantic Canada Conservation Data Centre.
- Sabine, M. 2016. Black Ash records from NB DNR permanent forest sampling Plots. New Brunswick Department of Natural Resources, 39 recs.
- 20 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- 20 Doucet, D.A. & Edsall, J. 2007. Ophiogomphus howei records. Atlantic Canada Conservation Data Centre, Sackville NB, 21 recs.
- 20 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.

Data Report 7347: Penniac, NB Page 24 of 26

CITATION # recs

- NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca. 19
- Trajkovic, V.K. 2017. Wood turtles inventroy miramichi watershed 2017. Miramichi River Environmental Action Committee, 22 records. 19
- 15 Webster, R.P. 2006. Survey for Suitable Salt Marshes for the Maritime Ringlet, New Populations of the Cobblestone Tiger Beetle, & New Localities of Three Rare Butterfly Species. New Brunswick WTF Report, 28 recs.
- Allen, K. 2012. Rare plant spatial data from Pleasant Ridge cranberry farm. NB Department of Environment, Environmental Assessment Section, 39 recs. 14
- Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs. 14
- Patrick, A.; Horne, D.; Noseworthy, J. et. al. 2017. Field data for Nova Scotia and New Brunswick, 2015 and 2017. Nature Conservancy of Canada. 14
- 13 Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs.
- Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs. 12
- 12 Vladimir King Trajkovic. 2018. Brook Floater (Alasmidonta varicosa) records from MREAC surveys 2010-2017. Miramichi River Environmental Assessment Committee.
- 11 Kennedy, Joseph, 2010, New Brunswick Peregrine records, 2009, New Brunswick Dept Natural Resources, 19 recs (14 active).
- Webster, R.P. 2004. Lepidopteran Records for National Wildlife Areas in New Brunswick. Webster, 1101 recs. 11
- Edsall. J. 2001. Lepidopteran records in New Brunswick, 1997-99. , Pers. comm. to K.A. Bredin. 91 recs. 10
- 10 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs.
- Tingley, S. (compiler). 2001. Butterflies of New Brunswick., Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs. 10
- 10 Wisniowski, C. 2018. Optimizing wood turtle conservation in New Brunswick, 10 records.
- Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000 9
- . Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- Blaney, C.S. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 6719 recs.
- Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 9 Klymko, J. Dataset of butterfly records at the New Brunswick Museum not yet accessioned by the museum. Atlantic Canada Conservation Data Centre. 2016.
- Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs. 8
- Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs. 8
- Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs. 8
- King, Amelia. 2020. Belleisle Watershed Coalition Turtle Watch Data. Belleisle Watershed Coalition. 8
- Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs. 8
- Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013. 8
- Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs. 8
- Webster, R.P. Atlantic Forestry Centre Insect Collection, Maritimes butterfly records, Natural Resources Canada, 2014. 8
- Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- Goltz. J.P. 1994. In the Footsteps of Our Ancestors. NB Naturalists, 21 (2-4): 20. 8 recs.
- Hicks. Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
- Keppie, D.M. 2005, Rare Small Mammal Records in NB, PE, Pers. comm. to K, Bredin; PE 1 rec., NB 24 recs. 23 recs.
- Klymko, J.J.D. 2012. Insect fieldwork & submissions, 2003-11. Atlantic Canada Conservation Data Centre. Sackville NB, 1337 recs.
- McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick, New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
- Toner, M. 2005. Lynx Records 1996-2005. NB Dept of Natural Resources, 48 recs.
- 7 Webster, R.P. Database of R.P. Webster butterfly collection. 2017.
- 6 Dowding, A.; Mandula, M. 2017. Observation of Hepatica acutiloba in New Brunswick. Nature Trust New Brunswick.
- 6 Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
- 6 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- 6 Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
- Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 28 (2): 51-2. 8 recs. 5
- Moldowan, Patrick Chrysemys picta records from COSEWIC status report. pers. comm. 2021. 5
- Porter, Caitlin. 2020. Observations for 26 EcoGifts sites in southwest New Brunswick. Atlantic Canada Conservation Data Centre, 1073 records.
- Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- Bredin, K.A. 2003. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 20 recs.
- Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
- Doucet, D.A. 2008. Wood Turtle Records 2002-07. Pers. comm. to S. Gerriets, 7 recs, 7 recs.
- Gravel, Mireille. 2010. Coordonnées des tortues des bois Salmon River Road, 2005. Kouchibouquac National Park, 4 recs.
- Layberry, R.A. 2012, Lepidopteran records for the Maritimes, 1974-2008, Layberry Collection, 1060 recs.
- Newell, R.E. 2000, E.C. Smith Herbarium Database, Acadia University, Wolfville NS, 7139 recs.
- Sabine, D.L. 2011. Dorcas Copper records from 2001 Fieldwork. New Brunswick Dept of Natural Resources, 4 recs.
- Simpson, D. Collection sites for Black Ash seed lots preserved at the National Tree Seed Centre in Fredericton NB. National Tree Seed Centre, Canadian Forest Service. 2016.
- Wallace, S. 2022. Email to Sean Blaney regarding NB DNRED Ranger Wood Turtle sightings from 2021. NB DNRED, 5 records.
- Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs.
- Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec.
- Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08. 3
- Brunelle, P.-M. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs, 3 recs.
- Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.

Data Report 7347: Penniac, NB Page 25 of 26

recs CITATION

3

- 3 Clayden, S.R. 2006. Pseudevernia cladonia records. NB Museum. Pers. comm. to S. Blaney, Dec, 4 recs.
- Edsall, J. 1993. Spring 1993 Report. New Brunswick Bird Info Line, 3 recs.
- 3 Forbes, G. 2001. Bog Lemming, Phalarope records, NB., Pers. comm. to K.A. Bredin. 6 recs.
- 3 Forbes, G. 2021. Chrysemys picta record from Waasis, New Brunswick, pers. comm.
- 3 LaPaix, R.W. 2014. Trans-Canada Energy East Pipeline Environmental Assessment, Records from 2013-14. Stantec Consulting, 5 recs.
- 3 Lautenschlager, R.A. 2005. Survey for Species at Risk on the Canadian Forest Service's Acadia Research Forest near Fredericton, New Brunswick. Atlantic Canada Conservation Data Centre, 6. 3 recs.
- Nash, Vicky. 2018. Hammond River Angling Association Wood Turtle observations. Hammond River Angling Association, 3 recs.
- 3 Newell, R.E. 2008. Vascular Plants of Muzroll Lake. Pers. comm. to C.S. Blaney, 1 pg. 43 recs.
- 3 Richardson, D., Anderson, F., Cameron, R, McMullin, T., Clayden, S. 2014. Field Work Report on Black Foam Lichen (Anzia colpodes). COSEWIC.
- 2 Anon. 2017. Export of Maritimes Butterfly records. Global Biodiversity Information Facility (GBIF).
- 2 Basquill, S.P., Porter, C. 2019. Bryophyte and lichen specimens submitted to the E.C. Smith Herbarium. NS Department of Lands and Forestry.
- Belliveau, A.G. E.C. Smith Herbarium Specimen Database 2019. E.C. Smith Herbarium, Acadia University, 2019.
- 2 Chaput, G. 1999. Atlantic Salmon: Miramichi & SFA 16 Rivers. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-05. 6 recs.
- 2 Clayden, S.R. 2020. Email to Sean Blaney regarding Pilophorus cereus and P. fibula at Fidele Lake area, Charlotte County, NB. pers. comm., 2 records.
- 2 Clayden, S.R.; Goltz, J.P. 2018. Emails to Sean Blaney on occurrence of Polygonum douglasii at Big Bluff, Kings Co., New Brunswick. pers. comm., 1 record.
- 2 DeMerchant, A. 2019. Bank Swallow colony observation. NB Department of Energy and Resource Development, Pers. comm. to J.L. Churchill.
- Deseta, N. 2021. Email to John Klymko regarding Riparia riparia observations. Nashwaak Watershed Association Inc.
- 2 Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs.
- 2 Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs.
- 2 Hay, G.U. 1883. Botany of the Upper St. John. Bulletin of the Natural History Society of New Brunswick, 2:21-31. 2 recs.
- 2 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
- McIntosh, W. 1904. Supplementary List of the Lepidoptera of New Brunswick. Bulletin of the Natural History Society of New Brunswick, 23: 355-357.
- Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.
- 2 Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
- Webster, R.P. & Edsall, J. 2007. 2005 New Brunswick Rare Butterfly Survey. Environmental Trust Fund, unpublished report, 232 recs.
- 2 Webster, R.P. Reggie Webster's records of Encyclops caerulea . pers. collection. 2018.
- 1 Allen, Cory. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
- 1 Atlantic Canada Bank Swallow Working Group. 2022. 2021 Bank Swallow colony records. Birds Canada.
 - Bastien, D. 2017. Rare Peatland plant observations. Pers. comm. to H. Askanas, New Brunswick Department of Energy and Resource Development.
- 1 Benedict, B. 2006. Argus annotation: Salix pedicellaris. Pers. comm to C.S. Blaney, June 21, 1 rec.
- Bredin, K.A. 2001. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 16 recs.
- 1 Brunelle, P.-M. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
- 1 Brunton, D.F. 2016. Record of Potamogeton vaseyi in Joslin Creek, NB, pers. comm., 1 record.
- 1 Buchanan, Jean. 2021. Email to Sean Blaney regarding Wood Turtle, Chipman, NB. pers. comm.
- 1 Calhoun, J.C. Butterfly records databased at the McGuire Center for Lepidoptera and Biodiversity. Calhoun, J.C. 2020.
- 1 Clark, R. 2021. Email to S. Blaney, re: Wood Turtle observation from near Hunters Home, Queens Co., NB., May 20 2021. Rosemarie Clark <rsmr_clrk.luvsfam@hotmail.ca>, 1 record.
- Dadswell, M.J. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
- Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces. , Science Stock Status Report D3-22. 13 recs.
- 1 e-Butterfly. 2018. Selected Maritimes butterfly records from 2016 and 2017. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 1 e-Butterfly, 2019. Export of Maritimes records and photos. McFarland, K. (ed.) e-butterfly.org.
- 1 Edsall, J. 1993. Summer 1993 Report. New Brunswick Bird Info Line, 2 recs.
- 1 Forbes, G.J. 2020. Email regarding a Snapping Turtle (Chelydra serpentina) occurrence in New Brunswick, from Graham Forbes to John Klymko. pers. comm, 1 record.
- 1 Forbes, Graham. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
- 1 Goltz, J.P. 2020. Email to Sean Blaney regarding Anchistea virginica (Virginia Chain-fern) at Magaguadavic Lake, NB, pers. comm., 1 record.
- Houghton, Andrew. 2021. Email to Sean Blaney re: nesting Snapping Turtle, NB. pers. comm.
- 1 Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec.
- Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec.
- 1 Klymko, J. 2019. Maritimes Hemiotera records harvested from iNaturalist. iNaturalist.
- 1 Klymko, J. Henry Hensel's Butterfly Collection Database. Atlantic Canada Conservation Data Centre. 2016.
- 1 Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017.
- 1 Klymko, J., Sabine, D. 2015. Verification of the occurrence of Bombus affinis (Hymenoptera: Apidae) in New Brunswick, Canada. Journal of and Acadian Entomological Society, 11: 22-25.
- Kouwenberg, Amy-Lee. 2019. Mountain Birdwatch database 2012-2018. Bird Studies Canada, Sackville, NB, 6484 recs.
- Loo, J. & MacDougall, A. 1994. GAP analysis: Summary Report. Fundy Model Forest, 2 recs.
- MacFarlane, Wayne. 2018. Skunk Cabbage observation on Long Island, Kings Co. NB. Pers. comm., 1 records.
- 1 Madden, A. 1998. Wood Turtle records in northern NB. New Brunswick Dept of Natural Resources & Energy, Campbellton, Pers. comm. to S.H. Gerriets. 16 recs.
- Mandula, M. 2017. Nature Trust of New Brunswick Site Report:
- Jackson Falls, NB new rare plant station. Nature Trust of New Brunswick, 2 pp.
- 1 Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada.

Data Report 7347: Penniac, NB Page 26 of 26

recs CITATION

- McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, J.-L. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec.
- McAlpine, D.F. 2020. Email to John Klymko about Epargyreus clarus record from Grand Bay, NB. Pers. comm.
- Mersey Tobetic Research Institute. 2021. 2020 Monarch records from the MTRI monitoring program. Mersey Tobetic Research Institute, 72 records.
- 1 Munro, Marian C., Newell, R.E, & Hill, Nicholas M. 2014. Nova Scotia Plants. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia, First edition.
- 1 NatureServe Canada. 2018. iNaturalist Butterfly Data Export. iNaturalist.org and iNaturalist.ca.
- Norton, Barb. 2010. Personal communication concerning Botrychium oneidense near Ayers Lake, NB., One record.
- Nye, T. 2002. Wood Turtle observations in Westmorland, Queens Cos., Pers. com. to S.H. Gerriets, Dec. 3. 3 recs.
- Ogden, K. Nova Scotia Museum butterfly specimen database. Nova Scotia Museum. 2017.
- 1 Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
- Parkinson, K. 2017. Wood Turtle record in the Meduxnekeag Valley Nature Preserve. Pers. comm. to AC CDC.
- 1 Sabine, D.L. & Goltz, J.P. 2006. Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown. Pers. comm. to D.M. Mazerolle, 1 rec.
- Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marysville NB. Pers. comm. to C.S. Blaney, 2pp, 4 recs.
- 1 Singleton, J. 2004. Primula mistassinica record for Nashwaak NB. Pers. comm. to C.S. Blaney. 1 rec.
- Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
- Toner, M. 2005. Listera australis population at Bull Pasture Plains. NB Dept of Natural Resources. Pers. comm. to S. Blaney, 8 recs.
- 1 Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs.
- Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets, Sep 2, photo, 1 rec.
- Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec.
- 1 Tremblay, E. 2006. Kouchibouquac National Park Digital Database. Parks Canada, 105 recs.
- 1 Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs.
- 1 Webster, R.P. Email to John Klymko detailing records of butterflies collected by Reggie Webster in June 2017. Webster, R.P. 2017.

Appendix B

Wetland Delineation Sheets

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

Project/Site: Glory View Estates	Municipalit	y/County: York County	Sampling Date: <u>July 23, 202</u>
Applicant/Owner: Murray Munn and So	ons Ltd	Sampling Point: _V	VL 1 wet
nvestigator(s): <u>Derrick Mitchell</u>	Affiliation: Boreal Environmen	tal Landfor	rm (hillslope, terrace, etc.): NA
ocal relief (concave, convex, none):	Slope (%): X co	ord: 46.059581	Y coord -66.583025
			Type: <u>Drainageway Swamp</u>
			(If no, explain in Remarks.)
			"Normal Circumstances" present? Yes X No
			eeded, explain any answers in Remarks.)
SUMMARY OF FINDINGS –	Attach site map showing	sampling point lo	ocations, transects, important features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled	d Area
Hydric Soil Present?	Yes XNo	within a Wetla	nd? Yes XNo
Wetland Hydrology Present?		If yes, optional	Wetland Site ID:
Remarks: (Explain alternative proce			
VEGETATION – Use scientifi	c names of plants.		
		Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 15		Species? Status	Number of Dominant Species
Thuja occidentalis		FACW	That Are OBL, FACW, or FAC: 7 (A)
		YES FAC	Total Number of Dominant
3. Abies balsamea		FAC	Species Across All Strata: 8 (B)
4. Tsuga canadensis		YES FACU	Percent of Dominant Species
5. Betula alleghaniensis			That Are OBL, FACW, or FAC: 87.5 (A/B)
Sapling/Shrub Stratum (Plot size: 4		_= Total Cover	Prevalence Index worksheet:
1. Acer spicatum		YES FAC	Total % Cover of: Multiply by:
Betula alleghaniensis		FAC	OBL species x 1 =
		FAC	FACW species 20 x 2 = 40
Fraxinus americana			FAC species 144 x 3 =432
5. Corylus cornuta			FACU species 10 x 4 = 40
6.			UPL species x 5 =
			Column Totals: <u>174</u> (A) <u>512</u> (B)
Herb Stratum (Plot size: 1	<u>39</u>)	_= Total Cover	Prevalence Index = B/A = 2.94
		YES FAC	
Athyrium filix-femina		YES FAC	
0 And I'm modified a life	5	FAC	Hydrophytic Vegetation Indicators:
4. Rubus pubescens			Rapid Test for Hydrophytic Vegetation
Impatiens capensis			X Dominance Test is >50%
	10		X Prevalence Index is ≤3.01
6. Ribes lacustre			Morphological Adaptations ¹ (Provide supporting
7. Onoclea sensibilis			data in Remarks or on a separate sheet)
8			Problematic Hydrophytic Vegetation ¹ (Explain)
9			¹ Indicators of hydric soil and watland hydrology must
10			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:	·	= Total Cover	
4. No was divided			
			Hydrophytic Vegetation
2	•		Present? Yes X No
	<u>174 </u>	= Total Cover	

SOIL Sampling Point: WL 1 wet

Profile Description: (Describe to the dept	h needed to docum	nent the	indicator	or confirm	the absence	of indicators.)
Depth Matrix	Redox Features					
(cm) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
7 7.5YR/3/1 100				Silty	Black Muck	
						-
¹ Type: C=Concentration, D=Depletion, RM:	Reduced Matrix, C	S=Cove	ed or Coate	ed Sand Gr	rains. ² Lo	cation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:					Indicators	for Problematic Hydric Soils ³ :
Histosol (A1)	Stripped Ma	. ,			Coas	t Prairie Redox (A16)
Histic Epipedon (A2)	Dark Surface	` '				lucky Peat or Peat (S3)
Black Histic (A3)	Polyvalue Be		, ,			Manganese Masses (F12)
Hydrogen Sulfide (A4) Stratified Layers (A5)	Thin Dark Su	,	,			mont Floodplain Soils (F19)
Depleted Below Dark Surface (A11)	Loamy Gleye X Depleted Ma					Parent Material (F21) Shallow Dark Surface (F22)
Thick Dark Surface (A12)	Redox Dark	` '				r (Explain in Remarks)
Sandy Mucky Mineral (S1)	Depleted Da		` '		Other	(Explain in Remarks)
Sandy Gleyed Matrix (S4)	Redox Depr					
Sandy Redox (S5)						
3Indicators of hydrophytic vocatation and wa	tland bydralagy mu	ot ha pro	acat unloc	a diaturbaa	l or problemati	•
Indicators of hydrophytic vegetation and we		st be ble	sent, unies	s distuibed	T OI PIODIEIIIAU	u.
Restrictive Layer (if observed):						
Type: Rock					Unidada Onii	I Donas and O. Mara W. Mar
Depth (cm): 7					Hydric Soi	Present? Yes XNo
Remarks:						
HYDROLOGY						
Wetland Hydrology Indicators:						
Primary Indicators (minimum of one is requi	red; check all that a	oply)			·	y Indicators (minimum of two required)
						urface Soil Cracks (B6)
Surface Water (A1)	X Water-Sta					rainage Patterns (B10)
X High Water Table (A2)	Aquatic Fa	`	,			loss Trim Lines (B16)
X Saturation (A3)	Marl Depo					ry-Season Water Table (C2)
X Water Marks (B1)	Hydrogen					rayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized I			-		aturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence		•	,		tunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iro			d Soils (C6		Seomorphic Position (D2)
Iron Deposits (B5)	Thin Muck		, ,			hallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B		olain in F	Remarks)			licrotopographic Relief (D4)
Sparsely Vegetated Concave Surface (38)				F	AC-Neutral Test (D5)
Field Observations:						
	No X Depth (c	m).				
	No <u>x</u> Deptil (c					
				Wet	land Hydrolog	gy Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (c	m):	<u>U</u>		iana nyaroto,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Describe Recorded Data (stream gauge, mor	nitoring well, aerial p	hotos, p	revious insp	ections), i	f available:	
Remarks: Drainage patterns observed.						

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

roject/Site: Glory View Estates	Municipality/County: Yor	rk CountySampling Date: <u>July 23, 2</u>						
pplicant/Owner: Murray Munn and Sons Ltd	Point: WL 2 wet							
nvestigator(s): Ryan Power and Derrick Mitchell	Affiliation: Boreal Environmental La	andform (hillslope, terrace, etc.): NA						
ocal relief (concave, convex, none):	ope (%):X coord:_46.0572	265 Y coord <u>-66.585599</u>						
		Wetland Type: Spring basin Marsh						
		No(If no, explain in Remarks.)						
	•	Are "Normal Circumstances" present? Yes X No _						
Are vegetation, Soil, or Hydroid	gy naturally problematic?	(If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach	ite map showing sampling	point locations, transects, important features, et						
Hudrophytic Vegetation Present?	y No Is the	No. Is the Sampled Area						
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes	A NO	-100						
Wetland Hydrology Present?		optional Wetland Site ID:						
		vegetation, standing water 50 cm on average, possibly manmade						
watercourse inlet presence, origin from swam								
VEGETATION - Use scientific names	of plants.							
	Absolute Dominant I	Indicator Dominance Test worksheet:						
Tree Stratum (Plot size: 15	% Cover Species? S	Status Number of Dominant Species						
1								
2		Total Number of Dominant						
3								
4		Percent of Dominant Species						
5		That Are OBL, FACW, or FAC:(A/B						
Capling/Chrush Ctratum / Dlat air a. F	= Total Cove	Prevalence Index worksheet:						
Sapling/Shrub Stratum (Plot size: 5		T . 10/0 / 11/11/11						
1		OBL species x 1 =						
2		FACW species x 2 =						
3		FAC species x 3 =						
4 5		FACU species x 4 =						
6		UPL species x 5 =						
		Column Totals:(A)(B)						
Harb Ctrature / Distainer 4	= Total Cove	Prevalence Index = B/A =						
Herb Stratum (Plot size: 1								
		OBL FACW						
Scutellaria lateriflora Scirpus cyperinus		FACW Hydrophytic Vegetation Indicators:						
		17.000 - 1.00 -						
		Dominance Test is > 50%						
5		Prevalence Index is <3 01						
6		Morphological Adaptations ¹ (Provide supporting						
7		data in Remarks or on a separate sheet)						
8		(=						
9								
10		Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.						
Woody Vine Stratum (Plot size:	80 = Total Cove	be present, unless disturbed of problematic.						
4. Na was day days								
		Hydrophytic Vegetation						
2		Present? Yes X No						
	80 = Total Cove	er <u> </u>						

SOIL Sampling Point: WL 2 wet Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Redox Features Type¹ Loc² Texture Remarks Color (moist) ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils3: Histosol (A1) ___ Stripped Matrix (S6) ___ Coast Prairie Redox (A16) __ Histic Epipedon (A2) ___ Dark Surfaces (S7) __ 5 c Mucky Peat or Peat (S3) Black Histic (A3) ____ Polyvalue Below Surface (S8) ____ Iron-Manganese Masses (F12) __ Hydrogen Sulfide (A4) ___ Thin Dark Surface (S9) ____ Piedmont Floodplain Soils (F19) Stratified Layers (A5) ___ Loamy Gleyed Matrix (F2) ____ Red Parent Material (F21) ___ Depleted Below Dark Surface (A11) ___ Depleted Matrix (F3) ___ Very Shallow Dark Surface (F22) Thick Dark Surface (A12) ____ Redox Dark Surface (F6) ___ Other (Explain in Remarks) ___ Sandy Mucky Mineral (S1) ____ Depleted Dark Surface (F7) ___ Sandy Gleyed Matrix (S4) ___ Redox Depressions (F8) ___ Sandy Redox (S5) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: NA Depth (cm): NA Hvdric Soil Present? Yes X No Remarks: Wetland condition obvious with emergent vegetation. Soil pit not possible with standing water. **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) X Surface Water (A1) ___ Water-Stained Leaves (B9) Moss Trim Lines (B16) High Water Table (A2) __ Aquatic Fauna (B13) Dry-Season Water Table (C2) Saturation (A3) Marl Deposits (B15) ___ Hydrogen Sulfide Odor (C1) ___ Crayfish Burrows (C8) ___ Water Marks (B1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) __ Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) ___ Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) ___ Geomorphic Position (D2) __ Iron Deposits (B5) __ Thin Muck Surface (C7) __ Shallow Aquitard (D3) ____ Inundation Visible on Aerial Imagery (B7) ___ Other (Explain in Remarks) ____ Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) ___ FAC-Neutral Test (D5)

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

Project/Site: Glory Vi	ew Estates		Municipality	//County:	York County_		Sampling Date: _	July 23, 202
Applicant/Owner: Murray Munn and Sons Ltd			Sampling Point: WL 2 up					
Investigator(s): Ryan	Power and Derri	ck Mitchell Affiliation	n: Boreal Enviro	onmental	Landform (hillslope, terrace, etc.): NA		
Local relief (concave	, convex, none):	Slope (%):	:X co	ord: 46.0)57488	Y coord <u>-66.58</u>	5778	
						Type: Mature Hemlock F		
						(
-	_					Normal Circumstances" pre		
		, or Hydrology , or Hydrology				eeded, explain any answers		110
-							,	
SUMMARY OF	FINDINGS -	Attach site ma	p showing	samplir	ng point lo	ocations, transects, i	mportant feat	ures, etc.
Hydrophytic Vege	station Present?	Vec Y	No	Is	the Sampled	l Area		
Hydric Soil Presei			No X		thin a Wetlar		No <u>X</u>	
Wetland Hydrolog			No X	lf v	es, optional \	Wetland Site ID:		
		cedures here or in a s		.)	co, optional	vvotiaria oito ib.		
	·			,				
VEGETATION -	- Use scientif	ic names of plan	nts.					
				Domina	nt Indicator	Dominance Test works	heet:	
Tree Stratum (Plo	ot size: <u>15</u>)	% Cover	Species	? Status	Number of Dominant Sp		
1. Tsuga canade	nsis		90	YES	FACU	That Are OBL, FACW, o		(A)
2. Acer rubrum			5		FAC	Total Number of Domina	nt	
3						Species Across All Strata		(B)
4						Percent of Dominant Spe	ocios	
5						That Are OBL, FACW, o		(A/B)
			95	= Total C	over	Decuales de la descusada	-ht-	
		5)				Prevalence Index work		h
						Total % Cover of: OBL species	<u>Wuitiply</u> x 1 =	by:
						FACW species 1		
						FAC species 16		
						FACU species 90		
						UPL species 2		
0						Column Totals: 109		
			7	= Total Cover				
Herb Stratum (Pl	ot size: 1)				Prevalence Index = B/A	= 3.85	
				YES	<u>FAC</u>			
-				YES	<u>FACW</u>	Hydrophytic Vegetation Indicators:		
3. Gaultheria hisp				YES	<u>FAC</u>	Rapid Test for Hydro		
						X Dominance Test is >	. , .	
						Prevalence Index is		
						Morphological Adap		unnorting
						data in Remarks or		
						Problematic Hydrop	hytic Vegetation¹ (Explain)
							- `	•
10						¹ Indicators of hydric soil		
Woody Vine Strat	um (Plot size:)	7	= I otal C	over	be present, unless distur	bed or problemation	С.
-						Hydrophytic Vegetation		
2							X No	
			109	= Total C	over			_

SOIL Sampling Point: WL2 up

) %	Color (r	<u>-eatures</u> noist)	%	Type ¹	Loc ²	Texture	Remarks
cm) Color (moist	100	<u> </u>	HOIOL				Organic	romano
30 7.5YR/6/3	100						Sandy	
				_				_
					_			_
Type: C=Concentration	D=Depletion,	RM=Reduce	ed Matrix, C	S=Cover	ed or Coat	ed Sand G	rains. ²	Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:							Indicate	ors for Problematic Hydric Soils ³ :
Histosol (A1)		9	Stripped Ma	trix (S6)				past Prairie Redox (A16)
Histic Epipedon (A2)			Dark Surface					Mucky Peat or Peat (S3)
Black Histic (A3)	1)		Polyvalue B		` ,			on-Manganese Masses (F12)
Hydrogen Sulfide (A- Stratified Layers (A5			Thin Dark S	•	•			edmont Floodplain Soils (F19)
Depleted Below Darl			oamy Gley Depleted Ma		((F2)			ed Parent Material (F21)
Thick Dark Surface (,		Redox Dark		(F6)			ery Shallow Dark Surface (F22) her (Explain in Remarks)
Sandy Mucky Minera	,		Depleted Da		` '		0	nei (Explain in Nemarks)
Sandy Gleyed Matrix	, ,		Redox Depr					
Sandy Redox (S5)								
Indicators of hydrophytic	vegetation an	d wetland hy	drology mu	st be pre	sent, unles	s disturbed	d or problem	natic.
Restrictive Layer (if obs	erved):							
Type: Rock								
Depth (cm): 30							Hydric S	Soil Present? YesNo <u>X</u>
Depth (cm): 30 Remarks: YDROLOGY	cators:						Hydric S	Soil Present? Yes <u>No X</u>
• • • • • • • • • • • • • • • • • • • •		equired; che	ck all that a	pply)				Soil Present? YesNo _X
Depth (cm): 30 Remarks: IYDROLOGY Wetland Hydrology Indi		equired; che	ck all that a	pply)				
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indi		equired; che	ck all that a		aves (B9)			dary Indicators (minimum of two required)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (minin	um of one is r	equired; che		ained Lea				dary Indicators (minimum of two required) _ Surface Soil Cracks (B6)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (mining) Surface Water (A1)	um of one is r	equired; che	_ Water-Sta	ained Lea auna (B1	3)			dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Depth (cm): 30 Remarks: IYDROLOGY Wetland Hydrology Indicators (mining and surface Water (A1) High Water Table (A	um of one is r	equired; che	_ Water-Sta _ Aquatic F	ained Lea auna (B1 osits (B1	3) 5)			dary Indicators (minimum of two required) _ Surface Soil Cracks (B6) _ Drainage Patterns (B10) _ Moss Trim Lines (B16)
Depth (cm): 30 Remarks: NYDROLOGY Wetland Hydrology Indi Primary Indicators (minin Surface Water (A1) High Water Table (A Saturation (A3)	num of one is r	- - -	_ Water-Sta _ Aquatic Fa _ Marl Depo	ained Lea auna (B1 osits (B1) Sulfide	3) 5) Odor (C1)	ving Roots	Second	dary Indicators (minimum of two required) _ Surface Soil Cracks (B6) _ Drainage Patterns (B10) _ Moss Trim Lines (B16) _ Dry-Season Water Table (C2)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indi Primary Indicators (minin Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1)	num of one is r	- - -	_ Water-Sta _ Aquatic F _ Marl Depo _ Hydrogen	ained Lea auna (B1 osits (B1 Sulfide Rhizosph	3) 5) Odor (C1) neres on Li	-	<u>Second</u>	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indiperimary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (2)	- - -	_ Water-Sta _ Aquatic F _ Marl Depo _ Hydrogen _ Oxidized _ Presence	ained Lea auna (B1 osits (B1 Sulfide Rhizosph of Redu	3) 5) Odor (C1) neres on Li	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8)
Depth (cm): 30 Remarks: IYDROLOGY Wetland Hydrology Indi Primary Indicators (minin Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (Drift Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	2) 32) 4)	- - - - - -	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized I _ Presence _ Recent Iro _ Thin Mucl	ained Lea auna (B1 osits (B1) Sulfide Rhizosph of Redu on Reduck Surface	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille	4)	Second	dary Indicators (minimum of two required) _ Surface Soil Cracks (B6) _ Drainage Patterns (B10) _ Moss Trim Lines (B16) _ Dry-Season Water Table (C2) _ Crayfish Burrows (C8) _ Saturation Visible on Aerial Imagery (C9) _ Stunted or Stressed Plants (D1)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indiperimary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (E Iron Deposits (B5) Inundation Visible or	2) 32) Aerial Imager	y (B7)	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized I _ Presence _ Recent Iro	ained Lea auna (B1 osits (B1) Sulfide Rhizosph of Redu on Reduck Surface	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Individual Primary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5)	2) 32) Aerial Imager	y (B7)	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized I _ Presence _ Recent Iro _ Thin Mucl	ained Lea auna (B1 osits (B1) Sulfide Rhizosph of Redu on Reduck Surface	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Inundation Visible or Sparsely Vegetated	2) 32) Aerial Imager	y (B7)	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized I _ Presence _ Recent Iro _ Thin Mucl	ained Lea auna (B1 osits (B1) Sulfide Rhizosph of Redu on Reduck Surface	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indi Primary Indicators (minin Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (E Iron Deposits (B5) Inundation Visible or Sparsely Vegetated	2) 32) Aerial Imager Concave Surfa	y (B7)	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized I _ Presence _ Recent Iro _ Thin Mucl _ Other (Ex	ained Lea auna (B1 osits (B1: Sulfide Rhizosph of Redu on Reduc k Surface plain in F	3) Ddor (C1) neres on Liced Iron (C ction in Tille e (C7) Remarks)	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indiperimary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Inon Deposits (B5) Inundation Visible or Sparsely Vegetated Field Observations: Surface Water Present?	2) 32) Aerial Imager Concave Surfa	y (B7)	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized _ Presence _ Recent Iro _ Thin Mucl _ Other (Ex	ained Lea auna (B1 soits (B1: Sulfide Rhizosph of Redu on Reduc k Surface plain in F	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille e (C7) Remarks)	4)	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 30 Remarks: IYDROLOGY Wetland Hydrology Indiperimary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (E Iron Deposits (B5) Inundation Visible or	2) 32) Aerial Imager Concave Surfa Yes Yes	y (B7) ce (B8)	_ Water-Sta _ Aquatic F. _ Marl Depon _ Hydrogen _ Oxidized I _ Presence _ Recent Iro _ Thin Mucl _ Other (Ex	ained Lea auna (B1 sulfide Sulfide Rhizosph of Redu on Reduc k Surface plain in F	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille e (C7) Remarks)	4) ed Soils (Co	Second	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indiperimary Indicators (mining) Surface Water (A1) High Water Table (A Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Inundation Visible or Sparsely Vegetated Field Observations: Surface Water Present? Vater Table Present? Saturation Present?	2) 32) Aerial Imager Concave Surfa Yes Yes Yes	y (B7) ce (B8) No No	_ Water-Sta _ Aquatic F. _ Marl Depo _ Hydrogen _ Oxidized _ Presence _ Recent Iro _ Thin Mucl _ Other (Ex	ained Lea auna (B1 osits (B1: Sulfide (Rhizosph of Redu on Reduc k Surface plain in F	3) 5) Odor (C1) neres on Lir ced Iron (C ction in Tille e (C7) Remarks)	4) ed Soils (Co	Second (C3) (C3) (C3) (C3)	dary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

roject/Site: Glory View Estates		Municipality	//County: Y	ork County_	Sar	npling Date: _	July 23, 202
pplicant/Owner: Murray Munn and S	Sons Ltd		Samplin	g Point: <u>W</u>	/L 3 wet	_	
vestigator(s): Derrick Mitchell	Affiliation: Boreal	Environme	ental_	Landfo	orm (hillslope, terrace, etc.): NA		
ocal relief (concave, convex, none):	Slope (%):	X co	ord: 46.054	1878	Y coord <u>-66.584058</u>	1	
atum: NAD83 NBDS	Soil Map Un	it Name/Ty	pe:	Wetland	Type: Drainageway Swamp		
re climatic / hydrologic conditions or	the site typical for this ti	me of year?	? Yes <u>X</u>	No	(If no, e	xplain in Rem	narks.)
Are Vegetation, Soil	, or Hydrology s	ignificantly	disturbed?	Are "	Normal Circumstances" presen	t? Yes X	No
Are Vegetation, Soil					eeded, explain any answers in F		
SUMMARY OF FINDINGS -							turas atc
SOMMAN OF THE DIVISOR	Attach Site map s	ilowing .	Samping	, point ic	cations, transects, imp	Ortant real	tures, etc.
Hydrophytic Vegetation Present?				e Sampled		_	
Hydric Soil Present?	Yes XNo				nd? Yes X N		
Wetland Hydrology Present?			If ye	s, optional \	Wetland Site ID:		
Remarks: (Explain alternative prod	cedures here or in a sepa	rate report	.)				
VEGETATION – Use scientil	fic names of plants						
VEGETATION - USE SCIENTIN	nic riames or piams.	Absolute	Dominant	Indicator	Dominance Test workshee	, .	
Tree Stratum (Plot size: 15)		Species?		Number of Dominant Species		
1. Betula alleghaniensis		15	YES	FAC	That Are OBL, FACW, or FA		(A)
2. Acer rubrum		10	YES	FAC	Total Number of Dominant		
3					Species Across All Strata:	6	(B)
4					Percent of Dominant Species	.	
5					That Are OBL, FACW, or FA		(A/B)
Sanling/Shrub Stratum / Plot sizo:	5	<u>25</u>	= Total Cov	/er	Prevalence Index workshee	et:	
Sapling/Shrub Stratum (Plot size: 1. Betula alleghaniensis		5	VES	EΔC	Total % Cover of:		by:
Acer rubrum			YES	FAC	OBL species	x 1 =	
3				IAO	FACW species 35	x 2 =	70
4.					FAC species 65	x 3 = <u>195</u>	<u> </u>
5.					FACU species		
6.					UPL species	x 5 =	
		40	T-1-1-0		Column Totals: 100	(A) <u>265</u>	(B)
Herb Stratum (Plot size: 1)	10	= Total Cov	/er	Prevalence Index = B/A = 2	.65	
		30	YES	FAC			
2 Oncolor consibilio		10		FACW			
3. Scutellaria lateriflora		5		FACW	Hydrophytic Vegetation Inc	licators:	
4. Lycopus uniflorus		15	YES	FACW+	Rapid Test for Hydrophy	tic Vegetation	1
5. Carex gynandra		5		FACW	X Dominance Test is >50%	, 0	
6.		_			X Prevalence Index is ≤3.0		
7		-	-		Morphological Adaptatio data in Remarks or on a		
8.					Problematic Hydrophytic	•	•
9.					1 Toblematic Hydrophytic	vegetation	(Lxpiairi)
10.			-		¹ Indicators of hydric soil and	wetland hydro	ology must
		65	= Total Cov	/er	be present, unless disturbed	or problemati	c.
Woody Vine Stratum (Plot size:)						
1. No woody vines					Hydrophytic		
2					Vegetation Present? Yes X	No	

SOIL Sampling Point: WL 3 wet

(cm) Color (m	Matrix	%	Redox Features Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
7 7.5YR/3		100	Color (moist)		<u> 1ype</u>		Silty	Black muck
<u> </u>	, .							
			<u></u>					
Type: C=Concentrat	ion, D=Dep	letion, RM	1=Reduced Matrix	CS=Cover	ed or Coat	ed Sand G	rains. ² l	_ocation: PL=Pore Lining, M=Matrix.
lydric Soil Indicator	s:						Indicato	ors for Problematic Hydric Soils ³ :
Histosol (A1)			Stripped I	, ,				ast Prairie Redox (A16)
Histic Epipedon (A2)		Dark Surf					Mucky Peat or Peat (S3)
Black Histic (A3) Hydrogen Sulfide	(1)		Polyvalue					n-Manganese Masses (F12)
Hydrogen Sunde Stratified Layers (Thin Dark	,	•			edmont Floodplain Soils (F19)
Depleted Below I		e (A11)	Loamy GI Depleted	-	(12)			d Parent Material (F21) ry Shallow Dark Surface (F22)
Thick Dark Surface		` '/		ark Surface	(F6)			ner (Explain in Remarks)
Sandy Mucky Mir				Dark Surfa	` '		511	
Sandy Gleyed Ma	atrix (S4)		Redox De	epressions	(F8)			
Sandy Redox (S5	5)							
Indicators of hydroph	vtic vegetat	tion and w	retland hydrology r	must be pre	sent. unles	s disturbe	d or problema	atic.
Restrictive Layer (if	-		, 0,	•			<u> </u>	
Type: Rock								
Depth (cm): 7							Hydric S	oil Present? Yes XNo
Depth (cm): 7							Hydric S	oil Present? Yes X No
Depth (cm): 7 Remarks: YDROLOGY							Hydric S	oil Present? Yes XNo
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology I	ndicators:			t apply)				oil Present? Yes XNo
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology I	ndicators:			t apply)			Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology I	ndicators:				aves (B9)		Second	ary Indicators (minimum of two required)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi	ndicators:		uired; check all tha				Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi	ndicators:		uired; check all tha X_ Water- Aquatio	Stained Lea	13)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi	ndicators: inimum of o		uired; check all tha X_ Water- Aquatio	Stained Lea	13) 5)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A X High Water Table X Saturation (A3)	ndicators: nimum of o		uired; check all tha X_ Water- Aquatio	Stained Lea c Fauna (Br eposits (B1 en Sulfide	13) 5) Odor (C1)	ving Roots	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1)	ndicators: nimum of o 1) (A2) ts (B2)		uired; check all that X Water Aquatic Marl Do Hydrog Oxidize	Stained Lea c Fauna (Br eposits (B1 en Sulfide	13) 5) Odor (C1) neres on Liv	•	<u>Second</u>	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi) Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposi	ndicators: inimum of o 1) (A2) ts (B2)		x_ Water- Aquatio Marl Do Hydrog Coxidize	Stained Leace Fauna (Braposits (B1) len Sulfide ed Rhizosph	13) 5) Odor (C1) neres on Liv ced Iron (C	4)	<u>Second</u>	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Depth (cm): 7 Remarks: Remarks: PYDROLOGY Wetland Hydrology I Primary Indicators (mi X Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposi Drift Deposits (B3)	ndicators: inimum of o 1) (A2) ts (B2) b) t (B4)		x_ Water- Aquatio Marl Do Hydrog Coxidize	Stained Lea Fauna (B' eposits (B1 en Sulfide ed Rhizospl ce of Redu	3) 5) Odor (C1) neres on Liv ced Iron (C ction in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I C Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3) Algal Mat or Crus	ndicators: inimum of o 1) (A2) ts (B2) b) t (B4)	ne is requ	X_ Water- Aquation Marl Do Hydrog Oxidize Present Recent Thin M	Stained Lea Fauna (B' eposits (B1 en Sulfide ed Rhizosph ce of Redu Iron Redu uck Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I C Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial I	ne is requ	X_ Water- Aquatic Marl Do Hydrog Oxidize Present Recent Thin M	Stained Lea Fauna (B' eposits (B1 en Sulfide ed Rhizosph ce of Redu Iron Redu uck Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology I Primary Indicators (m) X Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposi Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible Sparsely Vegetat	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial I	ne is requ	X_ Water- Aquatic Marl Do Hydrog Oxidize Present Recent Thin M	Stained Lea Fauna (B' eposits (B1 en Sulfide ed Rhizosph ce of Redu Iron Redu uck Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology I Primary Indicators (mi) Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposi Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible Sparsely Vegetat	ndicators: inimum of o 1) (A2) Its (B2) It (B4)) It (B4) e on Aerial I	ne is requ magery (E	X_ Water- Aquation Marl Do Hydrog Oxidize Presen Recent Thin M 37) (B8)	Stained Lea E Fauna (B' eposits (B1 en Sulfide ed Rhizospl ce of Redu Iron Redu uck Surface Explain in F	Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7) Remarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: Remarks: Remarks: Primary Indicators (mineral light of the content of	ndicators: nimum of o 1) (A2) Its (B2) It (B4)) It on Aerial I Ited Concave	magery (Ee Surface	X_ Water- Aquatic Hydrog Oxidize Presen Recent Thin M 37) Other ((B8)	Stained Lea E Fauna (B' eposits (B1 len Sulfide ed Rhizosph ce of Redu I Iron Reducuck Surface Explain in F	Odor (C1) Dodor (C1) Deres on Liveced Iron (Cetion in Tille Ce (C7) Demarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology I Primary Indicators (mi) Surface Water (AX High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposit (B3) Algal Mat or Crus Iron Deposits (B5) Inundation Visible Sparsely Vegetat Veter Table Present?	ndicators: nimum of o 1) (A2) ts (B2) t (B4)) e on Aerial II ed Concave	magery (Ee Surface	X_ Water- Aquatic Marl Depth No Depth	Stained Leace Fauna (Breposits (B1) len Sulfide ed Rhizosphore of Reduction Reduction Reduction Surface Explain in Fauncier (cm):	Odor (C1) Odor (C1) neres on Liv ced Iron (C ction in Tille (C7) Remarks)	4) ed Soils (C	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Depth (cm): 7 Remarks: IYDROLOGY Wetland Hydrology I Primary Indicators (mi X Surface Water (A X High Water Table X Saturation (A3) Water Marks (B1) Sediment Deposi Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible	ndicators: nimum of o 1) (A2) ts (B2) t (B4)) e on Aerial II ed Concave	magery (Ee Surface	X_ Water- Aquatic Hydrog Oxidize Presen Recent Thin M 37) Other ((B8)	Stained Leace Fauna (Breposits (B1) len Sulfide ed Rhizosphore of Reduction Reduction Reduction Surface Explain in Fauncier (cm):	Odor (C1) Odor (C1) neres on Liv ced Iron (C ction in Tille (C7) Remarks)	4) ed Soils (C	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: Re	ndicators: inimum of o 1) (A2) Its (B2) It (B4)) It (B4) e on Aerial II ed Concave Ye Ye Ye Ge)	magery (Ee Surface	X_ Water- Aquation Marl Do Hydrog Oxidize Presen Recent Thin M 37) Other ((B8) No Depth No Depth No Depth	Stained Leace Fauna (Breposits (B1) len Sulfide ed Rhizosphace of Reducter Reducted Surface Explain in Fauna (cm):	Odor (C1) neres on Liveced Iron (C ction in Tille e (C7) Remarks)	4) ed Soils (C	Second (C3) (C3) (C3)	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

roject/Site: Glory View Estates	Municipalit	y/County: York County	ySampling Date: _July 23, 2022
oplicant/Owner: Murray Munn and Sons Ltd		Sampling Point: <u>V</u>	VL 4 and 6 wet
vestigator(s): Derrick Mitchell Affiliation: Boreal En	vironmental Landf	orm (hillslope, terrace	e, etc.): NA Local relief (conca
nvex. none): Concave Slope (%):	X coord: 46.05	3464 Y	coord <u>-66.585891</u>
atum: NAD83 NBDS So			
			(If no, explain in Remarks.)
	-		
			"Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology_	naturally pro	oblematic? (If r	needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site	map showing	sampling point I	ocations, transects, important features, etc.
		la the Sample	d Aron
Hydrophytic Vegetation Present? Yes X		Is the Sample	and? Yes <u>X</u> No
Hydric Soil Present? Yes X_ Wetland Hydrology Present? Yes X_	No		
Remarks: (Explain alternative procedures here or			Wetland Site ID:
WL 4 coordinates : x 46.054074, y -66.584983,	iii a separate report) Coordinates stated	TOT VVL 6 above.
(FOETATION - Have a description of	.1		
/EGETATION – Use scientific names of	•		.
Tree Stratum (Plot size: 15		Dominant Indicator Species? Status	
1			Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
2			Total Number of Dominant
			_ Species Across All Strata:(B)
4 5			Percent of Dominant Species
o		= Total Cover	That Are OBL, FACW, or FAC: 100 (A/B)
Sapling/Shrub Stratum (Plot size: 5		10.01 00701	Prevalence Index worksheet:
1. Acer rubrum		YES FAC	Total % Cover of: Multiply by:
2. Salix discolor			OBL species 5 x 1 =5
3			FACW species <u>75</u> x 2 = <u>150</u>
4			FAC species 4 x 3 = 12
5			FACU species x 4 =
6.			UPL species x 5 =
		T 0	Column Totals: <u>84</u> (A) <u>167</u> (B)
Herb Stratum (Plot size: 1)	4	= Total Cover	Prevalence Index = B/A = 1.98
Scirpus cyperinus	30	YES FACW	
Carex gynandra		YES FACW	-
3. Carex spp.	10		Hydrophytic Vegetation Indicators:
Juncus effusus	10	FACW	X Rapid Test for Hydrophytic Vegetation
Polygonum sagittatum		OBL	X Dominance Test is >50%
			X Prevalence Index is ≤3.0¹
6			Morphological Adaptations ¹ (Provide supporting
7			data in Remarks or on a separate sheet)
8			Problematic Hydrophytic Vegetation ¹ (Explain)
9			-
10		- Total Cayar	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:		= Total Cover	be present, unless disturbed of problematic.
·			
1. No woody vines		-	_ Hydrophytic
2	, <u>, , , , , , , , , , , , , , , , , , </u>		Vegetation
		= Total Cover	

SOIL Sampling Point: WL4 and 6 wet

Profile Des	scription: (Descri	be to the de	epth needed to doc	ument the	indicator	or confirm	the absence	ce of indicators.)
Depth	Matr		Redox Features				_	
<u>(cm)</u>	Color (moist)	<u>%</u>	Color (moist)	<u> %</u>	Type ¹	Loc ²	Texture	Remarks
	-		_					
	-		_					-
	-		-					_
-						·	-	_
	-		_					_
	-		_					_
1 _{Type: C-C}	Concentration D	Doplotion B	M=Reduced Matrix,		end or Coat	od Sond Cr	roine 21	Location: PL=Pore Lining, M=Matrix.
Type. C=0	Jonicentiation, D=	Depletion, K	wi=Reduced Matrix,	CS=Cover	eu or Coar	eu Sanu Gi	allis. L	Location. PL=Pole Liming, M=Matrix.
Hydric Soi	I Indicators:						Indicato	ors for Problematic Hydric Soils ³ :
Histoso			Stripped N	Matrix (S6)				ast Prairie Redox (A16)
·	Epipedon (A2)		Dark Surfa	, ,				Mucky Peat or Peat (S3)
	Histic (A3)		Polyvalue	` ,	face (S8)			n-Manganese Masses (F12)
Hydrog	jen Sulfide (A4)		Thin Dark		` ,			edmont Floodplain Soils (F19)
Stratifie	ed Layers (A5)		Loamy Glo					d Parent Material (F21)
Deplete	ed Below Dark Su	rface (A11)	Depleted I	Matrix (F3)				ry Shallow Dark Surface (F22)
Thick [Oark Surface (A12)	Redox Da	rk Surface	(F6)			ner (Explain in Remarks)
	Mucky Mineral (S	,	Depleted I	Dark Surfa	ce (F7)			
	Gleyed Matrix (S4	!)	Redox De	pressions	(F8)			
Sandy	Redox (S5)							
2								
Indicators	of hydrophytic vec	getation and	wetland hydrology n	nust be pre	esent, unles	s disturbed	l or problema	atic.
Restrictive	Layer (if observ	ed):						
Type: N	IA							
Depth (d	cm): NA						Hydric S	oil Present? Yes X No
	· -	ate too rocky	to dig nit Ranid Te	st for Hydr	onhytic Ve	netation and	d Hydrology	indicators obviously wetland.
			to alg plur tapia ro	o	op,	gotalion and	a , a. o. o.g,	maioatoro ozvicaci, nonana.
HYDROL	OGY							
	ydrology Indicate							
Primary Inc	licators (minimum	of one is red	uired; check all that	apply)			Second	ary Indicators (minimum of two required)
								Surface Soil Cracks (B6)
Surface	e Water (A1)		X Water-S	Stained Lea	aves (B9)			Drainage Patterns (B10)
High W	/ater Table (A2)		Aquatic	Fauna (B1	13)			Moss Trim Lines (B16)
Satura	tion (A3)		Marl De	posits (B1	5)			Dry-Season Water Table (C2)
Water I	Marks (B1)		Hydrog	en Sulfide	Odor (C1)			Crayfish Burrows (C8)
	ent Deposits (B2)					ving Roots	(C3)	Saturation Visible on Aerial Imagery (C9)
	eposits (B3)				ced Iron (C	-	· /	Stunted or Stressed Plants (D1)
	fat or Crust (B4)		·		•	ed Soils (C6	3)	Geomorphic Position (D2)
_	eposits (B5)		·	ıck Surface		()		Shallow Aquitard (D3)
	tion Visible on Ae	rial Imageny						Microtopographic Relief (D4)
	ly Vegetated Con				(Ciriains)			
Sparse	ly vegetated Con	cave Suriace	÷ (D0)					FAC-Neutral Test (D5)
Field Ohea	ryations							
Field Obse			·	, ,				
	ter Present?		_ No Depth					
Water Table	e Present?	Yes	_ No Depth	(cm):				
Saturation F		Yes	_ No Depth	(cm):	_ (includes	Wet	land Hydrol	ogy Present? Yes X No
capillary frin								
Describe Re	corded Data (stre	am gauge, n	nonitoring well, aeria	l photos, p	revious ins	pections), i	f available:	
Remarks:								
. Comano.								

roject/Site: Glory View Estates		Municipalit	ty/County: York Count	ySa	mpling Date: July 23, 202
pplicant/Owner: Murray Munn and S	ons Ltd		Sampling Point:	WL 5 wet	_
vestigator(s): Derrick Mitchell	Affiliation: Boreal E	<u>invironmental</u>	Landform	(hillslope, terrace, etc.): NA	
ocal relief (concave, convex, none):	Slop	e (%):	X coord: 46.054108	Y coord <u>-66.</u>	585487
atum: NAD83 NBDS					
re climatic / hydrologic conditions or					
Are Vegetation, Soil		•			
Are Vegetation, Soil				needed, explain any answers in	
_					
SUMMARY OF FINDINGS -	Attach site ma	ap showing	sampling point l	ocations, transects, imp	portant features, etc.
Hydrophytic Vegetation Present?	Yes X	No	Is the Sample	ed Area	
Hydric Soil Present?		No	! (1. ! \A/-(1.	and? Yes XN	lo
Wetland Hydrology Present?				I Wetland Site ID:	
Remarks: (Explain alternative prod	edures here or in a	separate repor	t.)	-	
VEGETATION - Use scientif	fic names of pla	nts.			
			Dominant Indicator	Dominance Test workshee	et:
Tree Stratum (Plot size: 15		·	Species? Status	Number of Dominant Specie	
1				That Are OBL, FACW, or FA	\C:(A)
2.				Total Number of Dominant	(5)
3				_ Species Across All Strata:	(B)
4				Percent of Dominant Specie	
5			_= Total Cover	That Are OBL, FACW, or FA	\C:(A/B)
Sapling/Shrub Stratum (Plot size:	5		10141 00701	Prevalence Index workshe	et:
1				Total % Cover of:	Multiply by:
2				OBL species	
3				FACW species	
4				FAC species	
5				FACU species	
6				UPL species	
			= Total Cover	Column Totals:	(A)(B)
Herb Stratum (Plot size: 1)			Prevalence Index = B/A = _	
Glyceria striata			FACW	_	
2. Cicuta maculata			OBL	_	
3. Iris versicolor			FACW+		
4. Calla palustris			OBL	X Rapid Test for Hydroph	, ,
5. Scutellaria lateriflora			FACW	Dominance Test is >50	
6				Prevalence Index is ≤3.	
7				Morphological Adaptation data in Remarks or on a	ons ¹ (Provide supporting a separate sheet)
8				Problematic Hydrophyti	•
9				_	· · · · · · · · · · · · · · · · · · ·
10				_ Indicators of hydric soil and	
Mondy Vine Chartens (Dist sis		<u>30</u>	_= Total Cover	be present, unless disturbed	I or problematic.
Woody Vine Stratum (Plot size:)				
No woody vines				_ Hydrophytic	
2				Vegetation Present? Yes	(No
			= Total Cover	Present? Tes /	

SOIL Sampling Point: WL 5 wet Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Redox Features Type¹ Loc² Texture Remarks Color (moist) ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix, **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils3: Histosol (A1) ___ Stripped Matrix (S6) ___ Coast Prairie Redox (A16) __ Histic Epipedon (A2) ___ Dark Surfaces (S7) __ 5 c Mucky Peat or Peat (S3) Black Histic (A3) ____ Polyvalue Below Surface (S8) ____ Iron-Manganese Masses (F12) __ Hydrogen Sulfide (A4) ___ Thin Dark Surface (S9) ____ Piedmont Floodplain Soils (F19) Stratified Layers (A5) ___ Loamy Gleyed Matrix (F2) ____ Red Parent Material (F21) ___ Depleted Below Dark Surface (A11) ___ Depleted Matrix (F3) ___ Very Shallow Dark Surface (F22) Thick Dark Surface (A12) ____ Redox Dark Surface (F6) ___ Other (Explain in Remarks) ___ Sandy Mucky Mineral (S1) ___ Depleted Dark Surface (F7) ___ Sandy Gleyed Matrix (S4) ___ Redox Depressions (F8) ___ Sandy Redox (S5) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: NA Depth (cm): NA Hvdric Soil Present? Yes X No Remarks: Spring basin swamp has standing water, hydrology and hydric soils obvious. **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) X Surface Water (A1) ___ Water-Stained Leaves (B9) Moss Trim Lines (B16) High Water Table (A2) Aguatic Fauna (B13) Dry-Season Water Table (C2) Saturation (A3) Marl Deposits (B15) ___ Hydrogen Sulfide Odor (C1) ___ Crayfish Burrows (C8) ___ Water Marks (B1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) _ Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) ___ Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) ___ Geomorphic Position (D2) __ Iron Deposits (B5) __ Thin Muck Surface (C7) __ Shallow Aquitard (D3) ____ Inundation Visible on Aerial Imagery (B7) ___ Other (Explain in Remarks) ____ Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) ___ FAC-Neutral Test (D5) Field Observations:

Yes X No ____ Depth (cm): Surface Water Present? Yes No _____ Depth (cm): Water Table Present? Wetland Hydrology Present? Yes X____ No _ Yes _____ No ____ Depth (cm): ____ (includes Saturation Present? capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

roject/Site: Glory View Estates		_Municipality	//County: Y	ork County	Sampling Date: <u>July 2</u>	3, 202
pplicant/Owner: Murray Munn and S	Sons Ltd		Samplin	g Point: <u>W</u>	/L 7 wet	
nvestigator(s): Derrick Mitchell	Affiliation: Boreal Envi	ronmental	Landform (hillslope, te	rrace, etc.): NA	
ocal relief (concave, convex, none):	_ConcaveSlop	e (%):	X coord	d: <u>46.05432</u>	<u>Y coord -66.586604</u>	
Patum: NAD83 NBDS	Soil Map U	nit Name/Ty	pe:	Wetland	Type: Drainageway Swamp	
		-			(If no, explain in Remarks.)	
		-			Normal Circumstances" present? Yes X	
					eded, explain any answers in Remarks.)	
SUMMARY OF FINDINGS -	· Attach site map s	showing	sampling	point lo	ocations, transects, important features,	, etc.
Hydrophytic Vegetation Present?	Yes X No	0	Is th	e Sampled	l Area	
Hydric Soil Present?	Yes XN		with	in a Wetlar	nd? Yes <u>X</u> No	
Wetland Hydrology Present?			If ye	s, optional \	Wetland Site ID:	
Remarks: (Explain alternative prod	cedures here or in a sep	arate report	.)	· ·		
VEGETATION – Use scienti	fic names of plants.	Ī				
			Dominant		7Dominance Test worksheet:	
Tree Stratum (Plot size: 15			Species?		Number of Dominant Species	
Betula alleghaniensis			YES		That Are OBL, FACW, or FAC: 8 ((A)
2. Acer rubrum			YES		Total Number of Dominant	
3. Abies balsamea				FAC	Species Across All Strata: 9 ((B)
4					Percent of Dominant Species	
5			= Total Cov	/er	That Are OBL, FACW, or FAC: 88.9 ((A/B)
Sapling/Shrub Stratum (Plot size:	5)	20	_ 10141 001	701	Prevalence Index worksheet:	
Betula alleghaniensis		20	YES	FAC	Total % Cover of: Multiply by:	
2. Corylus cornuta		15	YES	FAC	OBL species x 1 =	
3. Betula papyrifera		10	YES	FACU	FACW species 12	
4. Acer spicatum		5		FAC	FAC species 120 x 3 = <u>360</u>	
5					FACU species 10 x 4 = 40	
6					UPL species x 5 =	
		50	= Total Cov	/er	Column Totals: 142 (A) 424	_ (B)
Herb Stratum (Plot size: 1)				Prevalence Index = B/A = 2.98	_
Athyrium filix-femina		10	YES	FAC		
2. Osmunda cinnamomea		25	YES	FAC		
3. Impatiens capensis		5		FAC	Hydrophytic Vegetation Indicators:	
4. Onoclea sensibilis		10	YES	FACW	Rapid Test for Hydrophytic Vegetation	
5. Rubus pubescens		10	YES	FAC	X Dominance Test is >50%	
6. Tiarella cordifolia		5	-	FAC	X Prevalence Index is ≤3.0¹	
7. Chelone glabra				FACW+	Morphological Adaptations¹ (Provide supportidata in Remarks or on a separate sheet)	ing
8					Problematic Hydrophytic Vegetation ¹ (Explain	n)
9.						,
10					¹ Indicators of hydric soil and wetland hydrology m	nust
			= Total Cov	/er	be present, unless disturbed or problematic.	
Woody Vine Stratum (Plot size:)					
1. No woody vines			- <u></u>		Hydrophytic	
					• • •	
2					Vegetation Present? Yes X No	

Depth Matrix (cm) Color (moist)		edox Features olor (moist)	%	Type ¹	Loc ²	Texture	Remarks
7.5YR/3/1	<u>/0 CI</u>	oloi (moist)		<u> Type</u>	LUC	Silty	Black Muck
7.011(0)1				_		Only	Black Wack
				_			
· -							-
							_
			_	_			_
Type: C=Concentration, D=Dep	letion, RM=R	educed Matrix, (CS=Cover	ed or Coat	ed Sand G	rains. ² l	 Location: PL=Pore Lining, M=Matrix.
ydric Soil Indicators:						Indicato	rs for Problematic Hydric Soils ³ :
Histosol (A1)		Stripped Ma	atrix (S6)				ast Prairie Redox (A16)
Histic Epipedon (A2)		Dark Surface				5 c	Mucky Peat or Peat (S3)
Black Histic (A3)		Polyvalue E				Iro	n-Manganese Masses (F12)
Hydrogen Sulfide (A4)		Thin Dark S	•	•			dmont Floodplain Soils (F19)
Stratified Layers (A5)	- (0.44)	Loamy Gley		(F2)			d Parent Material (F21)
Depleted Below Dark Surface	e (A11)	X Depleted M		(FO)			ry Shallow Dark Surface (F22)
Thick Dark Surface (A12)		Redox Dark		` '		Oth	ner (Explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4)		Depleted D Redox Dep					
Sandy Redox (S5)		Redox Dep	ressions	(FO)			
Canay Readx (Co)							
Indicators of hydrophytic vegetat	ion and wetla	and hydrology ma	ust be pre	sent, unles	s disturbe	d or problema	atic.
estrictive Layer (if observed):							
Type: Rock							
Depth (cm): <u>7</u>		_				Hydric S	oil Present? Yes <u>X</u> No
Depth (cm): 7 Remarks: YDROLOGY		_				Hydric S	oil Present? Yes <u>X</u> No
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators:			apply)				oil Present? Yes X No
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators:			apply)			Second	
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of o		d; check all that a		ives (B9)		Second	ary Indicators (minimum of two required)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of o		d; check all that a	ained Lea			Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X_ High Water Table (A2)		d; check all that a X_ Water-St Aquatic F	ained Lea auna (B1	3)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X_ High Water Table (A2) X_ Saturation (A3)		d; check all that a X_ Water-St Aquatic F	ained Lea Fauna (B1 posits (B1	3) 5)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of		d; check all that a X Water-St Aquatic f Marl Dep Hydroge	ained Lea Fauna (B1 posits (B1 n Sulfide (3) 5) Odor (C1)	ring Roots	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X_ High Water Table (A2) X_ Saturation (A3) X_ Water Marks (B1) Sediment Deposits (B2)		X_ Water-St	ained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosph	3) 5) Odor (C1) ieres on Liv	-	<u>Second</u>	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X High Water Table (A2) X Saturation (A3) X Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)		d; check all that a X Water-St Aquatic F Marl Dep Hydroger Oxidized Presence	rained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosph	3) Odor (C1) neres on Liv ced Iron (C	4)	<u>Second</u>	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1)
Depth (cm): 7 Remarks: IYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X High Water Table (A2) X Saturation (A3) X Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)		d; check all that a X Water-St Aquatic F Hydroger Oxidized Presencer Recent In	rained Lea Fauna (B1 posits (B1) n Sulfide (Rhizosphe of Reduction Reduction	3) 5) Odor (C1) neres on Liv ced Iron (C	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of o Surface Water (A1) X High Water Table (A2) X Saturation (A3) X Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	ne is required	X_ Water-St Aquatic F Marl Dep Hydroger Oxidized Presencer Recent In	eained Lea Fauna (B1 Posits (B1 Posits (B1 Posits (B1 Rhizosph Pof Reduction	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of	ne is required	X_ Water-St Aquatic F Marl Dep Hydroge Oxidized Presence Recent It Other (E:	eained Lea Fauna (B1 Posits (B1 Posits (B1 Posits (B1 Rhizosph Pof Reduction	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Itemarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of	ne is required	X_ Water-St Aquatic F Marl Dep Hydroge Oxidized Presence Recent It Other (E:	eained Lea Fauna (B1 Posits (B1 Posits (B1 Posits (B1 Rhizosph Pof Reduction	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of	ne is required	X_ Water-St Aquatic F Marl Dep Hydroge Oxidized Presence Recent It Other (E:	eained Lea Fauna (B1 Posits (B1 Posits (B1 Posits (B1 Rhizosph Pof Reduction	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of	ne is required magery (B7) e Surface (B8)	X_ Water-St Aquatic F Hydroget Oxidized Presencet Recent Interpretation of the content of the	rained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosph e of Reduc ron Reduc ck Surface xplain in F	3) 5) Odor (C1) eres on Liv ced Iron (C tion in Tille (C7) Remarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of	magery (B7)	X_ Water-St Aquatic F Hydroger Oxidized Presencer Recent In Thin Muc Other (E:	rained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosph e of Reduc ron Reduc ck Surface explain in F	3) Ddor (C1) Deres on Lived Iron (C Stion in Tille (C7) Remarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of	magery (B7) e Surface (B8) es No	X_ Water-St Aquatic F Hydroger Oxidized Presencer Recent In Thin Muc Other (Ex	rained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosphe of Reduction Red	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille (C7) Remarks)	4) d Soils (C	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Depth (cm): 7 Remarks: YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of	magery (B7) e Surface (B8) es No	X_ Water-St Aquatic F Hydroger Oxidized Presencer Recent In Thin Muc Other (E:	rained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosphe of Reduction Red	3) 5) Odor (C1) heres on Liv ced Iron (C tion in Tille (C7) Remarks)	4) d Soils (C	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): 7 Remarks: YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of orange) Surface Water (A1) X High Water Table (A2) X Saturation (A3) X Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial In Sparsely Vegetated Concave (Vater Table Present? Yestaturation Present? Yestaturation Present?	magery (B7) e Surface (B8) es No es No es No	X_ Water-St Aquatic F Hydroger Oxidized Presencer Recent Ir Thin Muc Other (E:)	cained Lea Fauna (B1 posits (B1 n Sulfide (Rhizosphe e of Reduction Reducti	3) 5) Odor (C1) eres on Liv ced Iron (C tion in Tille (C7) Remarks)	4) d Soils (C	Second (C3) (C3) (C3)	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

Project/Site: Glory View Estates		Municipality	//County: \	ork County	Sa	mpling Date: <u>Jul</u>	y 23, 2022
Applicant/Owner: Murray Munn and S	Sons Ltd		Sampli	ng Point: <u>W</u>	/L 7 up	<u>—</u>	
nvestigator(s): Derrick Mitchell	Affiliation: Boreal En	nvironmenta	<u>ıl_</u>	Landform (hillslope, terrace, etc.): NA		
Local relief (concave, convex, none):	Slope (%):	X co	ord: 46.05	4151	Y coord <u>-66.58629</u>	93	
Datum: NAD83 NBDS							
are climatic / hydrologic conditions or		-					ks.)
Are Vegetation, Soil		-					
							140
Are Vegetation, Soil	, or Hydrology1	naturally pro	biematic?	(if ne	eded, explain any answers in	Remarks.)	
SUMMARY OF FINDINGS -	 Attach site map s 	showing s	samplin	g point lo	cations, transects, imp	oortant featu	res, etc.
Hydrophytic Vegetation Present?	Yes XNo)	ls t	he Sampled	Area		
Hydric Soil Present?	Yes No		wit	hin a Wetlar	nd? YesN	lo <u>X</u>	
Wetland Hydrology Present?			If y	es, optional \	Wetland Site ID:		
Remarks: (Explain alternative prod			.)	., .,			
VEGETATION - Use scienti	fic names of plants.						
				t Indicator	Dominance Test workshee	et:	
Tree Stratum (Plot size: 15	,	% Cover			Number of Dominant Specie		
1. Acer rubrum					That Are OBL, FACW, or FA	AC: <u>5</u>	(A)
2. Abies balsamea			YES		Total Number of Dominant		
3. Betula alleghaniensis				_ FAC	Species Across All Strata:	_ 5	(B)
4					Percent of Dominant Specie		
5					That Are OBL, FACW, or FA	AC: <u>100</u>	(A/B)
Sapling/Shrub Stratum (Plot size:	5)	23	= TOTAL CO	ivei	Prevalence Index workshe	et:	
l . '_	,	60	YES	FAC	Total % Cover of:	Multiply by	<u>/:</u>
Prunus pensylvanica					OBL species	x 1 =	
Acer rubrum					FACW species	_ x 2 =	
4.					FAC species 137		
5.					FACU species 5		
6					UPL species		
		75	Total Ca		Column Totals: 142	(A) <u>431</u>	(B)
Herb Stratum (Plot size: 1)	<u>75</u>	= Total Ct	over	Prevalence Index = B/A =	3.03	
· · · · · · · ·		30	YES	FAC			
2. Trientalis borealis		2		FAC			
				FAC	Hydrophytic Vegetation In	dicators:	
4. Clintonia borealis		5		FAC	Rapid Test for Hydroph	ytic Vegetation	
5.					X Dominance Test is >50	%	
6.					Prevalence Index is ≤3.	01	
7.					Morphological Adaptation		
8.					data in Remarks or on a	. ,	
9.					Problematic Hydrophyti	c vegetation (E)	kpiain)
10.					¹ Indicators of hydric soil and	wetland hydrolo	av must
		42	= Total Co	over	be present, unless disturbed		g,dot
Woody Vine Stratum (Plot size:)						
1. No woody vines					Hydrophytic		
2					Vegetation	<u>(</u>	
<u></u>					Present? Yes		

(cm) Color (moist)	%	Color (n	eatures noist)	%	Type ¹	Loc ²	Texture	Remarks
10		<u> </u>	101017	70			Organic	romano
30 7.5YR/6/3					_		Sandy	
								_
								_
					_		-	
								_
Type: C=Concentration, D		PM-Peduce	d Matrix CS	S-Cover	ed or Coate	ad Sand G	raine 2	
Type: 0=00nocmation, D	-Bopiction,	Tivi-reduce	a Matrix, Oc	5-00vci	od or oodi	od Odna O	idilio.	2000 tion. T E-r 010 Eliming, W-Wattix.
lydric Soil Indicators:							Indicato	ors for Problematic Hydric Soils ³ :
Histosol (A1)		8	Stripped Mat	rix (S6)				ast Prairie Redox (A16)
Histic Epipedon (A2)			Oark Surface				5 c	Mucky Peat or Peat (S3)
Black Histic (A3)			Polyvalue Be				Iro	n-Manganese Masses (F12)
Hydrogen Sulfide (A4)			hin Dark Su	,	,			edmont Floodplain Soils (F19)
Stratified Layers (A5) Depleted Below Dark S	urfaco (A11		oamy Gleye		(F2)			d Parent Material (F21)
Depleted Below Bark S Thick Dark Surface (A1	•		Depleted Ma Redox Dark :		(E6)			ry Shallow Dark Surface (F22)
Sandy Mucky Mineral (,		Depleted Dark		` ,		Oti	ner (Explain in Remarks)
Sandy Gleyed Matrix (S			Redox Depre					
Sandy Redox (S5)	,				/			
Indicators of hydrophytic ve	egetation an	d wetland hy	drology mus	st be pre	sent, unles	s disturbed	d or problem	atic.
	-							
Restrictive Laver (if obser	vea:							
	vea):							
Restrictive Layer (if obserting the control of the	vea):						Hydric S	oil Present? Yes No X
	ved):						Hydric S	oil Present? YesNo _X
Type: Rock Depth (cm): 30 Remarks:	vea):						Hydric S	oil Present? YesNo <u>X</u>
Type: Rock Depth (cm): 30 Remarks: YDROLOGY							Hydric S	oil Present? YesNo _X
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indica	tors:	eauired: che	ck all that ac	oply)				
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indica	tors:	equired; chec	ck all that ap	oply)			Second	ary Indicators (minimum of two required)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum	tors:	•			ves (B9)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the conten	tors:	•	_Water-Sta	ined Lea			Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the conte	tors:	•	_ Water-Sta _ Aquatic Fa	ined Lea auna (B1	3)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the conte	tors:	•	_ Water-Sta _ Aquatic Fa _ Marl Depo	ined Lea auna (B1 sits (B15	3) 5)		Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the cont	tors: n of one is n		_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen	ined Lea auna (B1 sits (B15 Sulfide (3) 5) Odor (C1)	ring Roots	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	tors: n of one is n		_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph	3) 5) Odor (C1) eres on Liv	-	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indication (minimum of the control of the cont	tors: n of one is n	- - - - -	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc	3) Odor (C1) eres on Liv ced Iron (C	4)	<u>Second</u>	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (minimum of the content of the cont	tors: n of one is n	- - - - - -	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc	3) Odor (C1) eres on Liv ced Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (minimum of the content of the cont	tors: n of one is n	-	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc in Reduc	3) Odor (C1) eres on Lived Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Type: Rock Depth (cm): 30 Remarks: Primary Indicators (minimus Martin Marks) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	tors: n of one is n	y (B7)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc in Reduc	3) Odor (C1) eres on Lived Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the cont	tors: n of one is n	y (B7)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc in Reduc	3) Odor (C1) eres on Lived Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Type: Rock Depth (cm): 30 Remarks: Primary Indicators (minimus Primary Indicators (Mi	tors: n of one is n	y (B7)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc in Reduc	3) Odor (C1) eres on Lived Iron (C tion in Tille	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Type: Rock Depth (cm): 30 Remarks: POROLOGY Vetland Hydrology Indicators (minimum In	tors: n of one is r	y (B7)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck _ Other (Exp	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc n Reduc Surface Dlain in R	3) 5) Odor (C1) eres on Lived Iron (C tion in Tille (C7) Lemarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Vetland Hydrology Indicators (minimum In	tors: n of one is nerial Imager, ncave Surfa	y (B7)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck _ Other (Exp	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc n Reduc Surface blain in R	3) 5) Odor (C1) eres on Lived Iron (C tion in Tille (C7) emarks)	4)	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicator (minimum of the content of the conte	tors: n of one is referred limager, ncave Surfa Yes Yes	y (B7) ce (B8)	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck _ Other (Exp	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc n Reduc Surface blain in R	3) 5) Odor (C1) eres on Liv ced Iron (C tion in Tille (C7) emarks)	4) d Soils (Co	Second	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Type: Rock Depth (cm): 30 Remarks: YDROLOGY Wetland Hydrology Indicators (minimum Indicators (minimum Indicators (minimum Indicators (Marks	tors: n of one is not	y (B7) ce (B8) No No	_ Water-Sta _ Aquatic Fa _ Marl Depo _ Hydrogen _ Oxidized F _ Presence _ Recent Iro _ Thin Muck _ Other (Exp _ Depth (co	ined Lea auna (B1 sits (B15 Sulfide (Rhizosph of Reduc n Reduc s Surface blain in R	3) 5) Odor (C1) eres on Lived Iron (C tion in Tille (C7) emarks)	4) d Soils (Co	Second (C3) (C3) (C3)	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

Appendix C

Photolog of Wetlands

Photograph 1. Representative tree and shrub cover within WL 1.

Photograph 2. Representative herbaceous vegetation within WL 1.

Photograph 3. Soil pit within WL 1 showing 7 cm of black muck.

Photograph 4. Representative photo of WL 2.

Photograph 5. Representative photo of WL 2 upland.

Photograph 6. Representative photo of WL 3 tree and shrub stratum.

Photograph 7. Representative photo of WL 3 shrub stratum. WL 3 hydrology and hydric soils similar to WL 1.

Photograph 8. Representative photo of WL 4, 5 and 6 graminoid basin swamp. Substrate too rocky to excavate or auger a soil pit.

Photograph 9. Representative photo of WL 7 tree and shrub stratum.

Photograph 10. Representative photo of WL 7 herbaceous stratum. Hydrology and hydric soils similar to WL 1.

Photograph 11. Representative photo of WL 7 upland tree and shrub stratum.

Photograph 12. Representative photo of WL 7 upland herb stratum.

Photograph 13. Upland soil pit for WL 7.

Appendix D

WESP-AC Data Sheets

Date: July 23, 2022

Observer: Derrick Mitchell

Latitude & Longitude (decimal degrees): 46.057488, -66.585778						
Wetland ID: WL 2	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage & Delay (WS)	0.28	Lower	0.29	Lower	1.95	0.38
Stream Flow Support (SFS)	10.00	Higher	2.95	Moderate	5.50	1.72
Water Cooling (WC)	4.46	Moderate	2.34	Moderate	2.97	1.41
Sediment Retention & Stabilisation (SR)	0.00	Lower	0.37	Lower	2.71	0.22
Phosphorus Retention (PR)	1.85	Lower	1.11	Lower	4.22	1.33
Nitrate Removal & Retention (NR)	0.54	Lower	10.00	Higher	4.16	10.00
Carbon Sequestration (CS)	0.00	Lower			3.78	
Organic Nutrient Export (OE)	4.51	Moderate			4.73	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	5.55	Moderate	4.06	Moderate	5.83	3.43
Amphibian & Turtle Habitat (AM)	8.86	Higher	2.02	Lower	7.98	3.32
Waterbird Feeding Habitat (WBF)	8.33	Higher	3.33	Moderate	6.62	3.33
Waterbird Nesting Habitat (WBN)	7.00	Higher	3.33	Moderate	5.98	3.33
Songbird, Raptor, & Mammal Habitat (SBM)	0.00	Lower	0.00	Lower	0.00	0.00
Pollinator Habitat (POL)	0.00	Lower	0.00	Lower	0.00	0.00
Native Plant Habitat (PH)	3.38	Lower	1.28	Moderate	4.45	1.11
Public Use & Recognition (PU)			2.08	Lower		1.81
Wetland Sensitivity (Sens)			2.47	Lower		2.94
Wetland Ecological Condition (EC)			1.33	Lower		5.00
Wetland Stressors (STR) (higher score means more stress)			1.51	Lower		2.82
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	0.28	Lower	0.29	Lower	1.95	0.38
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	1.23	Lower	6.91	Moderate	3.97	6.93
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	8.07	Higher	3.59	Moderate	5.29	2.81
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	6.85	Higher	2.54	Lower	6.05	2.67
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	2.25	Lower	0.85	Moderate	2.96	0.74
WETLAND CONDITION (EC)			1.33	Lower		5.00

WETLAND RISK (average of Sensitivity & Stressors)		1.99	Lower	2.88

NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It means only that this wetland has a capacity that is equal or less than the lowest-scoring one, for that function or benefit, from among the 98 NB calibration wetlands that were assessed previously.

Appendix E

Plant List

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Abies balsamea	Balsam Fir	S5	
Acer pennsylvanicum	Striped Maple	S5	
Acer rubrum	Red Maple	S5	
Acer saccharinum	Silver Maple	S4	
Acer saccharum	Sugar Maple	S5	
Acer spicatum	Mountain Maple	S5	
Achillea millifolium	Common Yarrow	SNA	
Acteae pachypoda	White Baneberry	S4	
Agrostis gigantea	Redtop	SNA	
Alnus rugosa	Speckled Alder	S5	
Amelanchier sp.	A Serviceberry	S?	
Anaphalis margaretacea	Pearly Everlasting	S5	
Angelica sylvestris	Woodland Angelica	SNA	
Anthoxanthum nitens	Vanilla Sweetgrass	S5	
Arabis muralis	Rosy Cress	SNA	
Aralia hispida	Bristly Sarsaparilla	S5	
Aralia nudicaulis	Wild Sarsaparilla	S5	
Arinaria serpyllifolia	Thyme-leaved Sandwort	SNA	
Arisaema triphyllum	Jack in the Pulpit	S5	
Asclepias syriaca	Common Milkweed	SNA	
Athyrium felis-femina	Lady Fern	S5	
Betula alleganiensis	Yellow Birch	S5	
Bromus ciliatus	Fringed Brome	S5	
Cakystegia sepium	Hedge False	S5	
Calamagrostis canadensis	Blue-joint Reed Grass	S5	
Callitriche palustris	Marsh Water-starwort	S5	
Caltha palustris	Marsh Marigold	S4S5	
Carex arctata	Black Sedge	S5	
Carex brunnescens	Brownish Sedge	S5	
Carex communis	Fibrous-rooted Sedge	S5	
Carex crawfordii	Crawford's Sedge	S5	
Carex disperma	Two-seeded Sedge	S5	
Carex gynandra	nodding Sedge	S5	
Carex intumescens	Bladder Sedge	S5	
Carex lacustris	Lake Sedge	S4S5	
Carex lurida	Sallow Sedge	S5	
Carex navae-angliae	New England Sedge	S5	
Carex retrorsa	Retrorse sedge	S4	
Carex scabrata	Rough Sedge	S5	
Carex scoparia	Broom Sedge	S5	
Carex stipata	Awl-fruited Sedge	S5	
Chamaenerion angustifolium	Fireweed	S5	
Chelone glabra	White Turtlehead	S5	
Chrysosplenum americanum	American Golden Saxifrage	S5	

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Cicuta bulbifera	Bulbous Water-hemlock	S5	
Cinna latifolia	Drooping Wood Reed Grass	S5	
Clematis virginiana	Virginia clematis	S5	
Conioselinium chinense	Chinese Hemlock-parsley	SNA	
Cornus alternifolia	Alternate-leaved Dogwood	S5	
Cornus canadensis	Bunchberry	S5	
Cornus sericea	Red Osier Dognwood	S5	
Corylus cornuta	Beaked Hazel	S5	
Cypripedium acaule	Pink Ladies' Slipper	S5	
Danthonia spicata	Poverty Oat Grass	S5	
Dendrolycopodium dendroideum	Round-branched Tree-clubmoss	S5	
Dennstadtia punctilobula	Eastern Hay-Scented Fern	S5	
Deparia acrostichoides	Silvery Glade Woodfern	S4	
Dicanthelium accuminatum	Wooly Panic Grass	SNA	
Diervilla lonicera	Northern Bush Honeysuckle	S5	
Diphasiastrum complanatum	Northern Ground-cedar	S4S5	
Doellingeria umbellata	Hairy Wflat-top White Aster	S5	
Dryopteris intermedia	Evergreen Wood Fern	S5	
Dryopteris marginalis	Marginal Wood Fern	S5	
Dulichium arundinaceum	Three-way Sedge	S5	
Eleocharis tenuis	Slender Spikerush	S4S5	
Epilobium ciliatum	Northern Willowherb	S5	
Epipactis heliborine	Helleborine	SNA	
Equisetum arvense	Field Horsetail	S5	
Equisetum sylvaticum	Woodland Horsetail	S5	
Eriophorum angustifolium	Narrow-leaf Cotton-grass	S5	
Eupatorium maculatum	Joe Pye Weed	S5	
Euphrasia nemorosa	Common Eyebright	SNA	
Euthamia graminifolia	Grass-leaved Goldenrod	S5	
Fagus grandiflora	American Beech	S3S4	
Festuca rubra	red Fescue	S5	
Fragaria virginiana	Wild Strawberry	S5	
Franqula alnus	Glossy Buckthorn	S5	
Fraxinus americana	White Ash	S5	
Fraxinus nigra	Black Ash	S3S4	Threatened
Galium mollugo	Smooth Bedstraw	SNA	incutencu
Galium palustre	Common Marsh Bedstraw	S5	
Galium trifidum	Three-petaled Bedstraw	S5	
Gaultheria hispidula	Winterberry	S5	
Gaultheria procumbens	Wintergreen	S5	
	Eastern Teaberry		
Gaultheria procumbens Gaylussacia baccata		S5 S5	
	Black Huckleberry		
Geum canadense Glechoma hederacea	White Avens Ground Ivy	SS SNA	

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Glyceria canadensis	Canada Manna Grass	S5	
Glyceria grandis	Common Tall Manna Grass	S5	
Glyceria melicaria	Slender Mannagrass	S5	
Glyceria striata	Fiowl Manna Grass	S5	
Gymnocarpium dryopteris	Northern Oak Fern	S5	
Huperzia lucidula	Shining Firmmoss	S5	
Hydrocotyle americana	American Water Pennywort	S5	
Hypericum boreale	Northern St. John;s Wort	S5	
Hypericum fraseri	Fraser's St. John's-wort	S5	
Hypericum perforatum	Common Saint John's Wort	SNA	
Ilex mucronatat	Mountain Holly	S5	
Ilex verticillata	Common Winterberry	S5	
Impatiens capensis	Spotted Touch-me-not	S5	
Iris versicolor	Blue Flag Iris	S5	
Juncus effusus	Soft Rush	S5	
Juncus pelocarpus	Brown-fruited Rush	S5	
Juncus tenuis	Path Rush	S5	
Lactuca biennis	Tall Blue Lettuce	S5	
Larix laricina	Tamarack	S5	
Leersia oryzoides	Rice Cut Grass	S5	
Lemna turionifera	Turon Duckweed	S5	
Leucanthemum vulgare	Oxeye Daisy	SNA	
Liatris spicata	Dense Blazing Star	SNA	
Lobelia inflata	Inflated Lobelia	S5	
Lonicera canadensis	Northern Fly Honeysuckle	S5	
Luzula acuminata	Hairy Woodrush	S5	
Luzula multiflora	Common Woodrush	S5	
Lycopus americanus	American Water Horehound	S5	
Lycopus uniflorus	Northern Water Horehound	S5	
Lysimachia borealis	Northern Starflower	S5	
Lysimachia terrestris	Swamp Yellow Loosestrife	S5	
Maianthemum canadense	Wild Lily-of-the-Valley	S5	
Matricaria discoidea	Pineapple Weed	SNA	
Matteucia struthiopteris	Ostrich Fern	S5	
Matteucia struthiopteris	Ostrich Fern	S5	
Melilotus albus	White Sweet-clover	SNA	
Mimulus ringens	Square-Stemmed Monkeyflower	S5	
Mitchella repens	Partridgeberry	S5	_
Mitella nida	Naked Bishop's Cap	S5	
Monotropa uniflora	Convulsion-Root	S5	
Myosotis laxa	Small Forget-me-not	S5	
Nabulus altissimia	Tall Rattlesnake Root	S5	
Oclemena accuminata	Accuminate Aster	S5	
Oenothera biennis	Evening Primrose	SNA	

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Onoclea sensibilis	Sensitive Fern	S5	
Osmuda claytoniana	Interrupted Fern	S5	
Osmunda cinnamomea	Cinnamon Fern	S5	
Osmunda regalis	Royal Fern	S5	
Ostrya virginiana	Ironwood	S4S5	
Oxalis montana	Common Wood Sorrel	S5	
Paper Birch	Betula papyrifera	S5	
Parathelipteris novoboracensis	New York Fern	S5	
Persecaria sagittata	Arrow-Leaved Tearthumb	S5	
Phalaris arundinacea	Reed Canary Grass var. picta	SNA	
Phegopteris connectilis	Northern Beech Fern	S5	
Phleum pratense	Common Timothy	SNA	
Picea glauca	White Spruce	S5	
Picea mariana	Black Spruce	S5	
Picea rubens	Red Spruce	S5	
Pillosella cespitosa	Meadow Hawkweed	SNA	
Pinus strobus	White Pine	S5	
Plantago major	Common Plaintain	SNA	
Poa compressa	Canada Bluegrass	S5	
Poa palustris	Fowl Blue Grass	S5	
Poa pratensis	Kentucky Blue Grass	S5	
Pontedaria cordata	Pickerelweed	S5	
Populus grandifolia	Large-toothed Aspen	S5	
Populus tremuloides	Trembling Aspen	S5	
Potamogeton natans	Flotaing-leaved Pondweed	S5	
Potentilla norvegica	Rough Cinquefoil	S5	
Potentilla simplex	Old Field Cinquefoil	S5	
Prunella vulgaris	Common Self-heal	SNA	
Prunus pennsylvanica	Pin Cherry	S5	
Pteridium aquilinum	Bracken Fern	S5	
Quercus rubra	Red Oak	S5	
		SNA	
Ranunculus repens Rhus typhina	Creeping Buttercup	S5	
Ribes lacustre	Staghorn Sumac	S5	
	Bristly Black Currant		
Rubus allegheniensis	Allegheny Blackberry	S5	
Rubus canadensis	Smooth blackberry	S5	
Rubus hispidus	Bristly dewberry	S5	
Salix bebbiana	Bebb's Willow	S5	
Salix discolor	Pussy Willow	S5	
Sambucus racemosa	Red Elderberry	S5	
Scirpus atrocinctus	Black-girdled Bulrush	S5	
Scirpus cyperinus	Common Wooly Bulrush	S5	
Scirpus hattorianus	Mosquito Bulrush	S5	
Scorzoneroides autumnalis	Autumn Haekbit	SNA]

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Scutellaria lateriflora	Mad-dog Skullcap	S5	
Sium suave	Common Water Parsnip	S5	
Smilax herbacea	Herbaceous Carrion Flower	S4	
Solanum dulcamara	Bittersweet Nightshade	SNA	
Solidago canadensis	Canada Goldenrod	S5	
Solidago felxicaulis	Zigzag Goldenrod	S5	
Solidago puberula	Downy goldernrod	S5	
Solidago puberula	Downy goldernrod	S5	
Solidago rugosa	Rough Goldenrod	S5	
Soptis trifolia	Goldthread	S5	
Spinulum annotinum	Stiff Clubmoss	S5	
Spiraea alba	White Meadowsweet	S5	
Spiraea tomentosa	Steeplebush	S5	
Streptopus roseus	Rose-twisted Stalk	S5	
Symphyotrichum cordifolium	Heart-leaved Aster	S5	
Symphyotrichum latiflorum	Calico Aster	S5	
Symphyotrichum puniceum	Purple Stemmed Aster	S5	
Tanacetum vulgare	Common Tansy	SNA	
Taraxicum officinale	Common dandelion	SNA	
Thalictrum confine	Northern Meadow-rue	S3S4	
Thalyctrum pubescens	Tall Meadowrue	S5	
Thelypteris palustris	Eastern Marsh Fern	S5	
Thelypteris palustris	Eastern Marsh Fern	S5	
Thuja occidentalis	Eastern White Cedar	S5	
Tiarella cordifolia	Foamflower	S5	
Toxicodendron radicans	Poison Ivy	S5	
Trifolium arvensis	Rabbit's-foot Clover	SNA	
Trifolium campestre	Low Hop Clover	SNA	
trifolium pratense	Red Clover	SNA	
Trillium undulatum	Painted Trillium	S5	
Tsuga canadensis	Eastern Hemlock	S5	
Tussilago farfara	Coltsfoot	SNA	
Typha latifolia	Broad-Leaved Cattail	S5	
Ulmus americana	American Elm	S3S4	
Uvularia sessilifolia	Sessile-leaved Bellwort	S5	
Vaccinium myrtilloides	Velvet-leaved Blueberry	S5	
Vaccinium myrtilloides	Velvet-leaved Blueberry	S5	
Verbascum thapsus	Common Mullein	SNA	
Veronica officialis	Common Speedwell	SNA	
Veronica scutellaria	Marsh Speedwell	SNA	
Veronica scutellata	Marsh Speedwell	S5	
Veronica serpyllifolia	Thyme-leaved Speedwell	SNA	
Viburnum latanoides	Hobblebush	S5	
Viburnum opulus	Highbush Cranberry	S4	

Scientific Name	Common Name	ACCDC Ranking	Species at Risk
Vicia cracca	Tufted Vetch	SNA	
Viola cucullata	Marsh Blue Violet	S5	

Appendix E

Breeding Bird Point Count Data

Date	Туре	Weather	Temperature (°C)	Beaufort**	Common Name	Scientific Name	Number Observed	Breeding Code*	X coordinate	Y coordinate
7-Jun-22	Point count	Clear/sunny	6	0	Blue jay	Cyanocitta cristata	1	Х	2493508.81	7450238.51
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493511.13	7450237.81
7-Jun-22	Point count	Clear/sunny	6	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2493515.05	7450210.03
7-Jun-22	Point count	Clear/sunny	6	0	Alder Flycatcher	Empidonax alnorum	1	S	2493497.17	7450211.67
7-Jun-22	Point count	Clear/sunny	6	0	Purple Finch	Haemorhous purpureus	1	S	2493489.77	7450240.84
7-Jun-22	Point count	Clear/sunny	6	0	Black-capped Chickadee	Poecile atricapilla	1	S	2493508.08	7450207.73
7-Jun-22	Point count	Clear/sunny	6	0	Northern Parula	Parula americana	1	S	2493539.20	7450218.11
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493533.65	7450237.32
7-Jun-22	Point count	Clear/sunny	6	0	Blackburnian Warbler	Setophaga fusca	1	S	2493425.68	7450455.69
7-Jun-22	Point count	Clear/sunny	6	0	Ovenbird	Seiurus aurocapilla	1	S	2493402.25	7450470.53
7-Jun-22	Point count	Clear/sunny	6	0	Northern Parula	Parula americana	1	S	2493434.99	7450472.57
7-Jun-22	Point count	Clear/sunny	6	0	Broad-winged Hawk	Buteo platypterus	1	С	2493432.00	7450505.44
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493410.12	7450454.78
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493452.63	7450468.39
7-Jun-22	Point count	Clear/sunny	6	0	Alder Flycatcher	Empidonax alnorum	1	S	2493348.67	7450522.43
7-Jun-22	Point count	Clear/sunny	6	0	Song Sparrow	Melospiza melodia	1	S	2493329.65	7450541.89
7-Jun-22	Point count	Clear/sunny	6	0	White-throated Sparrow	Zonotrichia albicollis	1	Х	2493511.11	7450216.75
7-Jun-22	Point count	Clear/sunny	6	0	Purple Finch	Haemorhous purpureus	1	S	2493379.95	7450472.77
7-Jun-22	Point count	Clear/sunny	6	0	Black-capped Chickadee	Poecile atricapilla	1	S	2493415.96	7450493.03
7-Jun-22	Point count	Clear/sunny	6	0	Mallard	Anas platyrhynchos	1	Х	2493345.72	7450774.85
7-Jun-22	Point count	Clear/sunny	6	0	Purple Finch	Haemorhous purpureus	1	S	2493288.96	7450827.77
7-Jun-22	Point count	Clear/sunny	6	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2493324.49	7450848.97
7-Jun-22	Point count	Clear/sunny	6	0	Alder Flycatcher	Empidonax alnorum	1	S	2493278.52	7450808.91
7-Jun-22	Point count	Clear/sunny	6	0	American Goldfinch	Carduelis tristis	1	Х	2493405.40	7450797.91
7-Jun-22	Point count	Clear/sunny	6	0	Northern Parula	Parula americana	1	S	2493392.67	7450847.48
7-Jun-22	Point count	Clear/sunny	6	0	Blackburnian Warbler	Setophaga fusca	1	S	2493372.76	7450824.85
7-Jun-22	Point count	Clear/sunny	6	0	White-throated Sparrow	Zonotrichia albicollis	1	S	2493279.03	7450843.36
7-Jun-22	Point count	Clear/sunny	6	0	Ovenbird	Seiurus aurocapilla	1	S	2493371.43	7450913.57
7-Jun-22	Point count	Clear/sunny	6	0	Ovenbird	Seiurus aurocapilla	1	S	2493332.53	7451082.56
7-Jun-22	Point count	Clear/sunny	6	0	Black-capped Chickadee	Poecile atricapilla	1	S	2493305.57	7451069.34
7-Jun-22	Point count	Clear/sunny	6	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2493295.50	7451055.74
7-Jun-22	Point count	Clear/sunny	6	0	Northern Parula	Parula americana	1	S	2493271.44	7451072.60
7-Jun-22	Point count	Clear/sunny	6	0	Purple Finch	Haemorhous purpureus	1	S	2493266.46	7451112.36

Date	Туре	Weather	Temperature (°C)	Beaufort**	Common Name	Scientific Name	Number Observed	Breeding Code*	X coordinate	Y coordinate
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493274.71	7450774.27
7-Jun-22	Point count	Clear/sunny	6	0	American Crow	Corvus brachyrhynchos	1	S	2493467.05	7450882.94
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493272.49	7451049.68
7-Jun-22	Point count	Clear/sunny	6	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493329.27	7451053.56
7-Jun-22	Point count	Clear/sunny	6	0	American Redstart	Setophaga ruticilla	1	S	2493318.17	7451090.82
7-Jun-22	Point count	Clear/sunny	6	0	Common Yellowthroat	Geothlypis trichas	1	S	2493308.55	7450834.04
7-Jun-22	Point count	Clear/sunny	6	0	Common Yellowthroat	Geothlypis trichas	1	S	2493405.22	7450516.62
7-Jun-22	Point count	Clear/sunny	6	0	American Robin	Turdus migratorius	1	х	2493509.80	7450192.36
7-Jun-22	Point count	Clear/sunny	6	0	Common Yellowthroat	Geothlypis trichas	1	S	2493467.80	7450233.60
7-Jun-22	Point count	Clear/sunny	6	0	American Robin	Turdus migratorius	1	Х	2493499.43	7450238.94
7-Jun-22	Point count	Clear/sunny	6	0	American Robin	Turdus migratorius	1	S	2493457.97	7450452.81
7-Jun-22	Point count	Clear/sunny	6	0	American Robin	Turdus migratorius	1	S	2493359.60	7450859.06
7-Jun-22	Point count	Clear/sunny	6	0	Northern Flicker	Colaptes auratus	1	S	2493456.67	7450246.86
7-Jun-22	Point count	Clear/sunny	7	0	Ovenbird	Seiurus aurocapilla	1	S	2493041.30	7451216.11
7-Jun-22	Point count	Clear/sunny	7	0	Common Yellowthroat	Geothlypis trichas	1	S	2493127.52	7451207.42
7-Jun-22	Point count	Clear/sunny	7	0	Alder Flycatcher	Empidonax alnorum	1	S	2493102.69	7451174.86
7-Jun-22	Point count	Clear/sunny	7	0	American Redstart	Setophaga ruticilla	1	S	2493107.04	7451213.17
7-Jun-22	Point count	Clear/sunny	7	0	Northern Parula	Parula americana	1	S	2493049.59	7451242.24
7-Jun-22	Point count	Clear/sunny	7	0	Black and White Warbler	Mniotilta varia	1	S	2493072.53	7451192.80
7-Jun-22	Point count	Clear/sunny	7	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493083.38	7451251.87
7-Jun-22	Point count	Clear/sunny	7	0	American Robin	Turdus migratorius	1	S	2493102.08	7451272.62
7-Jun-22	Point count	Clear/sunny	7	0	Purple Finch	Haemorhous purpureus	1	S	2493021.59	7451259.46
7-Jun-22	Point count	Clear/sunny	8	0	Common Yellowthroat	Geothlypis trichas	1	S	2493138.84	7450083.88
7-Jun-22	Point count	Clear/sunny	8	0	Black and White Warbler	Mniotilta varia	1	S	2493129.11	7450067.05
7-Jun-22	Point count	Clear/sunny	8	0	Northern Parula	Parula americana	1	S	2493132.15	7450211.04
7-Jun-22	Point count	Clear/sunny	8	0	Red-eyed Vireo	Vireo olivaceus	1	S	2493112.60	7450082.83
7-Jun-22	Point count	Clear/sunny	8	0	American Robin	Turdus migratorius	1	Х	2493195.34	7450160.11
7-Jun-22	Point count	Clear/sunny	8	0	American Redstart	Setophaga ruticilla	1	S	2493097.55	7450121.89
7-Jun-22	Point count	Clear/sunny	8	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2493114.02	7450067.79
7-Jun-22	Point count	Clear/sunny	8	0	Song Sparrow	Melospiza melodia	1	S	2493073.16	7450155.95
7-Jun-22	Point count	Clear/sunny	8	0	Pileated Woodpecker	Dryocopus pileatus	1	Х	2493143.72	7449954.57
7-Jun-22	Point count	Clear/sunny	8	0	Hermit Thrush	Catharus guttatus	1	S	2493354.52	7451082.14
7-Jun-22	Point count	Clear/sunny	8	0	Veery	Catharus fuscescens	1	Х	2493537.81	7450258.46

Date	Туре	Weather	Temperature (°C)	Beaufort**	Common Name	Scientific Name	Number Observed	Breeding Code*	X coordinate	Y coordinate
7-Jun-22	Point count	Clear/sunny	8	0	Veery	Catharus fuscescens	1	S	2493471.88	7450467.32
7-Jun-22	Point count	Clear/sunny	8	0	Veery	Catharus fuscescens	1	S	2493128.38	7451225.23
7-Jun-22	Point count	Clear/sunny	8	0	Winter Wren	Troglodytes troglodytes	1	S	2493469.12	7450918.49
7-Jun-22	Point count	Clear/sunny	8	0	Winter Wren	Troglodytes troglodytes	1	S	2493011.75	7451306.80
7-Jun-22	Point count	Clear/sunny	8	0	White-throated Sparrow	Zonotrichia albicollis	1	S	2493083.05	7450129.67
7-Jun-22	Point count	Clear/sunny	8	0	White-throated Sparrow	Zonotrichia albicollis	1	S	2493156.26	7450060.41
7-Jun-22	Point count	Clear/sunny	8	0	Northern Flicker	Colaptes auratus	1	х	2492907.86	7450620.49
7-Jun-22	Point count	Clear/sunny	8	0	Alder Flycatcher	Empidonax alnorum	1	S	2492998.69	7450658.53
7-Jun-22	Point count	Clear/sunny	8	0	American Redstart	Setophaga ruticilla	1	S	2492956.49	7450610.09
7-Jun-22	Point count	Clear/sunny	8	0	Alder Flycatcher	Empidonax alnorum	1	S	2493011.57	7450576.42
7-Jun-22	Point count	Clear/sunny	8	0	White-throated Sparrow	Zonotrichia albicollis	1	S	2492989.59	7450639.79
7-Jun-22	Point count	Clear/sunny	8	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2492957.75	7450581.65
7-Jun-22	Point count	Clear/sunny	8	0	Black and White Warbler	Mniotilta varia	1	S	2492935.72	7450593.96
7-Jun-22	Point count	Clear/sunny	8	0	Common Yellowthroat	Geothlypis trichas	1	S	2492946.71	7450564.86
7-Jun-22	Point count	Clear/sunny	8	0	Purple Finch	Haemorhous purpureus	1	S	2492953.91	7450621.73
7-Jun-22	Point count	Clear/sunny	10	0	Alder Flycatcher	Empidonax alnorum	1	S	2493655.60	7450651.99
7-Jun-22	Point count	Clear/sunny	10	0	American Robin	Turdus migratorius	1	S	2493702.87	7450581.49
7-Jun-22	Point count	Clear/sunny	10	0	Common Yellowthroat	Geothlypis trichas	1	S	2493659.48	7450639.06
7-Jun-22	Point count	Clear/sunny	10	0	Hermit Thrush	Catharus guttatus	1	х	2493640.07	7450684.97
7-Jun-22	Point count	Clear/sunny	10	0	American Redstart	Setophaga ruticilla	1	S	2493635.44	7450601.60
7-Jun-22	Point count	Clear/sunny	10	0	American Robin	Turdus migratorius	1	Х	2493666.55	7450578.29
7-Jun-22	Point count	Clear/sunny	10	0	Black and White Warbler	Mniotilta varia	1	S	2493632.24	7450644.26
7-Jun-22	Point count	Clear/sunny	10	0	White-throated Sparrow	Zonotrichia albicollis	1	S	2493698.39	7450648.72
7-Jun-22	Point count	Clear/sunny	10	0	Downy Woodpecker	Dryobates pubescens	1	х	2493567.47	7451336.57
7-Jun-22	Point count	Clear/sunny	10	0	American Redstart	Setophaga ruticilla	1	S	2493613.54	7451364.31
7-Jun-22	Point count	Clear/sunny	10	0	American Redstart	Setophaga ruticilla	1	S	2493573.36	7451386.97
7-Jun-22	Point count	Clear/sunny	10	0	Veery	Catharus fuscescens	1	S	2493547.46	7451418.02
7-Jun-22	Point count	Clear/sunny	10	0	Song Sparrow	Melospiza melodia	1	S	2493540.93	7451370.85
7-Jun-22	Point count	Clear/sunny	10	0	Ovenbird	Seiurus aurocapilla	1	S	2493558.38	7451323.00
7-Jun-22	Point count	Clear/sunny	10	0	Chestnut-sided Warbler	Setophaga pensylvanica	1	S	2493594.76	7451382.43
7-Jun-22	Point count	Clear/sunny	10	0	Song Sparrow	Melospiza melodia	1	S	2493527.98	7450203.39

^{*}Breeding codes (Taken from MBBA 2021)

X - Species observed in its breeding season (no breeding evidence)

	Date	Туре	Weather	Temperature (°C)	Beaufort**	Common Name	Scientific Name	Number Observed	Breeding Code*	X coordinate	Y coordinate
--	------	------	---------	------------------	------------	-------------	-----------------	-----------------	----------------	--------------	--------------

- H Species observed in its breeding season in suitable nesting habitat
- S Singing male(s) present, or breeding calls heard, in suitable nesting habitat in breeding season
- P Pair observed in suitable nesting habitat in nesting season
- D Courtship or display, including interaction between a male and a female or two males, including courtship feeding or copulation
- CF Adult carrying food for young
- FY Recently fledged young (nidicolous species) or downy young (nidifugous species), including incapable of sustained flight

^{**} Beaufort – is a scale ranging from 0 to 12 used to estimate wind force via visual observations. Bird surveys must stop when the Beaufort is estimated to be greater than 3